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Belief changas a subarea of knowledge representation con
cerned with describing how an intelligent agent ought to®
change its beliefs about the world in the face of new and po
sibly conflicting information. Arguably the most influertia
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Abstract

Standard belief contraction assumes an underlying
logic containing full classical propositional logic,
but there are good reasons for considering con-
traction in less expressive logics. In this paper
we focus onHorn logic. In addition to being

of interest in its own right, our choice is moti-
vated by the use of Horn logic in several areas,
including ontology reasoning in description log-
ics. We consider three versions of contraction:
entailment-basedndinconsistency-basezbntrac-
tion (e-contraction and-contraction, resp.), intro-
duced by Delgrande for Horn logic, anmackage
contraction (p-contraction), studied by Fuhrmann
and Hansson for the classical case. We show
that the standard basic form of contractipartial
meet is too strong in the Horn case. We define
more appropriate notions of basic contraction for
all three types above, and provide associated rep-
resentation results in terms of postulates. Our re-
sults stand in contrast to Delgrande’s conjectures
thatorderly maxichoices the appropriate contrac-
tion for bothe- andi-contraction. Our interest in
p-contraction stems from its relationship with an
important reasoning task in ontological reasoning:
repairing the subsumption hierarctig ££. This

is closely related tp-contraction with sets dfasic
Horn clauses (Horn clauses of the fopm- ¢). We
show that this restricted version efcontraction
can also be representediasontraction.

Introduction

work in this area is the so-called AGM approdétichourron

et al, 1985; Gardenfors, 198&hich focuses on two types o
belief changebelief revision in which an agent has to kee
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its set of beliefs consistent while incorporating new imfiar
tion into it, andbelief contractionin which an agent has to
give up some of its beliefs in order to avoid drawing unwanted
conclusions.

Although belief change is relevant to a wide variety of ap-
plication areas, most approaches, including AGM, assume an
underlying logic which includes full propositional logidn
this paper we deviate from this trend and investigate belief
contraction for propositional Horn logic. As pointed out by
Delgrandd200d who has also studied contraction for Horn
logic recently, and to whom we shall frequently refer in this
paper, this is an important topic for a number of reasons:
() it sheds light on the theoretical underpinnings of belief
change, andif) Horn logic has found extensive use in Al
and database theory. However, our primary reason for fo-
cusing on this topic is because of its application to ontolo-
gies in description logics (DLYBaaderet al,, 2003. Horn
clauses correspond closely to subsumption statementssn DL
(roughly speaking, statements of the foAnr...MA, C B
where thed;’s and B areconcept} especially in the £ fam-
ily of DLs [Baader, 2008 since both Horn logic and thel
family lack full negation and disjunction. A typical sceitar
involves an ontology engineer teaming up with an expert to
construct an ontology related to the domain of expertise of
the latter with the aid of an ontology engineering tool such
as SWOORP ljttp://code. googl e. com p/ swoop]
or Protégéliit t p: / / pr ot ege. st anf or d. edu]. One of
the principal methods for testing the quality of a consedct
ontology is for the domain expert to inspect and verify the
computedsubsumption hierarchyCorrecting such errors in-
volves the expert pointing out that certain subsumptioes ar
missing from the subsumption hierarchy, while others cur-
rently occurring in the subsumption hierarchy ought note¢o b
there. A concrete example of this involves the medical entol
ogy SNOMED[Spackmaret al, 1997 which classifies the

onceptAnput at i on- of - Fi nger as being subsumed by
the concepfrput at i on- of - Ar m Finding a solution to
problems such as these is knownr@gair in the DL commu-
nity [Schlobach and Cornet, 200®ut it can also be seen as

¢ aninstance ofontraction in this case by the statement
p Anput at i on- of - Fi nger C Anput ati on- of - Arm

The scenario also illustrates why we are concerned with

“This paper is based upon work supported by the National Rebelief contraction of beliesets(logically closed theories) and
search Foundation under Grant number 65152.

not belief basecontraction[Hansson, 1999 Ontologies are



not constructed by writing DL axioms, but rather using ontol (K—3) If ¢ ¢ K,thenK —p =K
ogy editing tools, from which the axioms are generated auto; - _
matically. Because of this, it is the belief set that is intpot, (K—4) It £ i, thenp & K — ¢
not the axioms from which the theory is generated. (K=5) If o =4, thenK —p = K -4
(K—6) If p € K,then(K —p)+p =K
2 Logical Background and Belief Contraction  The intuitions behind these postulates have been debated in
numerous workGardenfors, 1988; Hansson, 199%e will
not do so here, and just note tHd —6), a.k.a.Recoveryis
the most controversial.

