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What is classification?

The aim of classification is to assign an object x into one class ωi of a
set of c given classes {ω1, ω2, . . . , ωc}.
Clustering — natural grouping for eg KNN, K-Means

Classification — predicts categorical class labels for eg MLC, DT, NN

Clustering – unsupervised learning — no training data or ground truth
data — no predefined classes or no examples that would show the
desired relationships

Classification — supervised learning — have training data or ground
truth data — have predefined classes
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Common classification techniques

Statistical

Parametric eg Naive Bayes, MLC
Non-parametric eg k-NN, Parzen

Artificial Neural Networks

Decision Trees

Support Vector Machines
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How to define similar?

The definition of similarity is subjective.

Similarity measures dij :

Squared Euclidean distance d(xi , xj)
2 = (xi − xj)

T (xi − xj)
Spectral angle/correlation
Spectral Information Divergence, etc.

If dij < T , (T : user defined threshold), the two pixel vectors are
regarded as similar.
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Introduction to hyperspectral remote sensing

Overview of hyperspectral remote sensing

Hyperspectral sensors

record the reflectance in many narrow contiguous bands
various parts of the electromagnetic spectrum (visible - near infrared -
short wave infrared)
at each part of the electromagnetic spectrum results in an image

Introduction to Hyperspectral Image Analysis

Peg Shippert, Ph.D.
 Earth Science Applications Specialist

Research Systems, Inc.

Background

The most significant recent breakthrough in remote sensing has been the development of
hyperspectral sensors and software to analyze the resulting image data.  Fifteen years ago
only spectral remote sensing experts had access to hyperspectral images or software tools
to take advantage of such images.  Over the past decade hyperspectral image analysis has
matured into one of the most powerful and fastest growing technologies in the field of
remote sensing.

The “hyper” in hyperspectral means “over” as in “too many” and refers to the large
number of measured wavelength bands.  Hyperspectral images are spectrally
overdetermined, which means that they provide ample spectral information to identify
and distinguish spectrally unique materials.  Hyperspectral imagery provides the potential
for more accurate and detailed information extraction than possible with any other type of
remotely sensed data.

This paper will review some relevant spectral concepts, discuss the definition of
hyperspectral versus multispectral, review some recent applications of hyperspectral
image analysis, and summarize image-processing techniques commonly applied to
hyperspectral imagery.

Spectral Image Basics

To understand the advantages of hyperspectral imagery, it may help to first review some
basic spectral remote sensing concepts.  You may recall that each photon of light has a
wavelength determined by its energy level.  Light and other forms of electromagnetic
radiation are commonly described in terms of their wavelengths.  For example, visible
light has wavelengths between 0.4 and 0.7 microns, while radio waves have wavelengths
greater than about 30 cm (Fig. 1).

Figure 1.  The electromagnetic spectrum
Figure: Spectral Range
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Introduction to hyperspectral remote sensing

Overview of hyperspectral remote sensing (cont. . . )

ITC Journal 1998-1

Imaging spectrometry for monitoring tree damage caused
by volcanic activity in the Long Valley caldera, California

Steven M de Jong1

1

ABSTRACT

Developments in detector technology have triggered a new remote sens-
ing technology: imaging spectrometry.  Imaging spectrometers measure
reflected solar radiance on a pixel-by-pixel basis in many narrow spectral
bands, allowing the identification of materials or their properties by diag-
nostic absorption features.  To date, only airborne imaging spectrometers
are available, but several imaging spectrometers are planned for the next
generation of space platforms.  The abundance of information available
in the continuous spectral coverage makes it possible to address ques-
tions in numerous environmental disciplines.  This paper describes a
study in the Sierra Nevada, using multitemporal images acquired by the
Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) for monitor-
ing tree damage by volcanic activity.  Diffuse volcanic gas emanations
deprive the roots of oxygen, resulting in trees that are under stress and
ultimately die.  Imaging spectrometry yields important information on
tree conditions and on the presence of dead vegetative material.  The
spatial and temporal extent of the dead and stressed tree areas were
mapped using AVIRIS data.  The use of imaging spectrometry to map
the diffuse volcanic gas emissions was less successful.  Although the
images yield noisy spatial patterns of carbon dioxide, it is difficult to
separate atmospheric gases from the diffuse soil emanations.

