
HLA RTI Performance Evaluation

L. Malinga and Willem H. le Roux
Council for Scientific and Industrial Research1

Meiring Naude Road
Pretoria, 0001
South Africa

+27 12 841 2022/4867
{lmalinga | whleroux}@csir.co.za

Keywords:

HLA, RTI, Performance Evaluation, High Level Architecture, Modelling and Simulation

ABSTRACT The performance of three Run-Time Infrastructures (RTI) is measured. Two open source implementations
(Portico version 0.8 and CERTI version 3.3.0) and one commercial implementation (MÄK version 3.2) have been subjected
to a specific test under ideal conditions using a dedicated Federate Object Model. This paper reports on the results of this
test for each of the RTIs. We looked at the round-trip time for a federate to send an attribute update to another federate,
and then to received the same update back. The attribute size was varied. This test is the first of a series of tests to be
conducted on different RTIs to evaluate the performance under ideal conditions, and then later under more realistic
conditions. The first test also entailed getting to know the interfaces of the different RTIs. This also contributed to the re-
establishment of the use of HLA in our research unit. It is also planned to use more RTIs, from different vendors Initial
results show that although the MÄK RTI implementation had a limitation in terms of the data size that can be transmitted
for the best effort transport setting, it had a low round-trip time as compared to CERTI and Portico.

1. Introduction

In this paper the performance of two open-source RTI
implementations (CERTI version 3.3.02 and Portico
version 0.83) and one commercial implementation (MÄK
3.24), is measured using a specific test. No specific
criteria were applied in selecting the RTIs, merely access
to the software. The commercial version was selected as
the vendor supplies an evaluation license. It has the
limitation that a maximum of only two federates can be
used. The performance test was therefore designed to only
use two federates.

A basic scheme is used. A simple FOM consisting of a
single class containing a single attribute was defined. A
variable number of bytes are published by a federate as
the attribute of the object. Both Federates publish and
subscribe to the same attribute. One federate sends an
update and the other reflects back the update to the

1 The CSIR is one of the leading scientific and technology research,
development and implementation organisations in Africa. Constituted by
an Act of Parliament in 1945 as a science council, the CSIR undertakes
directed and multidisciplinary research, technological innovation as well
as industrial and scientific development to improve the quality of life of
the country’s people. The CSIR is committed to supporting innovation in
South Africa to improve national competitiveness in the global
economy. Science and technology services and solutions are provided in
support of various stakeholders, and opportunities are identified where
new technologies can be further developed and exploited in the private
and public sectors for commercial and social benefit. The CSIR’s
shareholder is the South African Parliament, held in proxy by the
Minister of Science and Technology (www.csir.co.za).
2 http://www.cert.fr/CERTI
3 http://www.porticoproject.org
4 http://www.mak.com/products/rti.php

sender. The round-trip time is then measured over a
number of updates. In this paper, Version 1.3 of the High
Level Architecture (HLA) specification as adopted by the
United States Department of Defense was used.

The MÄK RTI had exceptionally low latencies as
compared to CERTI and Portico but it had a limitation in
the size of the attribute. The maximum size of the
attribute for the MÄK was limited to the maximum size of
the UDP packet of the network, namely 64 KB, when
using the best effort mode.

The performance analysis task of the different RTIs was
undertaken for two reasons. The first is to re-establish a
High Level Architecture (HLA) in our Research unit in
the Council for Science and Industrial Research1 (CSIR),
and at the same time provide a mechanism for new
employees to get au fait with HLA. Secondly, the
possibility of switching to an open source RTI is
considered, as well as the possibility to assist in further
endeavours

1.1. Background

The High Level Architecture is a formal specification for
the implementation of distributed computer simulation
systems [1]. The components participating in the
simulations are known as federates. The communication
between federates is managed by a Run-Time
Infrastructure (RTI). A collection of federates
communicating through an RTI forms a federation
execution. A Federation Object Model (FOM) is used to
describe the data that is exchanged between federates.