Full AGM contraction involves twextended postulatés
addition to the basic postulates given above, but a diszossi
on that is beyond the scope of this paper (see Section 7).

We denote by the set of all valuations or interpretations . various methods exist for constructing ba§|cAGM contrac-
v: P — {0,1}, with 0 denoting falsity and 1 truth. Satis- tion. In this paper we focus on the userefainder sets
faction ofy by v is denoted by I- . The set of models of a Definition 2.1 For a belief set, X € K | ¢iff (i) X C K,
set of formulasX is [X]. We sometimes represent the valua- (i) X F ¢, and (jii) foreveryX’st.X ¢ X' C K, X' |= ¢.
tions of the logic under consideration as sequences of Os andfe call the elements @€ | o remainder setef K w.r.t. ¢.

1s, and with the obvious implicit ordering of atoms. Thus, fo ; ;g easy to verify that remainder sets are belief sets, and

the logic generated fromandg, the valuationin whicp is  ,5¢ remainder sets can be generated semantically by adding
true and_q IS fals_e will be represented as. _ ) Iprecisely one countermodel gf to the models of’ (when
Classical logical consequence and logical equivalence arg,cn countermodels exist). Alsh, | p = 0 iff = .
denoted by= and = respectively. For sets of sentencks Since there is no unique method for choosing between pos-
and®, we understand [= & to mean thalX entailsevery sibly different remainder sets, AGM contraction presugsos
element of®. For X' C Lp, the set of sentences logically e existence of a suitable selection function for doing so.
entailed byX is denoted byCn(X). A belief setis a logi- o i ) . )
cally closed set, i.e., for a belief s&, X = Cn(X). 22(X) Definition 2.2 A selection functiono is a function from
denotes the power set (set of all subsets)of P(P(Lp)) to 2(F(Lp)) such thato (K | ) = {K}, if
A Horn clausés a sentence of the form ApaA. . Ap, — K Lo =0,andd # o(K | ) € K| ¢ otherwise.
q wheren > 0. If n = 0 we write g instead of— ¢. A Selection functions provide a mechanism for identifying th
Horn theoryis a set of Horn clauses. Given a propositionalremainder sets judged to be most appropriate, and theresult
languagelp, the Horn languag€y generated fronCp is  ing contraction is then obtained by taking the intersectibn
simply the Horn clauses occurringlha. The Horn Iogic ob-  the chosen remainder sets.
tained from£y has the same semantics as the propositiona]5efinition 23 For o a selection function—
logic obtained fromLp, but just restricted to Horn clauses. T ’
Thus aHorn belief sefs a Horn theory closed under logical Meet contraction ifi’ —; ¢ = No(K L)
entailment, but containing only Horn clauses. Herjee=,  One of the fundamental results of AGM contractionis arepre-
the Cn(.) operator, and all other related notions are definedsentation theorem which shows that partial meet contnactio
relative to the logic we are working in (e.gs, for proposi-  corresponds exactly with the six basic AGM postulates.

tional logic andEH_for Horn logic). Since the context always Theorem 2.1 (Gardenfors, 198§) Every partial meet con-
makes it clear which logic we are dealing with, we shall dis-traction satisfie§x1)—(k-6). Conversely, every contraction
pense with such subscripts for the sake of readability. function satisfying K1 )—(K-6) is a partial meet contraction.

AGM [Alphourr()net al, 1983 is the best-known approach Tyo subclasses of partial meet deserve special mention.
to contraction. It gives a set of postulates characterialhg

rational contraction functions. The aim is to describe be-Déefinition 2.4 Given a selection function, —, is a maxi-
lief contraction on thenowledge leveindependent of how cheicecontraction iffo (K| ) is a singleton set. Itis &ll
beliefs are represented. Belief states are modelledeigf ~ Meetcontraction iffo (K| ) = K | o wheneverk' | ¢ # 0.
setsin a logic with a Tarskian consequence relation includ-Clearly full meet contraction is unique, while maxichoice
ing classical propositional logic. Thexpansiorof K by ¢, contraction usually is not. Observe also that partial meet ¢
K + ¢, is defined a€n(K U {¢}). Contractionis intended traction satisfies the following convexity principle.
to represent situations in which an agent has to give up-infor,
mation from its current beliefs. Formally, belief contiaat
is a (partial) function fromz? (Lp) x Lp to & (Lp): the con-
traction of a belief set by a sentence yields a new set.