In the last decennia, a new remote sensing technique was
developed through significant advances in detector tech-
nology: imaging spectrometry.  An imaging spectrometer
collects narrow spectral bands on a pixel-by-pixel basis,
aiming to identify surface materials by using diagnostic
absorption features [12, 23, 37].  Figure 1 shows the
concept of imaging spectrometry.  Conventional broad-
band sensors such as Spot-XS, Landsat MSS and
Landsat TM are not very suitable for mapping minerals
or soil properties because their bandwidth of 70 to 240
nm cannot resolve diagnostic spectral features of terres-
trial materials.  Often, absorption features of interest
have bandwidths of only 20 nm or less.  Since the con-
struction of the first spectrometer, the technique and the
sensors have been further developed and refined, and
software especially designed to analyze the large data
volumes generated by imaging spectrometers have
become available [31, 39].  These developments have
led to the successful applications of imaging spectrome-
try in several environmental disciplines, such as atmos-
pheric science [6], ecology [36, 38, 44, 46, 47], geology
[29, 30, 31,37, 45], soil science [11, 15, 16], hydrology
and oceanography [5, 25, 35].  The importance of these
types of instrument may be indicated by the fact that
several proposals for launching spaceborne spectrome-
ters in the near future have been approved.  This paper
presents a practical application of imaging spectrometry
for vegetation survey in the Long Valley caldera in the
Sierra Nevada, California.  This area suffers from vol-

canic activity, which causes significant damage to the
pine and fir species.  Multitemporal images acquired by
AVIRIS were used to survey damage to pine and fir
trees, and to map the spatial extent of diffuse volcanic
gas emissions.  AVIRIS acquires images at an altitude of
20 km in the spectral range of 400 to 2500 nm, with a
pixel size of 20 x 20 m.  It has 224 spectral bands with
a nominal bandwidth of 10 nm (Figure 1).

STUDY AREA

The research area is situated around Mammoth
Mountain.  Mammoth Mountain is a volcanic cone rising
up to 3300 m; it forms the western rim of the Long
Valley caldera in the Sierra Nevada, California (Figure
2).  The Long Valley caldera measures approximately 17
x 32 km, and was formed by a large eruption about
760,000 years ago [34].  After a period of rest (the last
signs of activity from Mammoth Mountain occurred
roughly 500 years ago), the area has since 1980 been
suffering from frequent earthquakes, hydrothermal activ-
ity and gas emissions [22, 26, 32].  Furthermore, the
resurgent dome in the center of the Long Valley caldera
is inflating; the U.S. Geological Survey has measured an
uplift of approximately 60 cm since 1980.

In 1990, areas of dying forests were found on the
flanks of Mammoth Mountain [22].  At first, the cause
of tree die-off was sought in the persisting drought of
the preceding years.  However, trees died regardless of
age or species, as shown in Figure 3.  Research [22]
revealed that high concentrations of carbon dioxide (30

1 Department of Physical Geography, Utrecht University, PO Box 80
115, 3508 TC Utrecht, The Netherlands
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FIGURE 1 The concept of imaging spectrometry

Figure: Hyperspectral cube
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Introduction to hyperspectral remote sensing

Overview of hyperspectral remote sensing (cont. . . )

Figure 3.  The concept of hyperspectral imagery.  Image measurements are made at
many narrow contiguous wavelength bands, resulting in a complete spectrum for each
pixel.

Hyperspectral Data

Most multispectral imagers (e.g., Landsat, SPOT, AVHRR) measure radiation reflected
from a surface at a few wide, separated wavelength bands (Fig. 4).  Most hyperspectral
imagers (Table 1), on the other hand, measure reflected radiation at a series of narrow
and contiguous wavelength bands.  When we look at a spectrum for one pixel in a
hyperspectral image, it looks very much like a spectrum that would be measured in a
spectroscopy laboratory (Fig. 5).  This type of detailed pixel spectrum can provide much
more information about the surface than a multispectral pixel spectrum.

Figure: Pixels in hyperspectral image
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Introduction to hyperspectral remote sensing

Overview of hyperspectral remote sensing (cont. . . )
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Spatial classification

Iterated Conditional Modes (ICM) Algorithm

Adequate image segmentation takes into account both spectral
features and spatial information.

Markov Random Fields (MRF) have been useful in this respect.

arg min
k
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Spatial classification

Second order MRF for ICM

A second order MRF was applied in which the neighbors of each pixel
consists of its eight adjacencies, with border pixels adjusted appropriately.

