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Introduction

Hyperspectral sensors acquire hundreds to thousands of channels which provide more spectral
information (Du et al., 2004) than the multispectral sensors, for instance. The high spectral resolution
of hyperspectral data helps in discovering minor differences in narrow-band reflectance caused by
various vegetation types and characteristics thereof, which are not detectable with multispetral data
(Bajwa et al., 2004). These minor differences are essential in characterization of vegetation types.
Much of the information provided by hyperspectral data is, however, redundant due to spectral and
spatial correlations between individual bands (Bajwa et al., 2004). Identification of the most important
bands in the characterization of vegetation types as well as removal of redundant information, is an
interesting aspect in vegetation spectroscopy (Bajwa et al., 2004).

In this study, hyperspectral measurements of leaves of the seven predominant savannah trees
were acquired from the Kruger National Park, South Africa’s largest game reserve, in an attempt to
assess tree species diversity in the park. The leaf reflectance samples for each of the species were
measured using the Analytical Spectral Device (ASD) spectrometer. The seven species included the
Lonchocarpus capassa (LC), Combretum apiculatum (CA), Combretum heroense (CH), Combretum
zeyherrea (ZC), Gymnospora buxifolia (GB), Gymnospora senegalensis (GS), and Terminalia sericia
(TS).

This study uses the stepwise discriminant analysis (SDA) to identify the most important hyper-
spectral bands for characterization of the seven species. The role played by different regions of the
electromagnetic spectrum (EMS), such as, the visible (VIS), near-infrared (NIR), and the short-wave
infrared (SWIR), in the characterization of savannah trees at leaf level, is assessed. In addition, the
most important bands selected by the SDA are also used to characterize these savannah tress. Spectral
characterization is based on two groups of spectral similarity measures, namely, the deterministic and
the stochastic measures. Deterministic measures are used to determine the geometric characteristics
of spectra (Sobhan, 2007) by either measuring the angle, or the distance, or correlation between a
set of spectra. In this study, a deterministic similarity measure known as the Spectral Angle Mapper
(SAM), which determines spectral similarity by computing an angle between spectra, is used. The
stochastic similarity measures evaluate statistical distributions of spectral reflectance values (van der
Meer, 2006) of the concerned spectrum. These measures essentially define spectral variations by mod-
elling spectral information as a probability distribution. An example of such as measure used in this
study is the Spectral Information Divergence (SID). A new spectral similarity measure referred to
as the SID-SAM mixed measure, which combines the deterministic measure (SAM) and a stochastic



measure (SID), recently developed by (Du et al., 2004), is also used to characterize spectral properties
of savannah trees. The performance of the similarity measures is compared at each band configuration,
for each species, using the relative spectral discriminatory probability (RSDPB). Further details on
these techniques are discussed in the following section.

Stepwise Discriminant Analysis(SDA)

SDA was primarily used to reduce redundancies in the hyperspectral measurements recorded by
the Analytical Spectral Device (ASD) spectrometer and to determine the spectral bands with a greater
potential for discriminating between the seven savannah tree species. SDA builds a step-by-step model
which evaluates the contribution of each spectral band with respect to the discriminatory power of
the model. The discriminatory power of the model is measured by the Wilk’s lambda. A spectral
band therefore enters the model if it, according to the Wilk’s lambda criterion, contributes more to
the discrimination of the tree species, while it is removed if it contributes least to the discriminatory
power of the model. A discriminant model can generally be expressed as follows:

(1) Ti = a + bi1 × s1 + bi2 × s2 + . . . + bin × sn,

where Ti represents the ith tree species, a is a constant and b1 to bn are model coefficients, while s1 to
sn are the bands in the EMS. The statistical significance of each spectral band in the discrimination
between the various tree species is indicated by the F value.

Spectral Angle Mapper (SAM)

SAM measures the similarity between spectra by computing an angle between them, and is
defined as:

(2) SAM(si, sj) = cos−1
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where si and sj are the two spectral signatures, and L is the total number of bands that were consid-
ered. The smaller the angle between spectra, the more similar the two spectra are. SAM is a useful
similarity measure in species identification (Du et al., 2004).

Spectral information divergence (SID)

Given the spectra si and sj , SID is defined as:

(3) SID(si, sj) = D(si||sj) + D(sj ||si),

where D(si||sj) is the average discrepancy in self-information of sj relative to that of si also known as
the Kullback-Leibler information measure, and D(sj ||si) is the average discrepancy in self-information
of si with respect to the self-information of sj . Smaller values of SID indicate greater similarity
between the two spectra.

SID-SAM mixed measure

SID-SAM mixed measure is said to increase discriminability between two similar spectra by
making them even more similar and by making the two dissimilar spectra even more distinct. (Du



et al., 2004) proposed two versions of SID-SAM mixed measures, one based on the tangent of the
function between SAM and SID, while the other based on the sine function. These two are defined as:

SID(TAN) = SID(si, sj)× tan(SAM(si, sj)), and(4)

SID(SIN) = SID(si, sj)× sin(SAM(si, sj)),(5)

where si and sj are the two spectral signatures. The smaller values of SID(TAN) and SID(SIN)
indicate greater similarity between the two spectra.