The AGM approach to contraction requires that the follow-
ing set of postulates charactertsgsiccontraction. That is, every belief set between the results obtained from

full meet contraction and some maxichoice contraction is ob

(K-1) K — ¢ =Cn(K —¢) tained from some partial meet contraction. This result play
(K2) K—pCK an important part in our definition of Horn contraction.

We work in a finitely generated propositional language
over a set of propositional ator3, which includes the dis-
tinguished atomsl" and L, and with the standard model-
theoretic semantics. Atoms will be denotedjhyj, . . ., pos-
sibly with subscripts. We use, 1, ... to denote classical
formulas. They are recursively defined in the usual way.

- IS a partial

Proposition 2.1 Let K be a belief set, let-,,. be a maxi-

choice contraction, and let ;,,, be full meet contraction. For
every beliefseK s.t. (K —,, ) € X C K —,,c ¢, thereis

a partial meet contraction-,,, such that’ —,,,, ¢ = X.



Horn Contraction Horn contraction differs from classical appropriate Horr-contractions. This has a number of impli-
AGM contraction in a number of ways. The most basic dif- cations, one of them being that it conflicts with Delgrande’s
ferences are the use of Horn logic as the underlying logic andonjecture thabrderly maxichoice=-contraction igsheappro-
allowing for the contraction of finiteetsof sentence®. priate form ofe-contraction (see Section 6).

As recognised by Delgrand®00d, the move to Horn The argument that maxichoieecontraction is not suffi-
logic admits the possibility of more than one type of con-cient is a relatively straightforward one. In full propdsital
traction. He considers two types: entailment-based contra logic the argument against maxichoice contraction relates
tion (or e-contraction) and inconsistency-based contractiorthe link between AGMevisionand contraction via the Levi
(ori-contraction). In what follows, we recall Delgrande’s ap- Identity [Levi, 1977: K x ¢ = (K — =) + ¢. For maxi-
proach and develop our theory of Horn contraction. choice contraction this has the unfortunate consequeimte th
a revision operator obtained via the Levi Identity will sat-
isfy the following “fullness result”, i.e. X x ¢ is acomplete
theory: If -¢p € K then forallyy € Lp, v € K xp oOr
-1 € K x p. Semantically, this occurs because the models
"ot any remainder set fap are obtained by adding a single

3 Entailment-based contraction

For e-contraction, the goal of contracting with a set of sen-
tences® is the removal of at least one of the sentences i
®. For full propositional logic, contraction with a set of sen

tences is not particularly interesting since contractiggbb
will be equivalent to contracting by the single sentepficé.

For Horn logic it is interesting though, since the conjuoacti
of the sentences i is not always expressible as a single sen
tence. (An alternative, and equivalent approach, woula:hav
been to allow for theconjunctionof Horn clauses as Del-
grande[200d does, but for reasons that will become clear
in Section 5, we have not opted for this choice.) Our start
ing point for defining Horre-contraction is in terms of Del-

grande’s definition oé-remainder sets.

Definition 3.1 (Horn e-Remainder Sets) For a belief seff{,
X eH|. Diff()) X C H, (i) X = @, and (iii) for every

countermodel of-¢ to the models of<. And while it is true
thate-remainder sets for Horn logic do not always have this
property, the fact is that they still frequently do, whichane
that maxichoice:-contraction will frequently cause the same
problems as in propositional logic. For example, consider t
Horn belief setH = Cn({p,q}). It is easy to verify that
[H] = {11}, that thee-remainder sets ofp} w.r.t. H are

H = Cn({p — q¢,q — p}) and H" = Cn({q}), and that

TH'] = {11,00} and[H"] = {11,01}: i.e., the models of

H’ andH" are obtained by adding to the modelstfa sin-

gle countermodel op. This is not to say that maxichoice
e-contraction isneverappropriate. Similar to the case for
full propositional logic, we argue that all maxichoice Horn

X'st. X C X' C H, X' = ®. We refer to the elements of e-contractions ought to be seen as rational ways of contract-

H | . P as theHorne-remainder setef H w.r.t. .