Figure: Calculation of N
(α)
ij (k) for an arbitrary interior pixel (i , j) belonging to

category k.
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Spatial classification

Study Site

Study site – Tedej – Hungary.

Crops: barely, maize, sugar beet, sunflower, alfalfa.

Digital Imaging Spectrometer – DAIS-7915 – 79 channel
hyperspectral image.

Spectral range from visible (0.4 µm) to thermal infrared (12.3 µm).

Spatial resolution 3–20 m depending on the carrier aircraft altitude.
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Spatial classification

Study Site

Figure: Study area in Tedej, Hajdu-Bihar area, Hungary.
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Spatial classification

Study Site

Figure: Hyperspectral image of study area in Tedej, Hajdu-Bihar area, Hungary.
Reflectance values for bands 29 (0.988µm), 39 (1.727 µm) and 1 (0.496µm).
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Spatial classification

Figure: Original hyperspectral image. Reflectance values for bands 29
(0.988µm), 39 (1.727 µm) and 1 (0.496µm).
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Spatial classification

Figure: ICM Segmented image with eight categories.
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Spectral matching

Endmember Spectra

Figure: Plot of 7 endmembers from USGS spectral library for the 30 selected
bands, enhanced by continuum removal.
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Spectral matching

Spectral Angle Mapper (SAM) Classifier

SAM – pixel based supervised classification technique

Measures the similarity of an image pixel reflectance spectrum to a
reference spectrum

Spectral angle (in radians) between the two spectra

θ(−→x ) = cos−1

(
f (λ) · e(λ)

||f (λ)|| · ||e(λ)||

)
, (3)

f (λ) – image reflectance spectrum and e(λ) – reference spectrum.

Results in a gray-scale rule image – values are the angles
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Spectral matching

Spectral Angle Mapper (SAM) Classifier

Whole Pixel Methods

Whole pixel analysis methods attempt to determine whether one or more target materials
are abundant within each pixel in a multispectral or hyperspectral image on the basis of
the spectral similarity between the pixel and target spectra.  Whole-pixel scale tools
include standard supervised classifiers such as Minimum Distance or Maximum
Likelihood (Richards and Jia, 1999), as well as tools developed specifically for
hyperspectral imagery such as Spectral Angle Mapper and Spectral Feature Fitting.

Spectral Angle Mapper (SAM)

Consider a scatter plot of pixel values from two bands of a spectral image.  In such a plot,
pixel spectra and target spectra will plot as points (Fig. 6).  If a vector is drawn from the
origin through each point, the angle between any two vectors constitutes the spectral
angle between those two points.  The Spectral Angle Mapper (Yuhas et al., 1992)
computes a spectral angle between each pixel spectrum and each target spectrum.  The
smaller the spectral angle, the more similar the pixel and target spectra.  This spectral
angle will be relatively insensitive to changes in pixel illumination because increasing or
decreasing illumination doesn’t change the direction of the vector, only its magnitude
(i.e., a darker pixel will plot along the same vector, but closer to the origin).  Note that
although this discussion describes the calculated spectral angle using a two-dimensional
scatter plot, the actual spectral angle calculation is based on all of the bands in the image.
In the case of a hyperspectral image, a spectral “hyper-angle” is calculated between each
pixel and each target.

Figure 6.  The Spectral Angle Mapper concept.

Spectral Feature Fitting

Another approach to matching target and pixel spectra is by examining specific
absorption features in the spectra (Clark et al., 1991).  An advanced example of this
method, called Tetracorder, has been developed by the U.S. Geological Survey (Clark et

Figure: Spectral angle.
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Spectral matching

Study Site

Figure: A generalized geological map of the Rodalquilar study area showing the
flight line and the hyperspectral data

Debba (CSIR) Improving classification accuracy Rhodes University 2009 20 / 51



Spectral matching

Data Used

HyMap: 126 bands – 0.4–2.5 µm

Geology: 30 bands – 1.95–2.48 µm

Distinctive absorption features at wavelengths near 2.2µm

We collected field spectra during the over-flight using the Analytical
Spectral Device (ASD) fieldspec-pro spectrometer – 0.35–2.50 µm
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Spectral matching

SAM Rule Image for Alunite

Figure: SAM classification rule image for alunite. Dark areas indicate smaller
angles, hence, greater similarity to alunite.
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Spectral matching