Relative Spectral discriminatory probability (RSDPB)

RSDPB computes the likelihood that a spectral signature t will be identified by a selective set
of spectral signatures, 4. In this application, RSDPB is used to determine the likelihood that certain
spectral signatures (from the entire spectrum, VIS, NIR, SWIR, and also SDA bands) can be used in
discriminating each of the seven predominant tree species in the Kruger National Park. The relative
spectral discriminatory probability is defined as:

(6) Pt,4(k) =
m(t, sk)

L∑
j=1

m(t, sj)

for k = 1, . . . ,K,

where
L∑

j=1

m(t, sj) is the normalization constant determined by similarity measures in the known

spectral matrix. Further, m(t, sk) is any of the predefined spectral similarity measures for the target
spectral signature relative to other spectra sk, and K is the total number of species. The higher the
RSDPB value, the more likely the spectra discriminate from others in that part of the EMS.

Results

The results for the two species (LC and GS) are not shown as they exhibited similar char-
acterization patterns with one or more of species shown in this section. Figure 1(a) compares the
performance of the measures in characterization of CA and assesses it at various parts of the EMS.
For CA, using all the bands, the SWIR, and 10 SDA bands showed greater discriminatory probability
compared to the other regions of the EMS. It can also be observed that the mixed measures, namely,
SID(SIN) and SID(TAN) showed more discriminatory ability over the SID and SAM measures. GS
showed a discrimination pattern similar to that of CA, except that the 20 SDA bands had greater
discriminatory ability (particulary for the mixed measures) compared to the other SDA bands.

Figure 1(b) shows that for CH, SAM showed relatively greater characterization ability at all parts
of the EMS, where the largest characterization was observed at the NIR region. The characterization
pattern shows, however, that all the measures failed to clearly characterize CH at different EMS part,
particulary the SDA bands. CZ also showed the characterization pattern similar to that of CH.

For characterization of GB, Figure 1 (c) generally indicates that no major role was played parts of
EMS, while there is an indication that the 30 SDA bands are relatively important in the identification
of GB.

Figure 1(d) indicates that the characterization of TS is largely associated with the VIS bands.
It is also quite noticeable from this figure that the VIS region appeared to be largely discriminated
by all the measures, particularly by the mixed measures. LC species also exhibited the same pattern,
but, the SDA bands also seemed to have a relatively bigger role in its characterization.

The magnitude of spectral variation in species was linked with the spectral regions mentioned
above to examine whether the level of variation across the EMS or at specific regions thereof, gives
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(a) RSDPB plot for CA
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(b) RSDPB plot for CH

●

●
●

●

●
●

● ●

Set of bands

R
S

D
P

B
 v

al
ue

s 
fo

r 
G

B
 s

pe
ci

es

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

All VIS NIR SWIR SDA65 SDA30 SDA20 SDA10

RSDPB Values for Gymnospora Buxifolia (GB) species

●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

SAM
SID
SID.TAN
SID.SIN

(c) RSDPB plot for GB
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(d) RSDPB plot for TS

Figure 1: Spectral characterization of species (RSDPB plots)

useful information for the identification of species. It was assumed that the mean and variance
reflectance patterns of species, at different parts of the EMS, contribute to the identification of species
at such parts (if not at the entire spectrum).

Figure 2 represents the spectral plots for the mean and the variances for each of the seven
species. For CA, the mean and variance at SWIR region are much higher compared to the other
species. According to the mean wavelength for all species shown in Figure 2, the GS, just like the CA,
seemed to be more different than other species at the SWIR region, hence this region played a larger
role in their characterization. GS, however, showed lower averages and smaller variations across the
EMS (especially at the SWIR part), hence the other regions, except for the VIS region, also showed
larger contributions to the identification of GS.

Figure 2 (b) indicates that the variability within the TS species were relatively different from
other species in the VIS region, hence the importance of this region in the discrimination of TS. GB
did not show a very different pattern of variation at any specific part of EMS, as a result, no clear
identification of GB appeared at any part of EMS. Hence it was observed that at any part of the EMS
where the mean or variance patterns of species were different from other species (whether extremely
large or small), that part had greater impact on species separability. Therefore, the ability of any
EMS region to characterize all species also depends in the magnitude of variation of species in that
region. This could be the reason none of the EMS regions in this study, as well as those used in the
study by (Sobhan, 2007), failed to characterize all the species.
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Figure 2: Mean and Variance of species

Summary and Conclusions

This study assessed the role played by each of the regions of the EMS as well as the SDA bands
in discriminating each of the seven savannah tress. The regions of the EMS considered included the
VIS, NIR, and SWIR regions as well as the sets of 65, 30, 20, and 10 bands selected from SDA.
In addition, the performance of the deterministic and stochastic spactral similarity measures in the
characterization of species was compared using the relative discriminatory probability. From the
results, the SWIR region was observed to be important in the characterization of CA and GB species,
while the VIS part of EMS was seen to be largely significant in the characterization of the TS and LC.
The results also indicated that certain parts of the EMS play a significant role in the characterization
of species, depending on the variability contribution of species at those parts. None of the EMS parts,
however, had the ability to characterize all the species. As expected, the SID-SAM mixed measures
of spectral similarity generally performed better than the other measures with respect to the species
characterization given their leaf reflectance properties.
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