It is easy to verify that all Horre-remainder sets are belief

sets. AlsoH | . = 0 iff = .

We now proceed to define selection functions to be use

for Horn partial meet-contraction.

Definition 3.2 (Horn e-Selection Functions) A partial meet
Horn e-selection functior is a function fromZ? (% (Ln))

to 2(#(Ly)) st.o(H |.®) ={H}ifH|.® =0, and
0 #o(H|.®) C H|.P otherwise.

Using these, we define partial meet Heroontraction.

Definition 3.3 (Partial Meet Horn e-Contraction) Given a
partial meet Horre-selection functiomr, —, is a partial meet
Horn e-contraction iffH —, ® = (" o(H |. D).

We also consider two special cases.

Definition 3.4 (Maxichoice and Full Meet) Given a partial
meet Horne-selection functiorr, —, is a maxichoice Horn
e-contractionff o (H |. ®) is a singleton set. Itis &ll meet
Horne-contractioriff o(H | . ®) = H | ® whenH |, ® # ().

Example 3.1 Let H = Cn({p — ¢,q — r}). ThenH |,
{p —» r} = {H',H"}, whereH' = Cn({p — ¢}), and
H"” = Cn({q— r,pAr — q}). So contracting with{p —
r} yields eitherl’, H”,or H' N H” = Cn({p Ar — q¢}).

3.1 Beyond Partial Meet Contraction

ing. Itis just that other possibilities may be more applieab
in certain situations. And, just as in the case for full preipo
tional logic, this leads to the conclusion that all partiaenh

8—contractions ought to be seen as appropriate.

Once partial meet-contraction has been accepted as nec-
essary for Horre-contraction, the obvious next question is
whether partial meet Hora-contraction is sufficient, i.e.,
whether there are any rationatontractions that are not par-
tial meet Horne-contractions. For full propositional logic
the sufficiency of partial meet contraction can be justifigd b
Proposition 2.1 which, as we have seen, states that every be-
lief set between full meet contraction and some maxichoice
contraction is obtained from some partial meet contraction
turns out that the same result does not hold for Horn logic.

Example 3.2 As we have seen in Example 3.1, for
the e-contraction of {p — r} from the Horn be-
lief set Cri{{p — ¢,¢ — r}), full meet yieldsH;, =
Cn({p Ar — ¢}) while maxichoice yields eithefi;} . =
Cn({p — q})orH?_.=Cn({qg— r,pAr — q}). Now con-
sider the belief setl’ = Cn({p A q — r,p Ar — q}). Itis
clear thatH,, C H' C HZ., but there is no partial meet
e-contraction yieldingH’.

Our contention is that Horercontraction should be extended

to include cases such &8 above. Since full meet Horer
contraction is deemed to be appropriate, it stands to reason
that any belief seff’ bigger than it should also be seen as ap-

While all partial meete-contractions (and therefore also propriate providedthatH’ does not contain any irrelevant ad-
maxichoice and full meet-contractions) are appropriate ditions. But sincef’ is contained in some maxichoice Horn
choices fore-contraction, they do not make up the setaif ~ e-contractionH’ cannot contain any irrelevant additions. Af-



ter all, the maxichoice Hore-contraction contains only rele- 4 Inconsistency-based Contraction

vant additions, since it is an appropriate form of contatti ) ,

HenceH’ is also an appropriate result efcontraction. We now turn our attention to Delgrande’s second type of
contraction for Horn logic: inconsistency-based contoaxt

Definition 3.5 (Infra e-Remainder Sets) For belief setsH  or i-contraction. The purpose of this type of contraction

and X, X € H |, ® iff there is someX’ ¢ H |, ® s.t. by a setd is to modify the belief set// in such a way

(NH|.®) C X C X'. We refer to the elements &f |, &  that adding® to H does not result in an inconsistent belief

as theinfra e-remainder setef H w.r.t. . set: (H —; ®)+ ® £ L. Our starting point for defin-
ing i-contraction is in terms of Delgrande’s definition of