Continuum Removal

Spectra are normalized to a common reference using a continuum formed
by defining high points of the spectrum (local maxima) and fitting straight
line segments between these points. The continuum is removed by dividing
it into the original spectrum.

for vegetation [13, 27, 46].  The
convex hull transform is a method
of normalizing spectra [16, 41].
The convex hull technique is anal-
ogous to fitting a rubber band over
a spectrum to form a continuum.
Figure 5 shows the concept of the
convex hull transform.  The differ-
ence between the hull and the orig-
inal spectrum is subtracted from a
constant to obtain a hull difference.
Such a normalization of the spectra
allows the application of quantita-
tive absorption feature characteri-
zation in terms of feature depth,
surface area and asymmetry.

Figure 6 shows some examples
of the collected field spectra for
dead, stressed and healthy lodge-
pole pines.  Figure 7 shows the
first derivative of the spectra in
Figure 6.  The derivative computa-
tion tends to enhance not only the
absorption features but also the
noise [16].  Both figures clearly
show the presence/absence of
chlorophyll absorption near 680
nm in the healthy and dead lodge-
pole pine spectra, respectively.
Although the red edge [13, 16], the
steep spectral transition zone
between chlorophyll absorption at
680 nm and the high near-infrared
reflectance at 720 nm, is not very
pronounced, it is visible in the orig-
inal and derivative spectra.  Figure
6 also illustrates the effect of
increasing brightness between 1400 and 1700 nm with
respect to the reduced water content of healthy pines as
compared with dead pines.  Within the same spectral
range (about 1720 nm), absorption features associated
with lignin and cellulose can be seen for the dead pines
and litter spectra [36, 44, 48].  These features are not
visible in the case of the healthy spectrum because the

green canopy obscures the presence of woody material.
Furthermore, a convex hull transform was computed
from the field spectra and the feature-finding algorithm
[16, 24] was applied.  The results are presented in Table
1; water is the most dominant absorption feature (1900
and 1400 nm) identified by the algorithm.  Compared
with the healthy lodgepole pine, the stressed tree shows

ITC Journal 1998-1Imaging spectrometry for monitoring tree damage
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FIGURE 4 AVIRIS image cube of Mammoth Mountain (acquired on 23 August 1994
and covering an area of approximately 12 x 12 km).  X and Y axes show the geo-
graphic position in the scene; the Z axis shows the spectral bands (224).  Snow-
covered Mammoth Mountain is visible in the center of the image; Horseshoe Lake
and the largest dying tree areas are just south of Mammoth Mountain

FIGURE 5 Concept of the convex hull transform; (A) a hull fitted over the original spectrum; (B) the transformed spectrum. The
example shows a laboratory spectrum of a weathered limestone rock with absorption features for iron near 900 nm, for water
near 1400 and 1900 nm, for clay minerals near 2200 nm and for calcite near 2350 nm [16]

BA

Figure: Concept of the convex hull transform; (A) a hull fitted over the original
spectrum; (B) the transformed spectrum.
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Spectral matching

Continuum Removal

 Tutorial: Selected Hyperspectral Mapping Methods 

Spectral Feature Fitting and Analysis 
Spectral Feature Fitting (SFF) is an absorption-feature-based method for matching image spectra to reference 
endmembers, similar to methods developed at the U. S. Geological Survey (Clark et al., 1990, 1991, 1992; Clark and 
Swayze, 1995). 
  
Most methods for analyzing hyperspectral data still do not directly identify specific materials. They only indicate how 
similar a material is to another known material or how unique it is with respect to other materials. However techniques 
for direct identification of materials―via extraction of specific spectral features from field and laboratory reflectance 
spectra―have been in use for many years (Green and Craig, 1985; Kruse et al., 1985; Yamaguchi and Lyon, 1986; Clark 
et al., 1987). Recently, these techniques have been applied to imaging spectrometer data, primarily for geologic 
applications (Kruse et al., 1988; Kruse, 1988; Kruse, 1990; Clark et al., 1990, 1991, 1992; Clark and Crowley, 1992; Kruse 
et al. 1993b, 1993c; Kruse and Lefkoff, 1993, Swayze et al., 1995).  
 
