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N —
What is classification?

@ The aim of classification is to assign an object x into one class w; of a
set of ¢ given classes {w1, w2, ... ,wc}.

@ Clustering — natural grouping for eg KNN, K-Means
o Classification — predicts categorical class labels for eg MLC, DT, NN

@ Clustering — unsupervised learning — no training data or ground truth
data — no predefined classes or no examples that would show the
desired relationships

o Classification — supervised learning — have training data or ground
truth data — have predefined classes
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.
Common classification techniques

Statistical

o Parametric eg Naive Bayes, MLC
o Non-parametric eg k-NN, Parzen

Artificial Neural Networks

Decision Trees

Support Vector Machines

Debba (CSIR) Improving classification accuracy Rhodes University 2009

4 /51



N —
How to define similar?

@ The definition of similarity is subjective.

@ Similarity measures dj;:
o Squared Euclidean distance d(x;,x;)? = (x; — x;) T (x; — x;)
e Spectral angle/correlation
o Spectral Information Divergence, etc.

If djj < T, (T: user defined threshold), the two pixel vectors are
regarded as similar.
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Overview of hyperspectral remote sensing

Hyperspectral sensors

@ record the reflectance in many narrow contiguous bands

@ various parts of the electromagnetic spectrum (visible - near infrared -
short wave infrared)

@ at each part of the electromagnetic spectrum results in an image

=
]-0 nm ]- nm 10nm ]-0 nm ]-0 jukis}
Wavelength

Figure: Spectral Range
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Introduction to hyperspectral remote sensing

Overview of hyperspectral remote sensing (cont. . .)
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Introduction to hyperspectral remote sensing

Overview of hyperspectral remote sensing (cont. . .)

Veg

Water

Figure: Pixels in hyperspectral image
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Overview of hyperspectral remote sensing (cont. . .)

Reflectance of end-member spectra

Figure
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Iterated Conditional Modes (ICM) Algorithm

@ Adequate image segmentation takes into account both spectral
features and spatial information.

e Markov Random Fields (MRF) have been useful in this respect.

o
srgmin{ (15— ) (15~ ) - ONPW} )
) = 43 21 jpect (fif - Mﬁa)) ' (f,-j - M(ka)> : (2)
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Second order MRF for ICM

A second order MRF was applied in which the neighbors of each pixel
consists of its eight adjacencies, with border pixels adjusted appropriately.
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Figure: Calculation of N,-(ja)(k) for an arbitrary interior pixel (7, ) belonging to
category k.
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Study Site

Study site — Tedej — Hungary.

Crops: barely, maize, sugar beet, sunflower, alfalfa.

Digital Imaging Spectrometer — DAIS-7915 — 79 channel
hyperspectral image.

Spectral range from visible (0.4 um) to thermal infrared (12.3 um).

Spatial resolution 3-20 m depending on the carrier aircraft altitude.
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Figure: Study area in Tedej, Hajdu-Bihar area, Hungary. EX
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Spatial classification
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Figure: Hyperspectral image of study area in Tedej, Hajdu-Bihar area, Hungary.

Reflectance values for bands 29 (0.988 um), 39 (1.727 um) and 1 (0.496 um). __
CSIR
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Spatial classification

Figure: Original hyperspectral image. Reflectance values for bands 29
(0.988 um), 39 (1.727 pm) and 1 (0.496 um).
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Spatial classification

Figure: ICM Segmented image with eight categories.
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Spectral matching

Endmember Spectra

«—— Quartz: quartz2.spc

w\/\/_/—/ «— Pyrophyllite: pyrophl.spc

+—— Montmorillonite: montmor2.spc
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Figure: Plot of 7 endmembers from USGS spectral library for the 30 selected
bands, enhanced by continuum removal. SR
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Spectral Angle Mapper (SAM) Classifier

@ SAM — pixel based supervised classification technique

@ Measures the similarity of an image pixel reflectance spectrum to a
reference spectrum

@ Spectral angle (in radians) between the two spectra

i F)e()
o(x)= (Hf(A)H Te(r )||> ’ G)

f(X\) — image reflectance spectrum and e(\) — reference spectrum.

