HLA RTI Performance Evaluation

L. Malinga and Willem H. le Roux
Council for Scientific and Industrial Reseatch
Meiring Naude Road
Pretoria, 0001
South Africa
+27 12 841 2022/4867
{Imalinga | whleroux}@csir.co.za

Keywords:
HLA, RTI, Performance Evaluation, High Level Aratture, Modelling and Simulation

ABSTRACT The performance of three Run-Time InfrastructuR$l) is measured. Two open source implementations
(Portico version 0.8 and CERTI version 3.3.0) ané commercial implementation (MAK version 3.2) hiasen subjected

to a specific test under ideal conditions usingedidated Federate Object Model. This paper reportghe results of this
test for each of the RTIs. We looked at the rouipdtime for a federate to send an attribute updteanother federate,
and then to received the same update back. Thibwtrsize was varied. This test is the first afesies of tests to be
conducted on different RTIs to evaluate the perforte under ideal conditions, and then later underenrealistic
conditions. The first test also entailed gettingktmw the interfaces of the different RTIs. Thialontributed to the re-
establishment of the use of HLA in our research. unhis also planned to use more RTIs, from défervendors Initial
results show that although the MAK RTI implemeatatiad a limitation in terms of the data size tbah be transmitted
for the best effort transport setting, it had a losund-trip time as compared to CERTI and Portico.

1. Introduction

In this paper the performance of two open-sourcé RT
implementations (CERT! version 3.8.0and Portico
version 0.8) and one commercial implementation (MAK
3.2, is measured using a specific test. No specific
criteria were applied in selecting the RTIs, mermstgess

to the software. The commercial version was seteate
the vendor supplies an evaluation license. It Has t
limitation that a maximum of only two federates dam
used. The performance test was therefore designenly
use two federates.

A basic scheme is used. A simple FOM consisting of
single class containing a single attribute wasraefi A
variable number of bytes are published by a fedesaat
the attribute of the object. Both Federates pubésid
subscribe to the same attribute. One federate sands
update and the other reflects back the update ¢o th

! The CSIR is one of the leading scientific and tetbgy research,
development and implementation organisations incAfrConstituted by
an Act of Parliament in 1945 as a science coutfal,CSIR undertakes
directed and multidisciplinary research, technalagjinnovation as well
as industrial and scientific development to impréwve quality of life of

the country’s people. The CSIR is committed to sufdpg innovation in

South Africa to improve national competitiveness fine global

economy. Science and technology services and spfutire provided in
support of various stakeholders, and opportungiesidentified where
new technologies can be further developed and g&glin the private
and public sectors for commercial and social béndfhe CSIR'’s

shareholder is the South African Parliament, heldproxy by the

Minister of Science and Technology (www.csir.co.za)

2 http:/iwww.cert.frICERTI
3 http://www.porticoproject.org
4 http://www.mak.com/products/rti.php

sender. The round-trip time is then measured over a
number of updates. In this paper, Version 1.3 efkiigh
Level Architecture (HLA) specification as adoptegthe
United States Department of Defense was used.

The MAK RTI had exceptionally low latencies as
compared to CERTI and Portico but it had a limitatin

the size of the attribute. The maximum size of the
attribute for the MAK was limited to the maximunzsiof
the UDP packet of the network, namely 64 KB, when
using the best effort mode.

The performance analysis task of the different Riés
undertaken for two reasons. The first is to reldisth a
High Level Architecture (HLA) in our Research uinit

the Council for Science and Industrial Reseb{&SIR),

and at the same time provide a mechanism for new
employees to getau fait with HLA. Secondly, the
possibility of switching to an open source RTI is
considered, as well as the possibility to assistuither
endeavours

1.1. Background

The High Level Architecture is a formal specificatifor
the implementation of distributed computer simalati
systems [1]. The components participating in the
simulations are known dederates The communication
between federates is managed by Run-Time
Infrastructure (RTI). A collection of federates
communicating through an RTI forms &ederation
execution A Federation Object ModglFOM) is used to
describe the data that is exchanged between federat

Different RTIs realises the services of the HLAenfiace
specification using different algorithms, technigue
architectures and implementations. The following ilést

processed on receive. Figure 2 depicts a genamic bf
the FOM used in the performance tests.

of some of the factors affecting the performanceanf
RTI [2].