Different RTIs realises the services of the HLA interface
specification using different algorithms, techniques,
architectures and implementations. The following is a list
of some of the factors affecting the performance of an
RTI [2].

• Requirements levied by the HLA interface

specification (for example, reliable transport of
attribute updates on a network. Due to the point-point
nature of TCP, this requires that a message be sent
for each participating federate on the network, hence
high bandwidth consumption)

• Choices of the RTI implementation (different RTIs
are optimised for certain simulation environments
and programming languages)

• Design of the federation (for example, number of
federates, scalability, etc)

• Physical resources (processing power, etc).

2. Evaluation Framework

2.1. Host Machines

The physical resources of the federation execution impose
limitations to the RTI performance regardless of the
implementation [2]. The experiments undertaken in this
paper consisted of at least two host machines running
Windows XP Professional Service Pack 2. One host was
an Intel(R) Pentium(R) 4 CPU 3.20 GHz, 3.19 GHz with
2.00 GB of RAM. The other host was also an Intel(R)
Pentium(R) 4 CPU 3.40 GHz, 3.4 GHz with 1.98 GB of
RAM. The hosts were equipped with 100BaseT Ethernet
and connected via a 1 Gb Ethernet switch. Figure 1 below
shows the hardware architecture of the tests that were
conducted

Figure 1: Hardware Architecture Set-Up

2.2. Federate Object Model

A FOM is used to describe the data that is exchanged
between federates. A simple FOM consisting of a single
class containing a single attribute was developed. The
attribute was transported with both best effort and reliable
transport mechanisms. The updates were configured to be

processed on receive. Figure 2 depicts a generic form of
the FOM used in the performance tests.

(FED

(Federation FederationName)

(FEDversion v1.3)

 (spaces)

 (objects

 (class ObjectRoot

 (attribute privilegeToDelete best_effort receive)

 (class RTIprivate)

 (class BaseEntity

 (attribute AttributeName best_effort receive)

)

)

)

 (interactions

 (class InteractionRoot best_effort receive)

)

)

Figure 2: Federate Object Model

2.3. Method

Each of the two hosts were running at least one federate.
The RTI was started on only one host. The time it takes
for a federate to receive an update was measured. This
was achieved by one federate starting a timer and then
publishing, (“sending”) an attribute update. The
publishing federate then waited for the reflecting federate
to reflect the update. This was done to ensure that only
one attribute update’s round-trip gets measured. When the
publishing federate received the attribute update back, it
then stopped the timer. This procedure is illustrated in
Figure 3. Although this procedure was repeated 100 times
for an average measurement, each one was measured
individually, so as to make sure that other factors do not
influence the time performance. At least 1 second was
allowed between round-trip attribute updates to ensure
that other mechanisms do not interfere. Batching of a
number of round-trip attribute updates to calculate a more
accurate round-trip time will be conducted in a future
experiment. The timer used is based on the high
frequency performance counter accessible from C++. A
time measurement accuracy better than 1 microsecond
was achieved.

For each round-trip attribute update, the federation was
created and destroyed before starting another
measurement. This was done to ensure that there is no
memory leakage and that the round-trip of each sample is
independent from other test.

Figure 3: Publishing (“Sending”) Federate and the

Reflecting Federate

2.4. Selected RTIs

Two open source RTIs, CERTI 3.3.0 and PORTICO 0.8
and one commercial RTI, MÄK 3.2 were chosen for the
experiments. The RTIs were only selected based on
availability. Each one is discussed in the following
paragraphs.

2.4.1. CERTI 3.3.0

CERTI is an open source RTI implementation for
distributed discrete event simulation systems developed
by ONERA licensed under General Public License (GPL).
C++ is used for the used for the CERTI implementation
and the development of federates. CERTI is built around
an architecture of communication processes based on
standard Unix libraries for process management. CERTI
consist of the following components:

• A local process (RTIA)
• A global process (RTIG)
• A library (libRTI) linked with each federate

The CERTI architecture is shown in Figure 4 [3].