All of these methods require you to reduce data to reflectance and to remove a continuum from the reflectance data prior 
to analysis. A continuum is a mathematical function used to isolate a particular absorption feature for analysis (Clark and 
Roush, 1984; Kruse et al, 1985; Green and Craig, 1985). A continuum corresponds to a background signal unrelated to 
specific absorption features of interest. Spectra are normalized to a common reference using a continuum formed by 
defining high points of the spectrum (local maxima) and fitting straight line segments between these points. The 
continuum is removed by dividing it into the original spectrum. 
 

 
  
SFF requires you to select reference endmembers from either the image or a spectral library, to remove the continuum 
from both the reference and unknown spectra, and to scale each reference endmember spectrum to match the unknown 
spectrum. SFF produces a scale image for each endmember selected for analysis by first subtracting the continuum-
removed spectra from one endmember (inverting it), and making the continuum zero. SFF determines a single 
multiplicative scaling factor that makes the reference spectrum match the unknown spectrum. Assuming that a 
reasonable spectral range has been selected, a large scaling factor is equivalent to a deep spectral feature, while a small 
scaling factor indicates a weak spectral feature.  
 

13 
ENVI Tutorial: Selected Hyperspectral Mapping Methods 

Figure: Original and continuum removed spectra.
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Spectral matching

Spectral Feature Fitting (SFF)

SFF – pixel based classification technique.

Remove the continuum from both the reference and unknown spectra.

SFF produces a scale image for each endmember selected for analysis
by first subtracting the continuum-removed spectra from one
(inverting it), and making the continuum zero.

SFF determines a single multiplicative scaling factor that makes the
reference spectrum match the unknown spectrum.
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Spectral matching

Spectral Feature Fitting (SFF)

SFF then calculates a least-squares-fit, band-by-band, between each
reference endmember and the unknown spectrum.

The total root-mean-square (RMS) error is used to form an RMS
error image for each endmember.

Scale/RMS provides a fit image that is a measure of how well the
unknown spectrum matches the reference spectrum on a
pixel-by-pixel basis.
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Spectral matching

SFF Rule Image for Alunite

Figure: SFF fit image for alunite. Lighter areas indicate better fit values between
pixel reflectance spectra and the alunite reference spectrum.
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Types of variability and Research Question

The Problem

The 2 main types of variability, necessary for any image classification
and/or spectral unmixing techniques are (i) the variability within a
species class, and (ii) the similarity between the species classes.

When the variability within a species class is small compared to the
variability between the species classes, this results in relatively good
accuracy for image classification and/or spectral unmixing.

When the species spectra is similar, the within-species variability can
be large compared to the between-species class variability —
prominent in vegetation studies — producing poor results for image
classification and/or spectral unmixing techniques.

This research studies the variability within a species class and the
variability between the species classes of seven spectrally similar tree
species and presents ways in which the within-species class variability
can be reduced compared to the between-species class variability.
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Data description

Data description

ASD spectrometer used to record hyperspectral measurements of leaf
samples taken from several different savannah trees in the Kruger
National Park in South Africa, in an attempt to assess tree species
diversity in the park.

The hyperspectral data consist of 2151 spectral bands at a spectral
resolution of 1 nm for seven common plant tree species in the area.

The seven tree species include Lonchocarpus capassa, Combretum
apiculatum, Combretum heroense, Combretum zeyherrea,
Gymnospora buxifolia, Gymnospora senegalensis, and Terminalia
sericia.

Each tree species has 10 measurements recorded with the exception
of Gymnospora Buxifolia, which has only seven. The total data set
therefore had 67 observations for the species measurements.
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Data description

Figure: Study Area: Kruger National Park, South Africa
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Data description

Figure: Variation of tree species in the Kruger National Park, South Africa
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Data description
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Figure: Reflectance spectra of the 10 samples for Combretum apriculatum.
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Data description
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Figure: Reflectance spectra of the 10 samples for Terminalia sericia.
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Data description
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Figure: Mean spectral reflectance for all seven species. Also, band selection using
stepwise discriminant analysis. For SDA the results for the best 10, 20, 30 and 65
selected bands are shown.
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Data description
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Figure: Variance of the spectral reflectance for all seven species.
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Data description

Figure: Causes of high intra-species variability.
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Method

Method

Let yk
i denotes the d-dimensional feature vector (d represents the

number of bands) selected from the i th sample of the kth class, ck ,
with nk samples in the kth class.

Also, let µk (k = 1, . . . , c) be the mean vector of kth class and µ be
the total mean vector in this d-dimensional feature space.