@ Results in a gray-scale rule image — values are the angles
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Spectral matching

Spectral Angle Mapper (SAM) Classifier
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Figure: Spectral angle.
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Study Site

Los Albaricoques

Figure: A generalized geological map of the Rodalquilar study area showing the
flight line and the hyperspectral data
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Data Used

e HyMap: 126 bands — 0.4-2.5 um
o Geology: 30 bands — 1.95-2.48 um
@ Distinctive absorption features at wavelengths near 2.2 yum

@ We collected field spectra during the over-flight using the Analytical
Spectral Device (ASD) fieldspec-pro spectrometer — 0.35-2.50 um
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SAM Rule Image for Alunite

Figure: SAM classification rule image for alunite. Dark areas indicate smaller
angles, hence, greater similarity to alunite.
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Continuum Removal

Spectra are normalized to a common reference using a continuum formed
by defining high points of the spectrum (local maxima) and fitting straight
line segments between these points. The continuum is removed by dividing
it into the original spectrum.

Reflectance (%)

Normalized Refiectance (%)
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0s0 080 100 120 140 160 180 200 220 240 250 Wavelength (um)

Wavelength (um) Hull Transformed Spectrum

Figure: Concept of the convex hull transform; (A) a hull fitted over the origina
spectrum; (B) the transformed spectrum. S
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Continuum Removal
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Figure: Original and continuum removed spectra. GSIR
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Spectral Feature Fitting (SFF)

@ SFF — pixel based classification technique.
@ Remove the continuum from both the reference and unknown spectra.

@ SFF produces a scale image for each endmember selected for analysis
by first subtracting the continuum-removed spectra from one
(inverting it), and making the continuum zero.

@ SFF determines a single multiplicative scaling factor that makes the
reference spectrum match the unknown spectrum.

Debba (CSIR) Improving classification accuracy Rhodes University 2009 25 /51



Spectral Feature Fitting (SFF)

@ SFF then calculates a least-squares-fit, band-by-band, between each
reference endmember and the unknown spectrum.

@ The total root-mean-square (RMS) error is used to form an RMS
error image for each endmember.

@ Scale/RMS provides a fit image that is a measure of how well the
unknown spectrum matches the reference spectrum on a
pixel-by-pixel basis.
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Spectral matching

SFF Rule Image for Alunite

X abundant alunite

A minor alunite
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Figure: SFF fit image for alunite. Lighter areas indicate better fit values betwe
pixel reflectance spectra and the alunite reference spectrum. ==
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The Problem

@ The 2 main types of variability, necessary for any image classification
and/or spectral unmixing techniques are (i) the variability within a
species class, and (ii) the similarity between the species classes.

@ When the variability within a species class is small compared to the
variability between the species classes, this results in relatively good
accuracy for image classification and/or spectral unmixing.

@ When the species spectra is similar, the within-species variability can
be large compared to the between-species class variability —
prominent in vegetation studies — producing poor results for image
classification and/or spectral unmixing techniques.

This research studies the variability within a species class and the
variability between the species classes of seven spectrally similar tree
species and presents ways in which the within-species class variability
can be reduced compared to the between-species class variability.
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Data description

@ ASD spectrometer used to record hyperspectral measurements of leaf
samples taken from several different savannah trees in the Kruger
National Park in South Africa, in an attempt to assess tree species
diversity in the park.

@ The hyperspectral data consist of 2151 spectral bands at a spectral
resolution of 1 nm for seven common plant tree species in the area.

@ The seven tree species include Lonchocarpus capassa, Combretum
apiculatum, Combretum heroense, Combretum zeyherrea,
Gymnospora buxifolia, Gymnospora senegalensis, and Terminalia
sericia.

@ Each tree species has 10 measurements recorded with the exception
of Gymnospora Buxifolia, which has only seven. The total data set
therefore had 67 observations for the species measurements.
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Data description
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Figure: Study Area: Kruger National Park, South Africa
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Data description
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Data description

Figure: Reflectance
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Data description

Terminalia sericia

'S . - - Sample1
-+ Sample 2
- -=- Sample 3
©o | ,-__:'.‘\-J NN Sample 4
S ~i -—- Sample5
=2 ’&Q\ =\ Sample 6
0 v Sample 7
S «+-- Sample 8
-=- Sample 9
Sample 10
g =1
% o
¢ 24
S A Y
N
. AN
ER R VAN 7 y
c
o
T T T T T
500 1000 1500 2000 2500
Wavelength
Figure: Reflectance spectra of the 10 samples for Terminalia sericia. GIR
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Data description

Mean of species
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Figure: Mean spectral reflectance for all seven species. Also, band selection usigg

stepwise discriminant analysis. For SDA the results for the best 10, 20, 30 and

selected bands are shown.
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Data description

Reflectance
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Figure: Variance of the spectral reflectance for all seven species.
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Data description

Figure: Causes of high intra-species variability.

