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The optical vortices that exist in strongly scintillated beams make it difficult for conventional
adaptive optics systems to remove the phase distortions. When the least-squares reconstructed
phase is removed, the vortices still remain. However, we found that the removal of the least-squares
phase induces a portion of the vortices to be annihilated during subsequent propagation, causing
a reduction in the total number of vortices. This can be understood in terms of the restoration
of equilibrium between explicit vortices, which are visible in the phase function, and vortex bound
states which are somehow encoded in the continuous phase fluctuations. Numerical simulations are
provided to show that the total number of optical vortices in a strongly scintillated beam can be
reduced significantly after a few steps of least-squares phase corrections.

PACS numbers: 42.25.Bs, 42.68.Ay, 42.25.Dd, 47.32.C-, 52.27.-h

I. INTRODUCTION

Adaptive optics (AO) systems [1] are widely used to
correct scintillated optical beams. In weakly turbulent
atmospheric conditions, the wavefront in the receiver
aperture of the AO system is only weakly perturbed and
can be accurately reconstructed by so-called wavefront
reconstructors [2–4] that employ least-squares methods.
In such a case the reconstructed wavefront is continuous,
as it is formed by a deformable mirror.

When the turbulence in the optical path becomes
stronger, such as when a laser beam propagates horizon-
tally near the ground for several kilometers, the wave-
front in the receiver aperture of the AO system will be
severely distorted [5, 6] with the present of numerous op-
tical vortices [7–9]. Around these vortex cores, the phase
increases or decreases by a value of 2π and the amplitude
vanishes at these vortex cores. The direction of phase in-
crement indicates the sign of the vortex, a positive or
negative one. The removal of the least-squares phase can
not get rid of optical vortices. It can only remove the con-
tinuous phase fluctuations. However, we find that the
behavior of vortex dipoles (pairs of oppositely charged
optical vortices) change after the least-squares phase has
been removed. In this paper, we show that some of the
vortex dipoles in a least-squares corrected beam will sub-
sequently annihilate after a distance of free-space prop-
agation. We also show that several consecutive least-
squares corrections can remove a significant number of
the optical vortices from the beam.

We begin by reviewing the basic theory of random vor-
tex fields and discuss the concept of an optical vortex
plasma in Section II. Statistical results from numeri-
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cal simulations showing the effect of least-squares phase
corrections on the total number of optical vortices in
strongly scintillated beams are provided in Section III.
Finally, we summarize our conclusions in Section IV.

II. OPTICAL VORTEX PLASMA MODEL

Random vortex fields have been studied exten-
sively [10–17]. It was found, among other things, that
neighboring vortices in a random vortex field tend to have
opposite topological charges [13, 18], and that the total
number of vortices is inversely proportional to the coher-
ence area of the random wave field [11]. In a random wave
field, saddles, phase singularities and extrema can be cre-
ated or converted from one to another with the topolog-
ical index of the wave field being conserved [14, 19]. The
total number of vortices can be variable due to the cre-
ation and annihilation of vortices while the net topolog-
ical charges and total angular momentum are conserved
during free-space propagation [20].

Recently the idea was put forward [21] that one can
consider the optical vortices in a random wave field as
a plasma consisting of three species of particles: posi-
tive vortices, negative vortices, and neutral bound states.
While the positive and negative vortices are visible in the
phase function the neutral bound states are not visible
and are in some way encoded in the phase and/or am-
plitude of the wave. The reason behind the postulated
existence of the neutral component lies in the apparent
tendency for optical beams to maintain the average num-
ber of optical vortices. The rate of dipole annihilations
in a random wave field is balanced by the rate of dipole
creations. This is reminiscent of a plasma in equilibrium
where the rate of ionization is balanced by the rate of
recombination. For this reason it is reasonable to model
a random vortex field as a plasma, which contains, in
addition to the (topologically) charged particles, also the
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neutral bound states.
A scintillated wave field can be viewed as a Gaussian

random field. During free-space propagation, the total
number of optical vortices fluctuates around an average
number of vortices, due to a balance between the annihi-
lation and the creation of vortex dipoles. A scintillated
beam, therefore, presents a scenario in which one can
apply and test this plasma model for optical vortices. A
state of equilibrium implies that the three components
exist in specific fixed ratios. In other word, for a given
optical vortex density there must be a certain density of
neutral bound states.