The within-class variability, Sw and between-class variability, Sb:

Sw =
1

c

c∑
k=1

[
1

nk

nk∑
i=1

(
yk
i − µk

)T (
yk
i − µk

)]
(4)

Sb =
1

c

c∑
k=1

(µk − µ)T (µk − µ) . (5)

The ratio of the between-class variability to the within-class variability,
commonly known as Fisher’s criterion ratio, is a measure for class
separation, with high values indicating greater class separation.
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Method

A comparison is made through evaluating the within-class species
variability and the between-class species variability using:

the original, first and second derivative spectra.

for each, of the above, the experiment was conducted
1 over the entire electromagnetic spectrum (EMS) (0.350–2.500 µm),
2 the visible (VIS) (0.400–0.740 µm) region,
3 the near infrared (NIR) (0.741–1.300 µm) region,
4 the short wave infrared (SWIR) (1.301–2.500 µm) region,
5 using band selection, for example, best 10, 20, 30 and 65 bands

selected, through linear stepwise discriminant analysis (SDA),
6 using sequential selection of bands, for example, every 5th, 9th, 15th,

19th or 25th band selected and
7 spectral degradation of the spectral bands by averaging the reflectance

values for every 5th, 9th, 15th, 19th or 25th band.
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Results

Table: Within- and between-class variability for various regions of the EMS.
Bands Within-class var Between-class var Ratio

All
Original 5.574 5.030 0.902
1st derivative 9.007× 10−3 4.000× 10−3 0.444
2nd derivative 1.522× 10−2 3.582× 10−2 0.235

VIS
Original 0.316 0.291 0.920
1st derivative 2.220× 10−4 1.160× 10−4 0.523
2nd derivative 1.787× 10−4 2.797× 10−5 0.157

NIR
Original 2.090 0.481 0.230
1st derivative 1.163× 10−4 4.254× 10−4 0.366
2nd derivative 2.557× 10−4 7.420× 10−5 0.290

SWIR
Original 3.162 4.241 1.341
1st derivative 3.594× 10−4 1.568× 10−4 0.436
2nd derivative 7.013× 10−4 8.371× 10−5 0.119
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Results

Table: Within- and between-class variability for selected bands using SDA.
Bands Within-class var Between-class var Ratio

SDA10
Original 0.013 0.021 1.600
1st derivative 6.621× 10−8 1.445× 10−7 2.183
2nd derivative 4.763× 10−11 1.273× 10−10 2.672

SDA20
Original 0.026 0.038 1.463
1st derivative 1.339× 10−6 8.253× 10−7 0.616
2nd derivative 2.061× 10−7 3.661× 10−8 0.178

SDA30
Original 0.037 0.055 1.473
1st derivative 4.520× 10−6 3.194× 10−7 0.707
2nd derivative 2.061× 10−7 6.138× 10−8 0.247

SDA65
Original 0.095 0.135 1.428
1st derivative 7.298× 10−6 4.482× 10−6 0.614
2nd derivative 3.271× 10−6 3.130× 10−7 0.096
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Results

Table: Within- and between-class variability for sequentially selected bands.
Bands Within-class var Between-class var Ratio
Every 5th spectrum

Original 1.114 1.006 0.902
1st derivative 6.060× 10−5 5.062× 10−5 0.835
2nd derivative 1.135× 10−6 5.649× 10−7 0.498

Every 9th spectrum
Original 0.619 0.559 0.903
1st derivative 3.002× 10−5 2.636× 10−5 0.878
2nd derivative 1.755× 10−7 1.327× 10−7 0.756

Every 15th spectrum
Original 0.371 0.335 0.902
1st derivative 1.658× 10−5 1.480× 10−5 0.893
2nd derivative 6.056× 10−8 5.305× 10−8 0.876

Every 19th spectrum
Original 0.293 0.264 0.902
1st derivative 1.232× 10−5 1.113× 10−5 0.904
2nd derivative 3.592× 10−8 3.265× 10−8 0.909

Every 25th spectrum
Original 0.223 0.201 0.902
1st derivative 8.837× 10−6 7.753× 10−6 0.877
2nd derivative 2.038× 10−8 1.702× 10−8 0.835
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Results

Table: Within- and between-class variability for spectrally degraded bands.
Bands Within-class var Between-class var Ratio
Every 5th averaged