Note that alle-remainder sets are also intaemainder sets, remainder sets with respect to Horn logic.

and so is the intersection of any setesfemainder sets. In-

deed, the intersection of any set of infraemainder sets is Definition 4.1 (Horn i-Remainder Sets) For a belief setH,
also an infrae-remainder set. So the set of inkaemainder X € H |; @ iff (i) X C H, (i) X + ® £ L, and (iii) for
sets contairall belief sets between some Hoerremainder  everyX’st. X ¢ X' C H, X'+ ® = L. We refer to the
set and the intersection of all Hoeremainder sets. This elements off |; ® as theHorni-remainder setef H w.r.t. ®.
explains why Horre-contraction is not defined as the inter-

section of infrac-remainder sets (cf. Definition 3.3). _ Itis again easy to verify that Horiaremainder sets are be-
lief sets and thatf |;® = Qiff ® = L.
Definition 3.6 (Horn e-Contraction) An infra e-selection The definition ofi-remainder sets is similar enough to that

function 7 is a function fromZ(Z(Ly)) to Z(Ly) s.t.  of e-remainder sets (Definition 3.1) that we can define par-

7(H |} ®) = H whenevet= @, andr(H || ®) € H|.® tial meet Horni-selection functions, partial meet Hotn

otherwise. A contraction function.. is a Horne-contraction  contraction, maxichoice Horp-contraction, and full meet

iff H—, ®=7(H{.P). Horn i-contraction by repeating Definitions 3.2, 3.3, and 3.4,
but referring toH | ; ® rather thanH | . ®

3.2 A Representation Result

Our representation result makes use of all of the basic AGM4'1 Beyond Partial Meet

postulates, except for the Recovery Postuld@e— 6). It As in the case fofe-contraction we argue that while par-
is easy to see that Horrcontraction does not satisfy Re- tial meet Horni-contractions are all appropriate forms of
covery. As an example, takd = Cn({p — r}) and let  j-contraction, they do not represent all rational forms of
® = {pAqg — r}. ThenH — & = Cn()) and so i-contraction. The argument against maxichoice Horn
(H—c®) +® = Cn({pAg—r}) # H. Inplace of contraction is essentially the same one put forward against
Recovery we have a postulate that closely resembles Hangaxichoice Horre-contraction. That is, the resulf —; ® of
son’s[1999 Relevance Postulate, and a postulate handlingnaxichoice Horni-contraction frequently results in a belief
the case when trying to contract with a tautology. set which differs semantically frof by adding a single val-
(H—o1) H—0® = Cn(H —, o) uatio_n to the models df{ in order to avoid inconsistency. We
can, in fact, use a variant of the same example used against

(H—.2) H—.®CH maxichoice Horne-contraction. Letd = Cn({p,q}) and
® = {p — L}. Then[H] = {11}, thei-remainder sets cb
(H—e3) If & £ HthenH — & =H w.rt. H areH' = Cn({p — ¢,q — p}) andH” = Cn({q}),
(H—.4) If |- dthend ¢ H —, O and[H'] = {11,00} and[H"] = {11, 01}: i.e., the models of
H’ andH" are obtained by adding to the modelstfa sin-
(H—¢5) If Cn(®) =Cn(¥) thenH — & = H —. ¥ gle valuation in order to avoid inconsistency. The caseregai
(H—.6) If p € H\ (H —, ®) then there is &’ such that partial meet Horri-contraction is again based on the fact that

it does not always include all belief sets between some maxi-

! / ! |
NH|.2)CH CH H' £ andd’ +{p} |5 © choice Horni-contraction and full meet Horircontraction,

(H-.7) If =®thenH —. ®=H leading us to infra-remainder sets.
Po'_stulate$H—61)—(H—e5) are analogues ¢fk—1)—(K-5),  Definition 4.2 (Infra i-Remainder Sets)For belief setsH
while (H —. 6) states that all sentences removed frém and X, X € H |; ® iff there is someX’ € H |; ® s.t.
during a®- contraction must have been removed for a reason; (NH |;®) C X C X'. We refer to the elements &f |}; ®
adding them again brings badk (H —.7) simply states that a5 theinfra i-remainder setsf H w.r.t. ®.