* Requirements levied by the HLA interface
specification (for example, reliable transport of
attribute updates on a network. Due to the poilit{po
nature of TCP, this requires that a message be ser
for each participating federate on the network,cleen
high bandwidth consumption)

Choices of the RTI implementation(different RTIs
are optimised for certain simulation environments
and programming languages)

Design of the federation(for example, number of
federates, scalability, etc)

Physical resourcegprocessing power, etc).

nt

(FED
(Federation FederationName)
(FEDversion v1.3)
(spaces)
(objects
(class ObjectRoot
(attribute privilegeToDelete best_effort receive)
(class RTlprivate)
(class BaseEntity
(attribute AttributeName best_effort receive)
)
)
)

(interactions
(class InteractionRoot best_effort receive)

)

)

2. Evaluation Framework

2.1. Host Machines

The physical resources of the federation executipose
limitations to the RTI performance regardless oé th
implementation [2]. The experiments undertakenhiis t
paper consisted of at least two host machines ngnni
Windows XP Professional Service Pack 2. One haest w
an Intel(R) Pentium(R) 4 CPU 3.20 GHz, 3.19 GHzwit
2.00 GB of RAM. The other host was also an Intel(R)
Pentium(R) 4 CPU 3.40 GHz, 3.4 GHz with 1.98 GB of
RAM. The hosts were equipped with 100BaseT Ethernet
and connected via a 1 Gb Ethernet switch. Figuvelaw
shows the hardware architecture of the tests trerew
conducted

« Windows XP SF 2

« Intel® Pentium@ 4 CPL
« 32Gh: 31¢Ghz

« 200GRAN

« 100BaseT Ethernel

« Windows XP SF2

« Intel® Pentium@ 4 CPL
« 34Ghz34Gh

« 198GgRAN

« 100BaseT Ethemet Carc

Figure 1. Hardware Architecture Set-Up

2.2. Federate Object Model

A FOM is used to describe the data that is exchénge
between federates. A simple FOM consisting of alsin
class containing a single attribute was developeuk
attribute was transported with both best effort sglble
transport mechanisms. The updates were configorée t

Figure 2: Federate Object Model
2.3. Method

Each of the two hosts were running at least onerédd.
The RTI was started on only one host. The timakes

for a federate to receive an update was measured. T
was achieved by one federate starting a timer aed t
publishing, (“sending”) an attribute update. The
publishing federate then waited for the reflectiaderate

to reflect the update. This was done to ensure dhbt
one attribute update’s round-trip gets measureceiithe
publishing federate received the attribute updatekpit
then stopped the timer. This procedure is illusttain
Figure 3. Although this procedure was repeatedtifés

for an average measurement, each one was measured
individually, so as to make sure that other factbwsnot
influence the time performance. At least 1 secora$ w
allowed between round-trip attribute updates touems
that other mechanisms do not interfere. Batchingaof
number of round-trip attribute updates to calculataore
accurate round-trip time will be conducted in aufat
experiment. The timer used is based on the high
frequency performance counter accessible from Gd+.
time measurement accuracy better than 1 microsecond
was achieved.

For each round-trip attribute update, the fedenati@as
created and destroyed before starting another
measurement. This was done to ensure that thene is
memory leakage and that the round-trip of each amp
independent from other test.

Sending Federate

Start
Timer

»

Send an
Update

Reflect
Update

Stop Timer

A

Compute anc
Store Latency

Figure 3: Publishing (“Sending”) Federate and the
Reflecting Federate

2.4. Selected RTIs

Two open source RTIs, CERTI 3.3.0 and PORTICO 0.8
and one commercial RTI, MAK 3.2 were chosen for the
experiments. The RTIs were only selected based on
availability. Each one is discussed in the follogvin
paragraphs.

2.4.1.CERTI 3.3.0

CERTI is an open source RTI implementation for
distributed discrete event simulation systems cgped
by ONERA licensed under General Public License (JGPL
C++ is used for the used for the CERTI implemeatati
and the development of federates. CERTI is buduad

an architecture of communication processes based on
standard Unix libraries for process management. TER
consist of the following components:

A local process (RTIA)

A global process (RTIG)

A library (libRTI) linked with each federate

The CERTI architecture is shown in Figure 4 [3].