Figure 4: CERTI Architecture

A federate process communicates with the RTIA through
Unix-domain sockets. The RTIA process exchange
messages over the network with the RTI Gateway
process, via TCP sockets or UDP in order to realise the
services associated with the RTI. The allocation of CPU
resources to the federate and the RTIA process is
exclusively managed by the operating system. CERTI is
multi-process oriented as opposed to multi-threaded.

There were no parameters to optimise CERTI 3.3.0 for
performance, therefore experiments were conducted with
the default configuration.

2.4.2. Portico 0. 8

Portico is a fully supported, open source, cross-platform
HLA RTI implementation licensed under the terms of the
Common Developer and Distribution Licence (CDDL)
[4]. Portico is implemented in two languages; JAVA and
C++. However the C++ version of Portico still requires
the Java Run-Time Enviroment (JRE). C++ federates were
implemented for this test. Portico consists of the
following components:

• LRC (Local Runtime Component)
• Connection Binding
• RTI

The underlying communication infrastructure is isolated
and hidden from the actual functionality of the RTI. The
communication between the LRC and RTI is determined
at run time by Portico. The Portico architecture is shown
in Figure 5.

Figure 5: Portico Architecture

There were no parameters to tune to optimize Portico 0.8
as a result the experiments were conducted with the
default configuration.

2.4.3. MÄK 3.2

The MÄK 3.2 RTI is a commercial software library with
supporting executables that implements the HLA
specifications in C++. MÄK has been verified by the
Defense Modelling and Simulation Office (DMSO) as
fully compliant with the HLA Interface Specification,
version 1.3 and the IEEE 1516 version of the HLA
Interface Specification (SISO DLC HLA API 1516:
SISO-STD-004.1-2004) [5]. The MÄK RTI was designed
with performance in mind [6].

The MÄK RTI was configured to allow asynchronous I/O
(asynchronous reads and writes on the network) with
tick() to avoid message drops [6]. This meant that an
update was received by a federate when the tick()
function was called.

The bundling feature in the MÄK RTI was turned off to
ensure all packets are transmitted as soon as possible [6].
According to the MÄK RTI documentation, the
best_effort transport mechanism does not support message
fragmentation. Therefore, the maximum number of bytes
of the update that can be transmitted before fragmentation
is limited to the maximum number of bytes of a UDP
packet, i.e. 64 KB. This property was set in the
configuration file of MÄK RTI to allow the biggest data
size for the tests that were performed.

 (setqb RTI_asynchronousIO 1)

 (setqb RTI_asynchronousCallbacks 1)

 (setqb RTI_enablePacketBundling 0)

 (setqb RTI_maxUdpPacketSize 70000)

Only two federates could be run at the same time with the
MÄK RTI as the evaluation version was used.

3. Results

Figures 6 and 7 show the round-trip time in milliseconds
as a function of the data sizes for the three RTI
implementations for best_effort and reliable
transportation respectively. For each size of the attribute,
100 updates are sent; the mean time is then calculated
over the samples; i.e. over 100 samples. The mean time is
for the round trip – from the time an update was published
by the “sending” federate, the “receiving federate”
receiving the update, and publishing the same update to
back the “sending” federate, until the “sending” federate
received the update.

The number of bytes per update was increased by a factor
of 2. This was performed to determine how much data
could be transmitted by the open-source RTIs.

In Figure 6, MÄK RTI maximum data size was 64 KB as
this is the limit if best_effort is used. For the other RTI
implementations, the data size was increased from 8 KB
by a factor of 2 each time until 1024 KB.

Problems were experienced with Portico 0.8 after 63
updates when the data size was 1024 KB. According to
the error, this was due to low memory availability. The
value obtained for Portico 0.8 when the data size was
1024 KB, was therefore calculated over 63 samples
instead of 100. CERTI and MÄK performed 100 updates
of size 1024 KB without any problems.

