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Abstract

The effects of selected membrane, plate and flat shell finite element formulations on
optimal topologies are numerically investigated. Two different membrane compo-
nents are considered. The first is a standard 4-node bilinear quadrilateral, and the
other is a 4-node element accounting for in-plane (drilling) rotations. Plate elements
selected for evaluation include discrete Kirchhoff quadrilateral (DKQ) element as
well as two Mindlin-Reissner based elements, one employing selective reduced in-
tegration (SRI), and the other an assumed natural strain (ANS) formulation. The
flat shell elements consist of an assemblage of these membrane and plate compo-
nents. Both Mindlin-Reissner elements are shown to recover the thin plate result
computed using DKQ elements for popular benchmark topology optimization plate
problems. However, a new benchmark problem is introduced illustrating the defi-
ciencies of Mindlin-Reissner elements employing SRI on transverse shear terms. For
shell problems, elements which properly account for in-plane rotations are shown
to be insensitive to the penalty parameter which enforces the relationship between
in-plane rotations and displacements, in contrast to the situation when an ad hoc

treatment of drilling degrees of freedom is used.
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1 Introduction

Due to its potential to automatically generate not only good, but optimal
designs, topology optimization has been receiving unprecedented attention of
late. However, we believe that an aspect of the problem which has not received
sufficient attention is the effect of the the actual finite element approximation
employed, on the resulting optimal topology.
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In this work the popular SIMP (Simple Isotropic Material with Penalization)
material parametrization is employed in order to demonstrate the effect of ele-
ment selection in structural topology optimization. The possibility of a SIMP-
like method was originally mentioned by Bendsøe [1], (although, based on
theoretical grounds, a preference for homogenization methods was expressed).
Rozvany and Zhou [2] and the University of Essen research group must, how-
ever, also be credited for independently suggesting and significantly popular-
izing SIMP over the years. In fact, the term “SIMP” was coined by Rozvany
et al. [3]. For a more detailed history of SIMP, the reader is referred to [4] or
[5].

It should be noted, that ‘optimal’ topologies are known to be a function of
the topology optimization algorithmic settings [6]. Therefore, it is not guar-
anteed that the global optimal of the evaluated problems are necessarily re-
ported here. Having said that, the optimal topologies presented herein closely
resemble previously reported results, where comparison is possible. Further-
more, where appropriate, the actual compliance of the topologies are compared
quantitatively to avoid simply comparing topologies visually.

Special attention is paid to plate and shell problems and it is therefore appro-
priate to give some background on structural topology optimization of plate
and shell problems at this point. There has been a plethora of work in this field,
so this is by no means an exhaustive review of all work done. A more thorough
review can be found in, for example the book of Bendsøe and Sigmund [7].

Tenek and Hagiwara [8] employed homogenization techniques to generate op-
timal isotropic single layer and multilayer anisotropic plate topologies. The
finite elements used in their work are based on Mindlin-Reissner plate the-
ory, and are four noded bilinear quadrilateral elements with only 5 degrees
of freedom (DOFs) per node (the in-plane rotation is omitted since only flat
problems are considered). This work was extended by Tenek and Hagiwara
[9] considering the topology optimization of plates, as well as single and dou-
bly curved shell structures. Strain energy was minimized subject to a volume
constraint. Again, simple four noded quadrilateral elements with 5 DOFs per
node were employed with selective reduced integration (SRI) to alleviate shear
locking.

There are of course numerous other authors who have used homogenization
methods to solve topology optimization problems for plate and shell structures,
for example see Dı́az et al. [10], Krog and Olhoff [11], or see Bendsøe and
Sigmund [7] for a more complete list of references.

Recently Hinton and co-workers [6,12] have addressed the topology optimiza-
tion problem of plate and shell structures using SIMP-like material models.
The Mindlin-Reissner based element used in their work is detailed in [13], and
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employs SRI on shear terms to overcome transverse shear locking. Since then
SIMP-like material parametrizations have become very popular in this type of
problem, see for example Pedersen [14], Jog [15] (who implement the MITC4
and MITC9 elements of Bathe and co-workers [16]) and Stegmann and Lund
[17], who also use MITC elements.