According to the model the neutral component is rep-
resented by bound states of vortices, which are somehow
encoded in the continuous phase, the amplitude and the
distribution of the vortices. By removing the continuous
phase one would remove part of the neutral component
and thereby perturb the system away from equilibrium.
To restore the equilibrium more of the optical vortices
would need to recombine to supplement the depleted neu-
tral component. Under the assumption that the total
(explicit plus encoded) vortex number is conserved, the
resulting beam will have a lower optical vortex density
after equilibrium has been reached.

In what follows we find that this is indeed what hap-
pens. By removing the least-squares phase of the scintil-
lated beam we find that the vortex density drops. This
serves as partial confirmation of the optical vortex plasma
model.

III. NUMERICAL SIMULATIONS AND
RESULTS

Numerical simulations are used to evaluate the influ-
ence of the removal of the least-squares phase on optical
vortex dipoles in strongly scintillated beams. The sim-
ulations are conceptually represented by the diagram in
Fig. 1.
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FIG. 1: (Color online)Geometry for the simulations of the
scintillation of an optical beam with multiple subsequent
least-squares phase corrections.

To generate a scintillated beam, an optical beam with
wavelength λ = 500 nm is propagated over a distance
of 10 km, through a turbulent atmosphere. Ten equally

spaced random phase screens are used along the opti-
cal path to simulate the turbulent atmosphere. Each
phase screen represents a 1 km thick turbulent atmo-
spheric layer [22–24].

All the phase screens and propagation are conducted
on an N×N array. To avoid the aliasing problems caused
by using a fast Fourier transform (FFT) in the numer-
ical simulations, the relationship between the array size
N along one direction of the FFT array, the sampling
space ∆ and the propagation distance z should satisfy
N ≥ 2λz/∆2 [24]. Due to a limited amount of computer
memory, N can not be very large. In our simulations, N
is set to be 512 and ∆ is set to be 2 mm. Therefore, the
size of the beam waist becomes very large — on the order
of 0.5 m. In the real world, the size of the beam waist
may only be a couple of centimeters or even smaller. To
avoid any confusion, the propagation distance in the fol-
lowing discussion will be expressed in terms of the size of
the beam waist.

The strength of the turbulence is parameterized with
the structure constant of the index of refractive fluctu-
ations C2

n. For each simulation, C2
n is set to a constant

value along the entire optical path. This method provides
a reasonable agreement between real world data and the
simulation data. Figure 2 shows the amplitude and the
phase function in the system aperture for a simulated ex-
ample of a scintillated beam with C2

n = 4×10−15 m−2/3.
The Rytov variance is,

σ2
χ,R = 0.307

(
2π

λ

)7/6

L11/6C2
n ≈ 5.07, (1)

for a plane wave propagating along such an optical path.
In this case, the turbulence is strong enough to create a

significant number of optical vortices. For this example,
there are 381 positive and 381 negative optical vortices in
the system aperture. The net topological charge is zero
and remains zero for the duration of the beam propaga-
tion through free space.

The scintillated beam, which contains all the vortices,
now enters the system aperture, shown in Fig. 1. A
least-squares phase remover is put directly behind the
system aperture. This least-squares phase remover is
just a conventional adaptive optics system. It measures
the incident wavefront with a wavefront sensor such as a
Shack-Hartmann wavefront sensor and then reconstruct
a continuous phase with a least-squares method. With
the aid of a deformable mirror the least-squares phase
can then be removed from the original distorted wave-
front. In Fig. 3 the corrected phase function is shown,
for the example shown in Fig. 2. The removal of the
least-squares phase can not directly remove any of the op-
tical vortices. However, one can see that the background
phase around the vortex cores becomes smooth. As a re-
sult, the neutral vortex bound states that are encoded in
the continuous phase fluctuations are removed together
with the least-squares phase. This influences the behav-
ior of vortex dipoles. As the beam propagates beyond the
least-squares phase remover some optical vortices will be
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FIG. 2: (Color online)Amplitude (a) and phase (b) of a scin-

tillated beam, with C2
n = 4× 10−15 m−2/3. In total there are

381 positive and 381 negative optical vortices in the system
aperture, which is represented by the blue rectangles.

turned into neutral vortex bound states by annihilating
each other in oppositely charged pairs (vortex dipoles).