contracting with a (possibly empty) set of tautologies &sav
the initial belief set unchanged. We remark that —. 3) is  And Horni-contraction is defined i.t.o. infraremainder sets.
actually redundant in the list, since it can be shown to fello o . _ _
mainly from (H —. 6). Definition 4.3 (Horn ¢-Contraction) An infra i-selection
function 7 is a function fromZ(Z(Ln)) to P (Lu) s.t
Theorem 3.1 Every Horne-contraction satisfie$ —. 1)—  7(H |}, ) = H wheneve® = L, andr(H {;®) € H|; ®
H —. 7). Conversely, every contraction function satisfying otherwise. A contraction function. is a Horni-contraction
(H —.1)—(H —.7) is a Horne-contraction. iff H—, ®=71(HJ{;?).



4.2 A Representation Result

Our representation result fercontraction is very similar to
that fore-contraction and Postulaté& —;1)—(H —;7) below

are cIearIy close analogues(@ — 1)—(H —. 7).
(H—1) H—=i®=Cn(H —; ®)

(H—;2) H—;® CH

(H—;3) f H+® [ LthenH —; & =H

(H—;4) If @ & Lthen(H —; @)+ ® |~ L

(H—;5) If Cn(®) =Cn(V) thenH —; & =H —; ¥
(H—;6) If pe H\(H—;®),thereisad’ s.t(H |;®) C

H’QH H’+<I>b£J_ andH’ +
(H—;7) If =®thenH —; & =H
Analogously withe-contraction, rulé H—;3) can be shown to
follow mainly from (H—,6). We show that Hori-contraction

+(@U{ph) F L

Definition 5.3 (Infra p-Remainder Sets) For belief setsH
and X, X € H |, ® iff there is someX’ € H |, ® s.t.
(NH |,®) C X C X'. We refer to the elements &f ||, @
as theinfra p-remainder setef H w.r.t. ®.

Horn p-contraction is then defined in terms of infja
remainder sets in the obvious way.

Definition 5.4 (Horn p-contraction) An infra p-selection
function7 is a function fromZ(#2(Ln)) to &(Ly) such
that 7(H |, ®) = H wheneverd is tautologous, and
7(H |}, ®) € H |, ® otherwise. A contraction function
—, is a Hornp-contraction iff H —, ® = 7(H |, ®).

5.1 A Representation Result

The representation result fprcontraction is very similar to
that for e-contraction, with Postulated? —, 1)—(H —, 7)
being close analogues i —. 1)—(H —. 7).

is characterised precisely by these postulates. Observe that the following definition is used(iff —, 5).
Theorem 4.1 Every Horni-contraction satisfie$H —; 1)—  pefinition 5.5 For sets of sentencdsand ¥, $= iff either
(H —; 7). Conversely, every contraction function satlsfylngboth are tautologous, ovv € V, 3p € ® s.t.v IF ¢ iff

(H—; 1) (H —;7) is a Horni-contraction.

5 Package Horn Contraction

The third and last type of contraction we consider is reférre

to aspackage contractiona type of contraction studied by
Fuhrmann and Hanss¢h994 for the classical case (i.e., for
logics containing full propositional logic). The goal isre-
moveall sentences of a sdt from a belief set/. For full
propositional logic this is similar to contracting with thes-
junction of the sentences . For Horn logic, which does
not have full disjunction, package contraction is morerinte
esting. Our primary interest in package contraction rslade
an important version of contraction occurring in ontol@gic
reasoning, as we shall see below.

Our starting point is again in terms of remainder sets.

Definition 5.1 (Horn p-Remainder Sets) For a belief setf,

X e H|,®iff() X C H, (i)Cn(X)N® = 0, and
(i) forall X’ st. X € X' C H,Cn(X')N® # 0. The
elements off |, ¢ are referred to as thélorn p-remainder
setsof H w.r.t. O.

It is easily verified that Horp-remainder sets are belief sets.

In addition, the following definition will be useful.

Definition 5.2 A set® is tautologousff for every valuation
v, there is ap € ® such thaw I .

It can be verified thatl |, ® = () iff @ is tautologous. (Note
that tautologous is not the same as tautological.)

W€ Us.tolk .

This definition describes a notion of set equivalence wtsch i
appropriate to ensure syntax independence.