Meanwhile, many advances have been made in finite element technology, which
have a direct bearing on structural topology optimization, since most of the
applications in topology optimization employ the finite element method as an
analysis tool. As mentioned previously however, little attention is usually paid
to the actual finite element formulation in the application.

As is customary in topology optimization, we employ flat shell finite elements
(assembly of plate and membrane elements) in the analysis of generally curved
shell structures. These elements can only be effective if the membrane and
plate components from which they are constructed, are independently accurate
and robust.

Two membrane components are considered. The first is an isoparametric 4-
node bilinear quadrilateral [18]. The other is a 4-node element accounting for
in-plane (drilling) rotations based on the variational framework set out by
Hughes and Brezzi [19]. Plate elements selected for evaluation include the dis-
crete Kirchhoff quadrilateral (DKQ) element, see for example [20], as well as
two Mindlin-Reissner based elements, one employing selective reduced integra-
tion (SRI) [21], and the other an assumed natural strain (ANS) formulation
[22,23].

Further details of the finite element formulations considered are presented in
some detail in Section 3 and will therefore not be repeated here.

2 Topology optimization problem formulation

In this section, a very brief discussion of the topology optimization formulation
used for evaluation, is presented. The minimum compliance problem is specif-
ically focused on. Some details of the material parametrization of multilayer
designs are given. Also presented is a very short description of the optimal-
ity criteria based updating scheme employed, as well as the filtering strategy
employed to address the mesh dependency problem.
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2.1 Material parametrization

The discretized finite element model is parameterized using the popular Simple
Isotropic Material with Penalization (SIMP) method [7], in which material
properties are scaled with an artificial density parameter ρ, with 0 ≤ ρ ≤ 1
raised to a power p (usually 1 < p ≤ 6), representing a penalty exponent
which renders intermediate densities uneconomical.

As in Lee et al. [6] and Stegmann and Lund [17] numerical experiments with
multilayer shell structures are performed. Figure 1 schematically shows the
problem considered. The constitutive relations are computed using classical
laminate theory by analytical through-thickness integration. For the isotropic
materials used in this study, the stress resultant form of the constitutive equa-
tions can be calculated by pre-integration through the thickness. Thus for for
a laminate of thickness h with Nl layers, the relations between the stress re-
sultants and strains for multilayer shells can be expressed, as in [6], as:
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where ǫm, κ and γ are the membrane, bending and transverse shear strains
respectively and N , M and Q are the corresponding stress resultants. The
specific forms of the constitutive submatrices A(ρ), B(ρ), D(ρ), G(ρ) in (1),
may be found in [6]. The artificial density of layer i may be denoted ρi. Note
that layers that are a priori solid or void, and therefore do not form part of
the design problem, are simply accounted for by setting ρi = 1 for solid layers
or ρi = ρmin for void layers. The vector containing the density in the Nl layers
is denoted ρ.

Minimum compliance topology optimization problems impose a constraint on
the amount of material which can be utilized. The volume of a given element
can be computed (assuming a constant area A through the thickness) as

Ve(ρ) =
∫ h

2

−
h

2

A(ρ)dz =
Nl
∑

i=1

ρi A(zi+1 − zi). (2)

The volume of the entire structure is then easily computed as the sum of all
element volumes:

V =
Nel
∑

e=1

Ve, (3)

where Nel represents the total number of elements in the assembly. In this
work the design volume, or the volume of the design domain, will also be
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referred to. This is calculated as the difference between the total volume (3)
and the volume of the elements or layers which are prescribed to be solid or
void. In other word, the design volume is the volume of all the layers which
are a function of the design variables (artificial densities).

2.2 Layer models

Numerous laminate material models are possible using the material parametriza-
tion described in Section 2.1. For the purposes of this paper, only symmetric
material models will be considered, implying no coupling between membrane
and bending actions since B = 0. Specifically, the two layer models considered
are the:

• Single layer material model. This represents the classical topology optimiza-
tion problem for plate and shell problems, and allows for the introduction
of holes through the entire thickness (perforated plates/shells).