GIR
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Method

o Let y,k denotes the d-dimensional feature vector (d represents the
number of bands) selected from the i*® sample of the k' class, c,
with ng samples in the k'™ class.

o Also, let px (k=1,...,c) be the mean vector of k" class and 1 be
the total mean vector in this d-dimensional feature space.

@ The within-class variability, S,, and between-class variability, Sp:

=iy [;k S (k- ) (- uk>] @

i=1

1 — -
So =" (=) (e~ ). (5)
k=1
@ The ratio of the between-class variability to the within-class variability,
commonly known as Fisher’s criterion ratio, is a measure for class

separation, with high values indicating greater class separation.
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A comparison is made through evaluating the within-class species
variability and the between-class species variability using:

@ the original, first and second derivative spectra.
o for each, of the above, the experiment was conducted
@ over the entire electromagnetic spectrum (EMS) (0.350-2.500 pm),
@ the visible (VIS) (0.400-0.740 um) region,
© the near infrared (NIR) (0.741-1.300 pm) region,
@ the short wave infrared (SWIR) (1.301-2.500 pum) region,
@ using band selection, for example, best 10, 20, 30 and 65 bands
selected, through linear stepwise discriminant analysis (SDA),
@ using sequential selection of bands, for example, every 5th, 9th, 15th,
19th or 25th band selected and
@ spectral degradation of the spectral bands by averaging the reflectance
values for every 5th, 9th, 15th, 19th or 25th band.
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Table: Within- and between-class variability for various regions of the EMS.

Bands Within-class var | Between-class var | Ratio
All
Original 5.574 5.030 0.902
1st derivative | 9.007 x 10~3 4.000 x 1073 0.444
2nd derivative | 1.522 x 1072 3.582 x 1072 0.235
VIS
Original 0.316 0.291 0.920
1st derivative | 2.220 x 104 1.160 x 10~* 0.523
2nd derivative | 1.787 x 10™* 2.797 x 107° 0.157
NIR
Original 2.090 0.481 0.230
1st derivative | 1.163 x 10~* 4.254 x 1074 0.366
2nd derivative | 2.557 x 10~* 7.420 x 107° 0.290
SWIR
Original 3.162 4.241 1.341
1st derivative | 3.594 x 10~* 1.568 x 104 0.436
2nd derivative | 7.013 x 10~* 8.371 x 10~° 0.119
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Table: Within- and between-class variability for selected bands using SDA.

Bands Within-class var | Between-class var | Ratio
SDA10
Original 0.013 0.021 1.600
1st derivative | 6.621 x 1078 1.445 x 107 2.183
2nd derivative | 4.763 x 10711 | 1.273 x 10710 2.672
SDA20
Original 0.026 0.038 1.463
1st derivative | 1.339 x 107° 8.253 x 107 0.616
2nd derivative | 2.061 x 10~ 3.661 x 1078 0.178
SDA30
Original 0.037 0.055 1.473
1st derivative | 4.520 x 107° 3.194 x 1077 0.707
2nd derivative | 2.061 x 10~/ 6.138 x 108 0.247
SDAG5
Original 0.095 0.135 1.428
1st derivative | 7.298 x 10~° 4.482 x 10°° 0.614
2nd derivative | 3.271 x 10~ 3.130 x 1077 0.096
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Table: Within- and between-class variability for sequentially selected bands.

Bands Within-class var | Between-class var | Ratio
Every 5th spectrum

Original 1.114 1.006 0.902

1st derivative 6.060 x 10~° 5.062 x 107° 0.835

2nd derivative 1.135 x 10~° 5.649 x 107 0.498
Every 9th spectrum

Original 0.619 0.559 0.903

1st derivative 3.002 x 107° 2.636 x 107° 0.878

2nd derivative 1.755 x 10~7 1.327 x 10~7 0.756
Every 15th spectrum

Original 0.371 0.335 0.902

1st derivative 1.658 x 10> 1.480 x 107> 0.893

2nd derivative 6.056 x 108 5.305 x 108 0.876
Every 19th spectrum

Original 0.293 0.264 0.902

1st derivative 1.232 x 1072 1.113 x 107> 0.904

2nd derivative 3.592 x 108 3.265 x 108 0.909
Every 25th spectrum

Original 0.223 0.201 0.902

Ist derivative 8.837 x 107° 7.753 x 107° 0.877 L

2nd derivative 2.038 x 108 1.702 x 108 0.835 [&I§
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Table: Within- and between-class variability for spectrally degraded bands.