To see the influence of the least-squares correction,
we record the total number of optical vortices at regu-
lar intervals during propagation of the corrected beam
in free space. Each interval is a unit of propagation dis-
tance (A.U.) which is about 20 times the size of the beam
waist. For comparison, we do the same for the uncor-
rected beam. This process is repeated for 200 different
corrected beams and 200 different uncorrected beams to
obtain statistical averages of the total number of vor-
tices. The curves for the statistical averages of the to-
tal number of optical vortices, together with their stan-
dard deviations, are shown in Fig. 4 as a function of the
distances of free-space propagation, for the case where
C2

n = 4× 10−15 m−2/3. To show the relationship clearly,
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FIG. 3: (Color online)Phase function with the least-squares
phase removed from the original phase function as shown in
Fig. 2 (b).

we divide the curve for each simulation by the initial to-
tal number of vortices that exist in the system aperture.
As a result, the initial average total number of vortices
of both curves equals unity with a vanishing standard
deviation.

One can see that the average total number of vortices
in the uncorrected beam has a very slight decline dur-
ing beam propagation, less than the standard deviation.
The reason for this decline is that some of the optical
vortices located near the edges of the aperture tend to
move out of the system aperture during propagation. If
one ignores the vortices near the edges, one can see that
the total number of vortices in a uncorrected beam nei-
ther increase, nor decrease as a general trend. The vor-
tex field in a uncorrected beam is in equilibrium, which
implies that the rate of annihilation of vortex dipoles is
balanced by the creation of vortex dipoles. In this way
the average number of optical vortices in an uncorrected
beam is conserved [25, 26].

In Fig. 4, the curve with the blue stars shows the
average total number of optical vortices after the least-
squares phase has been removed from the original scin-
tillated beam. It drops down exponentially, converging
to a value of almost half the initial number of vortices.
The reason can be explained as follows. After all the
neutral vortex bound states that were encoded in the
continuous phase function have been removed, together
with the least-squares phase, more of the explicit vortices
were converted into neutral vortex bound states through
vortex dipole annihilation to restore the equilibrium for
which the rate of dipole annihilation is again balanced
by the rate of dipole creation. The result is that, for
larger distances of propagation this curve asymptotically
tends toward a lower fixed value, as shown in Fig. 4. This
new equilibrium state now contains fewer explicit optical
vortices and presumably also fewer neutral vortex bound
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FIG. 4: (Color online)Normalized total number of vortices as
a function of the distance of free-space propagation, for the
case where C2

n = 4×10−15 m−2/3. The circles (red) show the
average total number of optical vortices without any correc-
tion. The stars (blue) show the average total number of op-
tical vortices with least-squares phase correction. Each value
of the total number of vortices is divided by the initial total
number of optical vortices that exist in the system aperture
for each simulation. Error bars indicate the standard devia-
tions.

states.
Once the equilibrium is restored, the newly formed

neural bound states are again partially encoded in the
fluctuations of the continuous phase. As a result the
continuous phase again becomes distorted after some dis-
tance of propagation. For this reason one can repeat the
removal of the least-squares phase several times, as shown
in Fig. 1. In each such step the newly created bound
states are removed by removing the least-squares phase.
Then the new corrected beam is allowed to propagate fur-
ther to restore the equilibrium again and thereby further
reduce the average total number of explicit vortices.