• Three layer ribbed or rib stiffened material model. This model maintains an
inner layer which is a priori solid with outer layers consisting of artificial
material, allowing for the introduction of stiffening zones symmetric to the
shell mid-surface.

2.3 Problem formulation and sensitivities

The conventional minimum compliance topology optimization problem is con-
sidered. This problem may be written in standard form as

min
ρ

c(ρ) (4)

such that :
Nel
∑

e=1

Ve ≤ V ∗, (5)

: KQ = F , (6)

: 0 < ρmin ≤ ρe ≤ 1, e = 1, 2, . . . , Nel (7)

where c is the compliance given by c(ρ) = F T Q(ρ), and where the displace-
ments, Q, are determined from K(ρ)Q(ρ) = F . In this problem, the force
vector F is independent of the artificial density. The allowable volume is de-
noted V ∗. The sensitivity of the linear volume constraint in (5) can easily be
determined. The sensitivity of the compliance (4) can be calculated using the
adjoint method [7]. Note that in the treatment above, each element e in the
finite element mesh has only one corresponding density variable ρe. In the
case of the three layer stiffening model, for example, this variable scales the
material properties of the two outer layers simultaneously.
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2.4 Design update and filtering strategies

The design update is carried out using the standard fixed-point updating
scheme based on the conditions of optimality [7]. The standard algorithmic
parameters are used, i.e. a move limit of ζ = 0.2 and a value of η = 1

2
for the

‘tuning’ parameter which numerically damps the oscillatory nature of the al-
gorithm. The aforementioned settings are used for all results presented herein.
In this way, the effect of element formulation on optimal topology is isolated.

The final implementational issue is that of mesh dependency. In order to over-
come this problem, as well as the checkerboarding problem (see [7,24,25] for
details) the sensitivity filtering method of Sigmund [25] is used, with a filter
radius of 1.2 element side lengths in all cases.

3 Finite element formulations

In this section, the formulations of the various shell finite elements used in the
numerical experiments, are briefly outlined. Each shell finite element, with
associated elemental displacements and rotations, can be decomposed as
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where k represents the stiffness matrix in a locally defined coordinate system,
with related local nodal displacements and rotations q. The partitioned mem-
brane and plate stiffness matrices are denoted km and kp, respectively. The
coupling stiffness between membrane and plate actions is denoted kmp.

The associated local displacements q are decomposed into terms associated
with membrane actions, qm, and those associated with the plate component,
qp. Specifically, qm = [u v θz]

T , where [u v]T represent the in-plane nodal
displacements only, and θz denotes the in-plane rotations or drilling DOFs
at each node. The plate transverse displacement and rotations are given by
qp = [w θx θy]

T .

For clarity, some detail of the membrane and plate components of the ele-
mental stiffness matrix are now presented separately in the local coordinate
system.
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3.1 Membrane elements

Two membrane finite element formulations are employed. The first is the tra-
ditional Q4 displacement-based element which neglects in-plane rotations. The
rotations can, however, be accommodated by an extremely simple, but ad hoc

treatment. This method has no theoretical basis, and is used to illustrate the
pitfalls of an improper treatment of element deficiencies.

The second membrane element is based on the variational formulation due to
Hughes and Brezzi [19], with the finite element implementation investigated
by Ibrahimbegovic et al. [26]. This formulation is based on a rigorous mathe-
matical foundation, and represents a robust, accurate membrane element.

3.1.1 Standard displacement based membrane element

The first membrane element is the standard displacement-based quadrilateral
element with bilinear displacement interpolations, see for example [18].This
element formulation neglects the in-plane rotational field, θz, and possesses
only two degrees of freedom per node. A method which is sometimes used to
account for the in-plane rotation is simply to add a small fictitious stiffness
to each drilling DOF. In this case, this is done by simply replacing the on-
diagonal 4× 4 null matrix relating to the drilling DOFs, with the matrix kθz.
The stiffness matrix for this membrane element is therefore given by:

kQ4α
m =







kQ4
m 08×4

04×8 kθz





 , (9)

where kθz is computed by appending the potential energy expression of each
element as follows:

Π∗ = Π +
∫

Ω
αE(ρ)t (θz − θ̄z)

2 dΩ, (10)

where α is a fictitious elastic parameter, and θ̄z is the mean rotation of each
element [21,27]. E(ρ) is the elastic modulus which is a function of the element
artificial density. As in Cook et al. [18] the added matrix provides each drilling
DOF with a fictitious stiffness, but offers no resistance to the mode θ1

z = θ2
z =

θ3
z = θ4

z , or any other rigid mode. Some experimentation is usually necessary
in order to select a suitable value of α, but if high precision computer code is
employed, usually small values of α are recommended [27].
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3.1.2 Membrane element with drilling DOFs

The second membrane element accounts for in-plane rotations based on their
continuum mechanics definition. The approach relies on a variational formu-
lation employing an independent rotation field, as presented by Hughes and
Brezzi [19]. Employing a notation similar to that in [26], the resulting stiffness
matrix is given by:

kQ4γ
m = k̃

Q4γ

m + pγ
m, (11)

where k̃
Q4γ

m is a 12 × 12 matrix given by:

k̃
Q4γ

m =
∫

A

[

BQ4γ
m GQ4γ

m

]T
A(ρ)

[
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m

]

dA, (12)

and where pγ
m is given by:

pγ
m = γ(ρ)
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where γ(ρ) = αG(ρ), (14)

with G the shear modulus which is a function of the artificial density variable,
and α an adjustable parameter as in (10). In their original work, Hughes and
Brezzi [19] suggest a value of α = 1 (i.e. γ = G). Again, γ is a function of the
element’s artificial density ρ. The forms of BQ4γ

m , GQ4γ
m , bQ4γ

m and gQ4γ
m can be

found in, for example [26,28].

3.2 Plate elements

In the numerical study to follow, three different plate elements are employed.
The first is the popular discrete Kirchhoff quadrilateral (DKQ) element based
on the Kirchhoff assumptions for thin plates, in which transverse shear is
neglected. The other two elements are Mindlin-Reissner based elements, and
differ only in the way in which shear locking is overcome.

3.2.1 Discrete Kirchhoff quadrilateral plate element

DKQ plate elements are commonly used in the analysis of thin plate problems.
Since transverse shear deformation (TSD) is not permitted this plate, and of
course the resulting shell, is transversely shear rigid. The formulation of the
DKQ element is well known, and will therefore not be presented in detail here.

The stiffness matrix of the DKQ element is defined in the standard manner
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for displacement models as

kDKQ
p =

∫

A
[BDKQ

b ]T D(ρ)BDKQ
b dA, (15)

where the specific form of B
DKQ
b can be found in, for example Batoz and Tahar

[20] and the bending rigidity matrix D(ρ) is a function of the artificial density
ρ.

3.2.2 Mindlin-Reissner plate element with selective reduced integration

Two Mindlin-Reissner plate elements, based on first order shear deformation
theory are evaluated. Assuming independent bilinear interpolations for the
transverse displacement and section rotations, the resulting stiffness matrix
for a Mindlin-Reissner plate element can be written as

kMR
p = kMR

b + kMR
s =

∫

A
[BMR

b ]T D(ρ)BMR
b dA +

∫

A
[BMR

s ]T G(ρ)BMR
s dA, (16)

where the standard forms of BMR
b and BMR

s can be found in, for example
[18]. It is well known that full integration of the stiffness matrix terms in
(16) results in severe locking for thin plates [16,18,21]. A simple method to
overcome the locking phenomenon is to employ a selective reduced integration
(SRI) scheme on the shear part of the stiffness matrix kMR

s . This procedure
will be employed to calculate the first Mindlin-Reissner plate stiffness matrix,
i.e.

kSRI
p = kMR

b + k̃
MR

s , (17)

where kMR
b is calculated using a 4-point scheme and k̃

MR

s is evaluated using
a single point integration scheme. A potential problem with this method of
overcoming locking due to the parasitic shear, is the introduction of spurious
zero-energy modes. Two spurious modes are introduced if SRI is employed,
one of which is not communicable. Hourglass control, e.g. see [29], will not be
used in order to demonstrate how this mode becomes problematic in topology
optimization problems.