Bands Within-class var | Between-class var | Ratio
Every 5th averaged

Original 1.114 1.005 0.902

1st derivative 5.514 x 10~° 4.819 x 107> 0.874

2nd derivative 5.582 x 10—’ 3.339 x 107 0.598
Every 9th averaged

Original 0.619 0.559 0.902

1st derivative 2.799 x 1072 2.511 x 1072 0.897

2nd derivative 1.260 x 10~7 1.089 x 10~7 0.864
Every 15th averaged

Original 0.371 0.334 0.901

1st derivative 1.504 x 10> 1.356 x 10> 0.902

2nd derivative 4.713 x 108 4.219 x 108 0.895
Every 19th averaged

Original 0.293 0.264 0.902

1st derivative 1.090 x 10~° 0.880 x 10~ 0.906

2nd derivative 2.737 x 108 2.478 x 108 0.905
Every 25th averaged

Original 0.222 0.201 0.902

1st derivative 7.383 x 10 6.591 x 10° 0.893 L

2nd derivative 1.399 x 10~8 1.193 x 10~8 0.853 [S§
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Conclusions and future research

@ For this data set, there are important bands from the original spectra,
the first and second derivative spectra and from various regions of the
EMS (VIS, NIR, SWIR) for species separability. We recommend
further research and improvement to selecting spectral bands from a
broader combined set of the original, first and second derivative
spectra.

@ There seem to be a number of sub-classes within each of the seven
classes. We recommend further investigations to cluster spectra
within each species by also incorporating their geographical location
(spatially — Jun and Ghosh, 2009) and temporally when data is
collected at different time.
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Conclusions

Conclusions and future research

@ Furthermore, for this data set, there does not seem to be any
decrease in species separability by degrading the spectral bands
through averaging the reflectance. This implies that hyperspectral
(extremely high spectral) measurements did not prove useful in
species separability compared to a lower spectral resolution data.

More details: Debba et. al. (2009). Within- and between-class variability
of spectrally similar tree species. In Proceedings of 2009 IEEE
International Symposium on Geoscience and Remote Sensing. July 13-17,

2009 Cape Town, South Africa. Accepted.
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Further exploration

We have explored two classification approaches with spectral an-
gle mapper: (i) using a spectral library composed of one spectrum
(endmember) per species and (ii) a multiple endmember approach
conventionally called K-nearest neighbour classifier.
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Data description

o Eight sites were chosen for the study including two sites in the KNP,
two sites in private game reserves and four sites in communal lands.

@ The species data used in this study consist of tree species generally
more than 2 m tall identified and geo-registered using a Leica
differential global positioning system (GPS).

@ Eighteen dominant species are examined in the study. These include
Acacia gerradii, Acacia nigrescens, Combretum apiculatum,
Combretum collinum, Combretum hereroense, Combretum imberbe,
Combretum zeyheri, Dichrostachys cinerea, Euclea sp (E. divinurum
and E. natalensis, Gymnosporia sp (G. buxifolia and G. senegalensis),
Lonchocarpus capassa, Peltoforum africanum, Piliostigma thonningii,
Pterocarpus rotundifolia, Sclerocarya birrea, Strchynos sp (S.
madagascariensis, S. usambarensis), Terminalia sericea and Ziziphus

mucronata.
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Data description
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Figure: Study area showing Carnegie Airborne Observatory (CAO) image scenes
in the Kruger National Park, South Africa
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Figure: Using the mean spectra of the training sets as reference spectra.
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Figure: Using all training spectra for each species as reference spectra (K-nearest

neighbour classifier, k=1).
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Conclusions

@ Intra-species spectral variability and the reference data sample size
are two important factors that affect tree species differentiation in the
savanna ecosystem.

@ We recommend the utilisation of the multiple endmembers SAM
approach as opposed to the traditional SAM classifier involving single
spectrum endmember per species for mapping of Kruger National
Park species.

@ The training endmembers should be truly representative of the
different distributions in the population.

@ The classification of the species could be limited to the dominant
species.

More details: Cho et. al. (2009). Spectral variability within species and its
effects on savanna tree species discrimination. In Proceedings of 2009

IEEE International Symposium on Geoscience and Remote Sensing. JuI)@
13-17, 2009 Cape Town, South Africa. Accepted.
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Future research

Feature selection and feature extraction (original, higher order
derivatives)

Spatial and temporal sub-classes.

Improved classification techniques.

°
°

o Classification of hyperspectral images.
@ SNR not constant throughout EMS.
°

Classification on continuum removed spectra.
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