Federate 1 Federate 2 Federate 3
HLA Intérface |
libRTI | libRTI libRTI
""""""""" Ui socket
RTIA 1 RTIA 2 RTIA3Z
I TCP socket
r// .\\\
| BRI oy WAN

Figure 4: CERTI Architecture

A federate process communicates with the RTIA thhou
Unix-domain sockets. The RTIA process exchange
messages over the network with the RTI Gateway
process, via TCP sockets or UDP in order to redlise
services associated with the RTI. The allocatibcBU
resources to the federate and the RTIA process is
exclusively managed by the operating system. CERTI
multi-process oriented as opposed to multi-threaded

There were no parameters to optimise CERTI 3.3t0 fo
performance, therefore experiments were conducidd w
the default configuration.

2.4.2.Portico 0. 8

Portico is a fully supported, open source, crossf@im
HLA RTI implementation licensed under the termghaf
Common Developer and Distribution Licence (CDDL)
[4]. Portico is implemented in two languages; JAYAd
C++. However the C++ version of Portico still regs
theJava Run-Time Enviroment (JRE}+ federates were
implemented for this test. Portico consists of the
following components:

LRC (Local Runtime Component)
Connection Binding
RTI

The underlying communication infrastructure is adetl
and hidden from the actual functionality of the RThe
communication between the LRC and RTI is determined
at run time by Portico. The Portico architecturehi®wn

in Figure 5.

Server-side
Connection and Bootstrap

User Federate |« - i —
A e
A / E
e CORBA E
A g o
User Fed + La R
Code 1] E
e Iy g
JDBC -
—— Binding 5
L ‘/
User Fed i L b1
Code 4]

Client-side
Connection

Figure 5: Portico Architecture

There were no parameters to tune to optimize Ro€L8
as a result the experiments were conducted with the
default configuration.

2.4.3.MAK 3.2

The MAK 3.2 RTI is a commercial software librarytiwvi
supporting executables that implements the HLA
specifications in C++. MAK has been verified by the
Defense Modelling and Simulation Office (DMSO) as
fully compliant with the HLA Interface Specificatip
version 1.3 and the IEEE 1516 version of the HLA
Interface Specification (SISO DLC HLA API 1516:
SISO-STD-004.1-2004) [5]. The MAK RTI was designed
with performance in mind [6].

The MAK RTI was configured to allow asynchronou® I/
(asynchronous reads and writes on the network) with
tick() to avoid message drops [6]. This meant that an
update was received by a federate when the tick()
function was called.

The bundling feature in the MAK RTI was turned tdf
ensure all packets are transmitted as soon a#hj®E.
According to the MAK RTI documentation, the
best_effortransport mechanism does not support message
fragmentation. Therefore, the maximum number okbyt

of the update that can be transmitted before fragatien

is limited to the maximum number of bytes of a UDP
packet, i.e. 64 KB. This property was set in the
configuration file of MAK RTI to allow the biggestata

size for the tests that were performed.

(setgb RTI_asynchronouslO 1)
(setgb RTI_asynchronousCallbacks 1)
(setgb RTI_enablePacketBundling 0)

(setgb RTI_maxUdpPacketSize 70000)

Only two federates could be run at the same tinib thie
MAK RTI as the evaluation version was used.

3. Results

Figures 6 and 7 show the round-trip time in miliseds
as a function of the data sizes for the three RTI
implementations for best effort and reliable
transportation respectively. For each size of tiébate,
100 updates are sent; the mean time is then ctddula
over the samples; i.e. over 100 samples. The niganis
for the round trip — from the time an update waklished

by the “sending” federate, the “receiving federate”
receiving the update, and publishing the same eptiat
back the “sending” federate, until the “sendingtideate
received the update.

The number of bytes per update was increased bygtarf
of 2. This was performed to determine how much data
could be transmitted by the open-source RTIs.

In Figure 6, MAK RTI maximum data size was 64 KB as
this is the limit ifbest_effortis used. For the other RTI
implementations, the data size was increased frdB 8
by a factor of 2 each time until 1024 KB.

Problems were experienced with Portico 0.8 after 63
updates when the data size was 1024 KB. According t
the error, this was due to low memory availabilithe
value obtained for Portico 0.8 when the data sizs w
1024 KB, was therefore calculated over 63 samples
instead of 100. CERTI and MAK performed 100 updates
of size 1024 KB without any problems.