3.2.3 Mindlin Reissner plate element with assumed natural strain

The second Mindlin-Reissner-based plate element overcomes the effects of
shear locking by assuming a mixed interpolation of transverse displacement,
section rotations and transverse strains. In particular the assumed natural
strain (ANS) formulation of Bathe and Dvorkin [22,23] is considered here.
These elements are also called MITC elements (or elements with mixed in-
terpolation of tensorial components). The element of Bathe and Dvorkin has
some similarities to the elements of MacNeal [30] and Hughes and Tezduyar
[31].
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This element has the advantage that it doesn’t have any numerically adjustable
factors (often required for hourglass control). Furthermore, it contains no spu-
rious zero-energy modes, and passes all appropriate patch tests.

The stiffness matrix derived from this interpolation procedure finally results
in the stiffness matrix

kANS
p = kMR

b + kANS
s = kMR

b +
∫

A
[BANS

s ]T G(ρ)BANS
s dA, (18)

where the bending part of the stiffness matrix is identical to that of kSRI
p , but

the shear part of the stiffness matrix is derived including the ANS interpola-
tions and evaluated using full integration. The strain operator BANS

s can be
derived as described in [16,22].

3.3 Shell element denotation

Formulations of two membrane and three plate elements have been presented,
which allows for a total of six different flat shell elements. The two membrane
components are denoted:

• Q4α - The standard Q4 displacement based four node quadrilateral element
with the ad hoc treatment of drilling DOFs. The Q4α stiffness matrix is
given in (9).

• Q4γ - The four node membrane element based on the variational formulation
of Hughes and Brezzi [19], and with local stiffness matrix given by (11).

The three plate components are denoted:

• DKQ - The plate element based on the Kirchhoff-Love thin plate assumption
of shear rigidity. The stiffness matrix in local coordinates is presented in
(15).

• SRI - The irreducible Mindlin-Reissner based element with selective reduced
integration on transverse shear terms, and stiffness matrix given by (17).

• ANS - The assumed natural strain plate element based on Mindlin-Reissner
assumptions, suggested by Bathe and Dvorkin [22], in which each of the nat-
ural strain components is independently interpolated. The elemental plate
stiffness matrix is given in (18).

Shell elements will be denoted using first the membrane, followed by the plate
designations. For example, the flat shell element made up of Q4α membrane
and DKQ plate components will be represented as Q4αDKQ.

Where necessary, the effect of out-of-plane warp is corrected using the so-
called ‘rigid link correction’ of Taylor [32] to transform the nodal variables to
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the projected flat element variables.

4 Numerical Examples

The finite element implementations presented in Section 3 are now numeri-
cally tested in a SIMP topology optimization setting. A number of popular
benchmark problems, which have been used mostly by researchers to verify
effectiveness or correctness of implementation, are investigated. Some new
problems, which highlight element deficiencies, are also introduced. Only re-
sults for plate and shell problems will be presented. In particular, we wish to
investigate:

• The difference in optimal topologies generated using elements based on
Kirchhoff theory, compared to those using Mindlin-Reissner theory for thick
and thin plate structures.

• The effect of employing selective reduced integration (SRI) in Mindlin-
Reissner plate elements, compared to mathematically sound and reliable
procedures for overcoming shear locking.

• The sensitivity of optimal topologies to parameters related to drilling DOFs
in shell structures.

In each numerical experiment, a uniform material distribution which exactly
satisfies the volume constraint is chosen as the starting point. A termination
criterion based on the number of iterations only, is employed. Therefore the
topology computed after 100 iterations will be referred to as the optimal topol-
ogy. However, in most cases the solution converged well before 100 iterations.

Finally, in some cases numerical deficiencies cause singularities which result
in the gradient of strain energy in particular elements to become very close to
zero or even positive. In such circumstances, these spurious values are replaced
manually by zero. This problem occurs only when SRI plate elements are used,
and instances where the correction is made, are explicitly pointed out.