Figure 5 shows the curve of the average total number of
optical vortices, which is normalized in the same way as
in Fig. 4, with four such least-squares correction steps. In
this procedure, the least-squares phase is measured and
removed every time once the equilibrium for the previ-
ous step has been restored, in other words, when vortex
dipole annihilation is balanced by vortex dipole creation.
These points are indicated by the vertical red dashed lines
in Fig. 5. One can see that after each step of correction,
the average total number of vortices is reduced further.
However, the reduction becomes smaller for each succes-
sive step. This indicates that the ability of getting rid
of optical vortices by removing the least-squares phase
becomes progressively less effective. We do not currently
understand this loss in effectiveness.

The results above suggest that one can remove more
optical vortices from a scintillated beam by implementing
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FIG. 5: (Color online)Normalized total number of vortices as
a function of the distance of free-space propagation. The stars
(blue) show the average total number of vortices. Each total
number of vortices is normalized by the initial total number
of vortices in the system aperture for each simulation. Error
bars indicate the standard deviations. The red dashed lines
show the points where the least-squares phase is removed.

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

Number of correction steps

T
ot

al
 n

um
be

r 
of

 o
pt

ic
al

 v
or

tic
es

 

 
C

n
2 = 5× 10−15 m−2/3

C
n
2 = 2× 10−15 m−2/3

C
n
2 = 1× 10−15 m−2/3

FIG. 6: (Color online)Total number of vortices as a function
of the number of correction steps. The stars (blue), circles
(red) and diamonds (black) show the average total numbers
of vortices when the turbulent strength are respectively, C2

n =
5 × 10−15 m−2/3, C2

n = 2 × 10−15 m−2/3 and C2
n = 1 ×

10−15 m−2/3. Error bars indicate the standard deviations.

several consecutive least-squares corrections, as shown
in Fig. 1. We simulated such a multi-step least-squares
phase removal procedure consisting of n = 40 correction
steps for three different values of C2

n (5×10−15 m−2/3, 2×
10−15 m−2/3 and 1×10−15 m−2/3). After each correction
step, the corrected beam is allowed to propagate in free
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TABLE I: The total number of optical vortices for different
turbulence strengths. NI and NF are the initial and final
number of optical vortices respectively. R is the ratio of NF

to NI .

C2
n (m−2/3) NI NF R(%)

1× 10−15 130±40 30 ± 7 23±5.8

2× 10−15 300±60 70 ±12 23±4.1

5× 10−15 700±90 140±16 20±2.2

space over a distance of d (about 500 times the size of the
beam waist) to allow the beam to reach an equilibrium
before the next correction step. For each value of C2

n

the simulation is repeated 200 times to compute average
numbers of vortices together with standard deviations.
In these simulations we only record the initial number of
vortices and the number of vortices before each correction
step.

The statistical curves are shown in Fig. 6. One can see
that the average total number of optical vortices drops
down exponentially as a function of the number of correc-
tion steps, asymptotically approaching some finite num-
ber of vortices. Although this asymptotic value is signif-
icantly less than the initial number of vortices, the final
number of vortices cannot be reduced below this asymp-
totic value regardless of how many correction steps are
used. One can also see that the asymptotic value for the
number of vortices depends on the turbulence strength
(C2

n) that was used to produce the initial number of vor-
tices.

If one computes the ratio of the final (asymptotic)
number of optical vortices to the initial number of vor-
tices, one finds that, as shown in Table I, about 80% of
the initial vortices are removed so that only about 20%
of the initial vortices remain. Note that this is the case
for other values of C2

n. In other words, this ratio does not
change significantly due to different turbulence strength.
The fact that the final number of optical vortices does
not approach zero indicates a limitation in the ability
of a multi-step least-squares phase correction system to
remove optical vortices.

IV. CONCLUSIONS

We have investigated the behavior of vortices in
strongly scintillated beams after the least-squares phase
has been removed. It is found that some vortex dipoles
with short separation distances will annihilate during
the subsequent free-space propagation. Using numeri-
cal simulations and statistics, we found that about 80%
of the initial optical vortices can be removed by having
several steps of cascaded least-squares phase corrections
and free-space beam propagations. The remaining 20%
of optical vortices can not be removed by adding more
least-squares phase corrections. Therefore, although the
removal of least-square phase in a strongly scintillated
beam can help to get rid of optical vortices, this ability
is limited.
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