Original 1.114 1.005 0.902
1st derivative 5.514× 10−5 4.819× 10−5 0.874
2nd derivative 5.582× 10−7 3.339× 10−7 0.598

Every 9th averaged
Original 0.619 0.559 0.902
1st derivative 2.799× 10−5 2.511× 10−5 0.897
2nd derivative 1.260× 10−7 1.089× 10−7 0.864

Every 15th averaged
Original 0.371 0.334 0.901
1st derivative 1.504× 10−5 1.356× 10−5 0.902
2nd derivative 4.713× 10−8 4.219× 10−8 0.895

Every 19th averaged
Original 0.293 0.264 0.902
1st derivative 1.090× 10−5 9.880× 10−6 0.906
2nd derivative 2.737× 10−8 2.478× 10−8 0.905

Every 25th averaged
Original 0.222 0.201 0.902
1st derivative 7.383× 10−6 6.591× 10−6 0.893
2nd derivative 1.399× 10−8 1.193× 10−8 0.853
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Conclusions

Conclusions and future research

For this data set, there are important bands from the original spectra,
the first and second derivative spectra and from various regions of the
EMS (VIS, NIR, SWIR) for species separability. We recommend
further research and improvement to selecting spectral bands from a
broader combined set of the original, first and second derivative
spectra.

There seem to be a number of sub-classes within each of the seven
classes. We recommend further investigations to cluster spectra
within each species by also incorporating their geographical location
(spatially – Jun and Ghosh, 2009) and temporally when data is
collected at different time.
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Conclusions

Conclusions and future research

Furthermore, for this data set, there does not seem to be any
decrease in species separability by degrading the spectral bands
through averaging the reflectance. This implies that hyperspectral
(extremely high spectral) measurements did not prove useful in
species separability compared to a lower spectral resolution data.

More details: Debba et. al. (2009). Within- and between-class variability
of spectrally similar tree species. In Proceedings of 2009 IEEE
International Symposium on Geoscience and Remote Sensing. July 13–17,
2009 Cape Town, South Africa. Accepted.
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Problem II

Further exploration

We have explored two classification approaches with spectral an-
gle mapper: (i) using a spectral library composed of one spectrum
(endmember) per species and (ii) a multiple endmember approach
conventionally called K-nearest neighbour classifier.
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Data description

Data description

Eight sites were chosen for the study including two sites in the KNP,
two sites in private game reserves and four sites in communal lands.

The species data used in this study consist of tree species generally
more than 2m tall identified and geo-registered using a Leica
differential global positioning system (GPS).

Eighteen dominant species are examined in the study. These include
Acacia gerradii, Acacia nigrescens, Combretum apiculatum,
Combretum collinum, Combretum hereroense, Combretum imberbe,
Combretum zeyheri, Dichrostachys cinerea, Euclea sp (E. divinurum
and E. natalensis, Gymnosporia sp (G. buxifolia and G. senegalensis),
Lonchocarpus capassa, Peltoforum africanum, Piliostigma thonningii,
Pterocarpus rotundifolia, Sclerocarya birrea, Strchynos sp (S.
madagascariensis, S. usambarensis), Terminalia sericea and Ziziphus
mucronata.
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Data description

Figure: Study area showing Carnegie Airborne Observatory (CAO) image scenes
in the Kruger National Park, South Africa
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Results

Figure: Using the mean spectra of the training sets as reference spectra.
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Results

Figure: Using all training spectra for each species as reference spectra (K-nearest
neighbour classifier, k=1).
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Conclusions

Conclusions

Intra-species spectral variability and the reference data sample size
are two important factors that affect tree species differentiation in the
savanna ecosystem.

We recommend the utilisation of the multiple endmembers SAM
approach as opposed to the traditional SAM classifier involving single
spectrum endmember per species for mapping of Kruger National
Park species.

The training endmembers should be truly representative of the
different distributions in the population.

The classification of the species could be limited to the dominant
species.

More details: Cho et. al. (2009). Spectral variability within species and its
effects on savanna tree species discrimination. In Proceedings of 2009
IEEE International Symposium on Geoscience and Remote Sensing. July
13–17, 2009 Cape Town, South Africa. Accepted.
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Conclusions

Future research

Feature selection and feature extraction (original, higher order
derivatives)

Spatial and temporal sub-classes.

Improved classification techniques.

Classification of hyperspectral images.

SNR not constant throughout EMS.

Classification on continuum removed spectra.
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