4.1 Plate examples

The geometry, material properties and support conditions for the plate exam-
ple problems considered are depicted in Figure 2. In the ribbed example to
follow, the layup comprises three layers with the outer layers having thickness
t
4

and a center layer with a thickness of t
2
, where t is the total thickness of the

laminate. For the thick plates, thickness is set to t = 0.1 and for the problems
considering thin plates t = 0.01 is used. These aspect ratios are in line with
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those used by Zienkiewicz and Taylor [21] to classify thick and thin plates.

In each plate example, the problem symmetry is exploited by modeling only a
quarter of the plate using 900 square elements in total (i.e. a discretization of
30×30). Although only a quarter of the structure is modeled, the full topology
is reported. The available volume for the volume constraint is set, in each case,
to half of the design volume.

4.1.1 Simply supported plate with center point load

The geometry and constraints for the first plate problem is depicted in Figure
2(a). The problem consists of a square plate which is simply supported, and
subjected to a unit point load applied to the center of the plate. For brevity,
only single layer results are presented.

The compliance, together with the corresponding optimal topologies are com-
puted as a function of plate thickness for the three different plate elements
used in the study. Figure 3(a) depicts the compliance as a function of plate
thickness, plotted on a logarithmic scale, for the three different plate elements.
From Figure 3(a) it was confirmed that the DKQ optimal compliance results,
follow a cubic trend almost exactly with only slight variations due to numeri-
cal noise. The optimal topologies corresponding to the thicknesses evaluated,
depicted in Figure 4, confirm that the DKQ optimal topologies are insensitive
to plate thickness.

Figure 3(b) depicts the results on a linear scale, normalized with respect to
the (cubic) DKQ results. At the thin plate limit (t=0.01), very little difference
is observed between the compliances calculated using the three different plate
elements. The figure suggests that the SRI plate element is less stiff than
the ANS element since higher values of compliance are computed at each
thickness value, even when topologies are similar. Also indicated on the figure
are the thickness ranges over which design changes occur, corresponding to
the changes in the slope of the curve. In both cases the design is significantly
changed when the compliance of the structure is approximately 1.2 times that
of the DKQ result. Since the compliance of the SRI design is greater than
that using ANS elements, this point is reached at a lower thickness for the
SRI element and does not occur as gradually as the ANS element. Figure
4 depicts the actual topologies corresponding to the points on the curves in
Figures 3(a) and 3(b).

The conclusion is therefore that the differences in topology resulting from
SRI and ANS elements, is due to the SRI element being ‘softer’ (in transverse
shear) than the ANS element. Since the bending terms are identical, the softer
shear terms of the SRI elements offer less resistance and therefore relatively
more strain energy is accommodated by these terms.
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4.1.2 Corner supported plate subjected to uniform distributed load

In the previous thin plate problem, the ANS and SRI Mindlin-Reissner based
elements generate similar optimal topologies for thin plates. However, a prob-
lem is now introduced which the SRI element is known to have difficulty solv-
ing [33]. The geometry with boundary conditions is depicted in Figure 2(b). It
represents a corner supported plate (i.e. transverse displacement is constrained
at the four corner nodes only). The applied load in this case is uniformly dis-
tributed over the plate surface. Once again, for brevity only results for the
thin ribbed material model are presented.

Figure 5 demonstrates that the optimal topologies calculated using the DKQ
and ANS elements are, once again, similar. The SRI plate element has severe
difficulty in solving this problem. Indeed, many iterations resulted in elements
with slightly negative or near zero compliance. As a result, the optimal topol-
ogy calculated using SRI elements is completely spurious and different to the
results from the other two elements results. In order to explain this, the dis-
placed shape of the optimal topology generated using DKQ elements, analyzed
using SRI elements is plotted in Figure 6. The hourglass mode which is known
to propagate through SRI meshes can clearly be seen.

4.2 Shell examples

Finally, some results of the analysis of thin shell examples are presented. Since
the effect of plate formulation on optimal topologies has already been demon-
strated, the effect of membrane component, and especially the inclusion of
drilling DOFs, in shell elements is now studied. Therefore, in order to ensure
that the results are insensitive to plate formulation, only shell elements with
shear rigid plate components are evaluated in this subsection. It is thereby
guaranteed that only thin shell results are recovered, since DKQ elements are
insensitive to plate thickness, as demonstrated in the previous section.