Average Round-Trip Time for Best Effort Transport

0.1

1

10

100

1000

8 16 32 64 128 256 512 1024

Attribute Update Size (KB)

R
o

u
n

d
-T

ri
p

 T
im

e
 (

m
s)

MÄK 3.2

CERTI 3.3.0

Portico 0.8

Figure 6: Round-Trip Time for Best Effort

Transportation

Average Round-Trip Time for Reliable Latency

Transport

1

10

100

1000

8 16 32 64 128 256 512 1024

Attribute Update Size (KB)

R
o

u
n

d
-T

ri
p

 T
im

e
 (

m
s)

MÄK 3.2

CERTI 3.3.0

Portico 0.8

Figure 7: Round-Trip Time for Reliable

Transportation

4. Discussions

The three RTI implementations have a similar behaviour
for small data sizes; i.e. round-trip times for all three RTI
implementations do not change that much for small data
sizes.

Using best_effort transportation, the times for CERTI are
lower than that for Portico for update sizes smaller than
512 KB. For update sizes, larger than 512 KB, the times
for CERTI and Portico increased exponentially with
CERTI the highest. MÄK could not be used for sizes
above 64 KB as discussed elsewhere, but is the best
performer for smaller updates, with a round-trip time of
less than 1 ms.

Using reliable transportation, the times for MÄK are
lower than the two open-source RTIs for all data points.
For data sizes, smaller than 512 KB, CERTI has the
lowest round-trip time. For 1024 KB, Portico has a slight
advantage over CERTI.

5. Conclusion

Performance of the two open-source RTI
implementations; CERTI 3.3.0 and Portico 0.8 and one
commercial RTI implementation; MÄK 3.2 were
measured. A basic FOM was defined consisting of a
single class containing a single attribute. The round-trip
time for an attribute update was measured. This was
achieved by one federate sending an update and waiting
in a loop for the second federate to reflect back the update
(i.e. to send the update back) and recording the time it
takes.

Although the MÄK 3.2 had a limitation of 64 KB in terms
of the size of the attribute updates that can be transmitted
using best_effort, it had exceptionally low latencies. For
update sizes, larger than 64 KB, all three RTIs had an
increase round-trip time, with MÄK at the lowest.

Future work includes more tests, namely to time a single
attribute update, again with varying sizes. More federates;
objects and attributes will also be used under laboratory
conditions, before moving on to conditions that are more
realistic. Finally, ways to validate the performance test
results will be devised and applied.

6. References

[1] F. Kuhl, R. Weatherly and J. Dahman, “Creating

Computer Simulation Systems: An Introduction to
the High Level Architecture,” Prentice-Hall, Upper
Saddle River, 1999.

[2] B. Watrous, L. Granowetter and D. Wood, “HLA
Federation Performance: What Really Matters?” In
Proceedings of the 2006 Fall Simulation
Interoperability Workshop, Stockholm, 2006.

[3] B. Bréholée and P. Siron, “CERTI: Evolution of the
Onera RTI Prototype,” In Proceedings of the Fall
Simulation Interoperability Workshop, Orlando,
2002.

[4] The Portico Project Web Site,
http://www.porticoproject.org, Accessed 4
February 2009.

[5] MÄK RTI 3.1.2 Release Notes, MÄK Technologies,
2007.

[6] B. Watrous and L. Granowetter and D. Wood, “The
MÄK High-Performance RTI: Performance by
Design,” MÄK Technologies.

Author Biographies

LINDA MALINGA has been with the South African
Council for Science and Industrial Research since
September 2008 and is at present a Researcher in the
Mathematical and Computational Modelling Research
Group. Linda holds a Bachelor of Science degree in
Electrical and Information Engineering from the
University of the Witwatersrand.

HERMAN LE ROUX has been with the South African
Council for Scientific and Industrial Research since April
1998 and is at present a Principal Engineer in the
Mathematical and Computational Modelling Research
Group. He is involved in Modelling and Simulation-based
Acquisition Decision Support, specifically for the South
African National Defence Force. Interests include
enterprise information systems, information fusion,
biometrics, artificial intelligence and software
engineering. Le Roux completed a Masters Degree in
Computer Engineering at the University of Pretoria in
1999 and is currently pursuing a PhD in Command and
Control Modelling.