Average Round-Trip Time for Best Effort Transport

7

1000

-
o
o

—— MAK 3.2

i
o

CERTI 3.3.0

Round-Trip Time (ms)

—— Portico 0.8

[N

8 16 32 64
*—— ——

128 256 512 1024

0.1
Attribute Update Size (KB)

Figure 6: Round-Trip Time for Best Effort
Transportation

Average Round-Trip Time for Reliable Latency
Transport

1000

)
7

100

—&— MAK 3.2

—— CERTI 3.3.0

Round-Trip Time (ms)

10 Portico 0.8

32 64 128 256 512 1024

Attribute Update Size (KB)

Figure 7: Round-Trip Time for Reliable
Transportation

4. Discussions

The three RTI implementations have a similar behavi
for small data sizes; i.e. round-trip times forthllee RTI
implementations do not change that much for smath d
sizes.

Using best_efforttransportation, the times for CERTI are
lower than that for Portico for update sizes smatan
512 KB. For update sizes, larger than 512 KB, the$
for CERTI and Portico increased exponentially with
CERTI the highest. MAK could not be used for sizes

above 64 KB as discussed elsewhere, but is the best

performer for smaller updates, with a round-trimdi of
less than 1 ms.

Using reliable transportation, the times for MAK are
lower than the two open-source RTIs for all dataiso
For data sizes, smaller than 512 KB, CERTI has the
lowest round-trip time. For 1024 KB, Portico haslight
advantage over CERTI.

5. Conclusion

Performance of the two open-source RTI
implementations; CERTI 3.3.0 and Portico 0.8 ané on
commercial RTI implementation; MAK 3.2 were
measured. A basic FOM was defined consisting of a
single class containing a single attribute. Thendbtrip
time for an attribute update was measured. This was
achieved by one federate sending an update andhgyait
in a loop for the second federate to reflect baekupdate
(i.e. to send the update back) and recording time fit
takes.

Although the MAK 3.2 had a limitation of 64 KB ierims
of the size of the attribute updates that can &#esmitted
usingbest_effortjt had exceptionally low latencies. For
update sizes, larger than 64 KB, all three RTIs had
increase round-trip time, with MAK at the lowest.

Future work includes more tests, namely to timéngls
attribute update, again with varying sizes. Momdefates;
objects and attributes will also be used under riatiooy
conditions, before moving on to conditions that anere
realistic. Finally, ways to validate the performantest
results will be devised and applied.

6. References
[1] F. Kuhl, R. Weatherly and J. Dahman, “Creating
Computer Simulation Systems: An Introduction to
the High Level Architecture,” Prentice-Hall, Upper
Saddle River, 1999.

B. Watrous, L. Granowetter and D. Wood;LA
Federation Performance: What Really Matterdf
Proceedings of the 2006 Fall Simulation
Interoperability Workshop, Stockholm, 2006.

B. Bréholée and P. Siron, “CERTI: Evolution of the
Onera RTI Prototype,” In Proceedings of the Fall

(2]

(3]

Simulation Interoperability Workshop, Orlando,
2002.

[4] The Portico Project Web Site,
http://www.porticoproject.org Accessed 4
February 2009.

[5] MAK RTI 3.1.2 Release Notes, MAK Technologies,
2007.

[6] B. Watrous and L. Granowetter and D. Wood, “The
MAK High-Performance RTI: Performance by

Design,” MAK Technologies.

Author Biographies

LINDA MALINGA has been with the South African
Council for Science and Industrial Research since
September 2008 and is at present a Researcherein th
Mathematical and Computational Modelling Research
Group. Linda holds a Bachelor of Science degree in
Electrical and Information Engineering from the
University of the Witwatersrand.

HERMAN LE ROUX has been with the South African
Council for Scientific and Industrial Research sirpril
1998 and is at present a Principal Engineer in the
Mathematical and Computational Modelling Research
Group. He is involved in Modelling and Simulatioased
Acquisition Decision Support, specifically for ti8outh
African National Defence Force. Interests include
enterprise information systems, information fusion,
biometrics, artificial inteligence and software
engineering. Le Roux completed a Masters Degree in
Computer Engineering at the University of Pretona
1999 and is currently pursuing a PhD in Command and
Control Modelling.