Two problems are presented and are depicted in Figure 7, the first being a
cylindrical shell example, which has been studied by several authors [6,17].
The second problem is introduced here to highlight the sensitivity of optimal
shell topologies to the treatment of drilling DOFs.

4.2.1 Cylindrical shell

The first shell problem is depicted in Figure 7(a). The geometry, restraints,
applied loads and material properties are all depicted in the figure. The sym-
metry of the problem is again exploited by only modeling one quarter of the
structure with a 30× 30 discretization. A volume constraint of half of the de-
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sign volume is again imposed. Once again, for brevity only single layer results
are presented.

Figure 8 depicts the optimal compliance values, together with the correspond-
ing optimal topologies, as a function of scaling parameter α (see (10) for the
Q4α membrane component and (14) for the Q4γ component). The figure il-
lustrates that, when employing the Q4αDKQ element, the compliance and
corresponding optimal topologies are sensitive to the value of α, especially
when α becomes large. In particular, the optimal topology computed with
α = 100 is distinctly different qualitatively to the topologies corresponding to
the other values of α. The notable decrease in compliance at high values of α,
when using Q4αDKQ elements, is due to the artificially high stiffness of the
drilling DOFs which, due to the curvature, is propagated through the struc-
ture. On the other hand, the optimal topologies generated using Q4γDKQ
elements are shown to be insensitive to the scaling value of α.

In Table 1 a comparison of the optimal topologies, in terms of their actual
compliance, is presented. For each value of α, the compliance of the optimal
topology computed using Q4αDKQ elements (analysed using Q4αDKQ ele-
ments) is normalised with respect to the compliance of the optimal topology
computed using Q4γDKQ elements (again analysed using Q4αDKQ elements).
These results are denoted Case 1 in Table 1. A normalised value greater than 1
would therefore indicate that the topology computed using Q4αDKQ elements
is sub-optimal, and that the topology computed using Q4γDKQ elements is
in fact superior (assuming both structures are analysed using Q4αDKQ ele-
ments). The compliance of both topologies for each value of α are similarly
computed and normalised using Q4γDKQ elements. These results are denoted
Case 2 in Table 1.

From Table 1 it is apparent that, for a given value of α, both optimal topologies
computed have similar values of compliance (all values are close to 1) with the
possible exception of topologies computed with α = 102. In this case, the
results presented in the table indicate that the optimal topologies for the two
different elements, and for this particular value of α, are indeed different and
not simply the result of a premature termination in a local optimum. However,
having a situation where optimal topology is dependent on element settings
(or element selection) is highly undesirable. It is clear from these results that
this is not the case when employing the Q4γDKQ element.

4.2.2 Pretwisted shell

The final shell example is depicted in Figure 7(b). The problem is that of a
pretwisted beam, which is clamped at the root, with two point loads applied
at the vertices opposite the fixed end. The full geometry is modeled with a
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40 × 40 discretization. A volume constraint of half of the design volume is
imposed.

Figure 9 depicts the optimal topologies employing Q4αDKQ and Q4γDKQ
elements together with the corresponding compliance values. For this problem,
the range of values of α for which the Q4αDKQ and Q4γDKQ elements result
in similar topologies is much smaller than the cylindrical shell problem. In
fact, each value of α result in a different topology when the finite element
model employs Q4αDKQ elements. In contrast, the Q4γDKQ element is once
again shown to be stable and robust for all tested values of α.

Table 2 presents a comparison of the optimal topologies in terms of their
actual compliance, similar to that presented in Table 1. In this case only the
topologies in the range 10−2 < α < 100 have similar values of compliance
(even if the topologies are not identical over this range). Once again, the
tabulated values suggest that the differences in these optimal topologies are
not simply a result of termination in a local minimum, but are in fact different
optimal topologies. The fact that the compliance and topologies computed
using the Q4γDKQ elements are insensitive to the parameter α suggests that a
proper treatment of the drilling DOF is essential in shell topology optimization
problems.