) —-p P = Cn(H p (I))

(H

(H p2) -, ®CH

(H—,3) |me<I> 0 thenH —, ® = H

(H —p4) If @ is not tautologous thefd —, @) NP =
(H—,5) If ®=U thenH —, & = H —, ¥

(H—,6) If pe H\(H—,®), therelsaH’stﬂ( 1p®) C

g C H,Cn(H")N P = 0,and(H' + ¢) N
(H —,7) If & is tautologous the#l —, & = H

Once mord H —,3) is actually redundant here. We show that
these postulates characterise Hproontraction exactly.

Theorem 5.1 Every Hornp-contraction satisfie$H —, 1)—
(H —, 7). Conversely, every contraction function satisfying
(H—-,1)—~(H —,7) is a Hornp-contraction.

£ 0

5.2 p-Contraction asi-Contraction

In addition to package contraction being of interest in o
right, we have a specific interest in the case wheo®ntains

only basicHorn clauses: those with exactly one atom in the
head and in the body. Our interest in this case is because of
its relation to an important version of contraction for dotp

ical reasoning in th€ £ family of description logics. Briefly,

The definition ofp-remainder sets is similar enough to that basic Horn clauses correspond closelp&sic subsumption
of e-remainder sets (Definition 3.1) that we can define parstatements in thé £ family: statements of the ford C B

tial meet Hornp-selection functions, partial meet Hogn
contraction, maxichoice Horp-contraction, and full meet

whereA andB areconcept namesdts importance stems from
the fact that basic subsumption statements are usegh#or

Horn p-contraction by repeating Definitions 3.2, 3.3, and 3.4,the subsumption hierarchyA detailed investigation of this

but referring toH |, ® rather thari |, ®

Sincee- andp-contraction coincide for contraction by sin-
gleton sets, our argument also holds jecontraction. Also,
Example 3.2 is also applicablepecontraction, from which it
follows that partial meep-contraction is not sufficient either.
Consequently, as we did fercontraction and-contraction,
we move to infrg>-remainder sets.

form of contraction for the £ family is beyond the scope of
this paper. Here we just show that Hgsrcontraction with
basic Horn clauses can be represented as a special case of
Horni-contraction. Defing as a function from sets of basic
Horn clauses to sets of Horn clauses, such that for any set
® ={p1 — q1,...,pn — qn} Of basic Horn clauses, we
havei(®) = {p1,...,pn,q1 — L,...,qn — L}.



Proposition 5.1 Let H be a Horn beliefsetand ldbeaset 7 Conclusion and Future Work

of basic Horn clauses. Theli —, ® = K —; i(®). We have laid the groundwork for contraction in Horn logic
It is Wort_h noting that this result does not hold for the caseg%/ 55?\‘{:22%20:?13&;%2;8 g];a;ig\éirtf;:?% 2f tgrrg&;ﬁg?;
where® includes general Horn clauses. studied by Delgrandg200d, andp-contraction. 'We showed

that Delgrande’s conjectures about orderly maxichoice con
6 Related Work traction beinghe appropriate version for these two forms of

contraction were perhaps a bit premature.

Work on belief change for Horn logics has focused mostly Here we focus only obasickorn contraction. For future

on beliefrevision[Eiter and Gottlob, 1992; Liberatore, 2000; "/O'k We plan to investigate Horn contraction forl AGM.

L . O ' ' contraction, obtained by adding tlegtendedbostulates. Fi-
angloiset al,, 2004. The only work of importance on Horn I lan t tend Its for H traction t

contraction to our knowledge, is that of Delgrand2009, natly, We pian 1o extend our resuts for Horn contraction to

. o ; : : : DLs, specifically the€ £ family of DLs. In this context we
and this section is mainly devoted to a discussion of his WorkaISO plan to investigate a connection betwgerontraction

Delgrande defines and characterises a versione-of  ange-contraction, suggested by an anonymous reviewer.
contraction which introduces additional structure in the

choice ofe-remainder sets by placing a linear orderah  References

e-remainder sets involving a belief s&t(i.e., for all possible , , i
®s). When performing contraction by a stone is obliged ~LAlchourronet al, 198§ C. Alchourron, P. Gardenfors, and
D. Makinson. On the logic of theory change: Partial meet

to choose the remainder setidfw.r.t. ® thatisminimalw.r.t. ; e X . .
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