5 Conclusions

Numerical experiments were performed in order to determine the effect of fi-
nite element formulation on plate and shell topology optimization problems. It
was shown that, for given topology optimization algorithmic settings, the re-
sultant optimal topology is indeed dependant on element type. Consequently,
appropriate care should be taken when selecting both the element type, and
element settings, such that the physics of the problem is accurately modelled.

The plate examples presented confirmed that, since the DKQ element is shear
rigid, optimal topologies computed using these elements are not sensitive to
plate thickness. Elements employing an assumed natural strain (ANS) formu-
lation were shown to be robust and reliable. The ANS elements consistently
recovered thin plate results similar to the DKQ results. Mindlin-Reissner ele-
ments with selective reduced integration (SRI) on transverse shear terms are
shown to be ‘softer’ in transverse shear than the ANS Mindlin-Reissner based
elements and are therefore more sensitive to plate thickness. However, the SRI
element possesses a spurious communicable mode which occasionally renders
this element unstable. A corner plate example is introduced which illustrates
this problem. It is therefore not recommended that SRI plate elements are
used in a topology optimization setting, and that ANS plate elements are
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used instead.

Finally, the effect of parameters related to drilling DOFs of shell problems were
studied. It was shown that optimal topologies computed with elements with
drilling degrees of freedom based on sound mathematical theory are insensi-
tive to the penalty parameter over a wide range. On the other hand, elements
with an ad hoc treatment of drilling degrees of freedom were found to be far
more sensitive to adjustable parameters. This sensitivity to the adjustable pa-
rameter is furthermore shown to be problem dependent. A new shell example,
in the form of a pretwisted beam, is introduced to exemplify this dependence
(even at low values of α). A situation where optimal topology is dependent
on element settings is, of course, highly undesirable and it is therefore recom-
mended that only elements with a proper treatment of drilling DOFs are used
in the analysis of shell topology optimization problems.
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Fig. 1. A schematic representation of a general material layup for shell topology
optimization problems.
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(b) Corner supported square plate.

Fig. 2. Example plate problems, geometry and constraints.
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Fig. 3. Optimal topology compliance as a function of plate thickness for the simply
supported plate subject to centre point load, single layer model.
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Fig. 4. Optimal topologies for various plate thicknesses, computed using different
plate elements, of a simply supported plate subjected to center point load, single
layer model.

(a) Computed with DKQ
elements.

(b) Computed with ANS
elements.

(c) Computed with SRI
elements.

Fig. 5. Optimal topologies of a corner supported square plate subjected to uniform
distributed load, ribbed model, t = 0.01.

Fig. 6. Displaced shape of optimal topology computed using DKQ analyzed using
SRI elements. Amplification factor 3 × 10−10.
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Fig. 7. Example shell problems, geometry and constraints.
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Fig. 8. Optimal topologies and associated compliance of a corner supported cylinder
with single layer material model for various values of scaling factor α.
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Fig. 9. Optimal topologies and associated compliance of a pretwisted beam with
single layer material model for various values of scaling factor α.
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α = 10−6 α = 10−4 α = 10−2 α = 100 α = 102

Case 1 0.9943 0.9951 0.9956 0.9966 0.9795

Case 2 1.0054 1.0046 1.0041 1.0031 0.9996

Table 1
Corner supported cylinder: Compliance of optimal topology calculated using ele-
ment A divided by the compliance of optimal topology calculated using element B,
both evaluated using element A (α constant). Case 1: A ≡Q4αDKQ, B ≡Q4γDKQ.
Case 2: A ≡Q4γDKQ, B ≡Q4αDKQ.

α = 10−6 α = 10−4 α = 10−2 α = 100 α = 102

Case 1 0.9473 0.9588 0.9954 0.9989 0.9193

Case 2 0.9840 0.9831 0.9935 1.0007 0.8105

Table 2
Pretwisted beam: Compliance of optimal topology calculated using element A di-
vided by the compliance of optimal topology calculated using element B, both eval-
uated using element A (α constant). Case 1: A ≡Q4αDKQ, B ≡Q4γDKQ. Case 2:
A ≡Q4γDKQ, B ≡Q4αDKQ.
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