Improving classification accuracy of spectrally similar tree species: A complex case study in the Kruger National Park

Pravesh Debba

CSIR Built Environment, Logistics and Quantitative Methods, South Africa

Presented at Rhodes University 2009

Background on Classification

- Introduction to hyperspectral remote sensing
- 2 Spatial classification
- 3 Spectral matching
- Types of variability and Research Question
- 5 Data description
- 6 Method
- 7 Results
- 8 Conclusions
- 9 Problem II
- Data description

Debba (CSIR)

- 🕕 Results
 - Conclusions

・ロン ・四 ・ ・ ヨン ・ ヨン

(1

Background on Classification

Introduction to hyperspectral remote sensing

- Spatial classification
- 3 Spectral matching
- 4 Types of variability and Research Question
- 5 Data description
- 6 Method
- 7 Results
- 8 Conclusions
- 9 Problem II
- Data description
- 🕕 Results
 - Conclusion:

2 / 51

(4 個) トイヨト イヨト

- Background on Classification
 - Introduction to hyperspectral remote sensing
- 2 Spatial classification
 - 3 Spectral matching
 - Types of variability and Research Question
- 5 Data description
- 6 Method
- 7 Results
- 8 Conclusions
- 9 Problem II
- Data description

Debba (CSIR)

- Results
 - Conclusions

2 / 51

(4 個) トイヨト イヨト

- Background on Classification
 - Introduction to hyperspectral remote sensing
 - Spatial classification
- Spectral matching
 - Types of variability and Research Question
- 5 Data description
- 6 Method
- 7 Results
- 8 Conclusions
- 9 Problem II
- Data description
- Results
 - Conclusions

2 / 51

- 4 回 ト - 4 回 ト

- Background on Classification
 - Introduction to hyperspectral remote sensing
 - Spatial classification
- Spectral matching
 - Types of variability and Research Question
 - 5 Data description
- 6 Method
- 7 Results
- 8 Conclusions
- 9 Problem II
- Data description

Debba (CSIR)

- 🕕 Results
 - Conclusions

A B A A B A

< 🗇 🕨

- Background on Classification (1
 - Introduction to hyperspectral remote sensing
 - Spatial classification
- Spectral matching 3
 - Types of variability and Research Question
 - Data description

2 / 51

- Background on Classification (1
 - Introduction to hyperspectral remote sensing
 - Spatial classification
- Spectral matching
 - Types of variability and Research Question
 - Data description
 - Method

2 / 51

- Background on Classification
- Introduction to hyperspectral remote sensing
- Spatial classification
- Spectral matching
 - Types of variability and Research Question
 - Data description
 - Method
 - Results

Debba (CSIR)

2 / 51

- Background on Classification
- Introduction to hyperspectral remote sensing
- Spatial classification
- Spectral matching
 - Types of variability and Research Question
 - Data description
 - Method
- Results
- Conclusions

Debba (CSIR)

2 / 51

- Background on Classification
- Introduction to hyperspectral remote sensing
- Spatial classification
- Spectral matching 3
 - Types of variability and Research Question
 - Data description
 - Method
- Results
- Conclusions
- Problem II

2 / 51

- Background on Classification
- Introduction to hyperspectral remote sensing
- Spatial classification
- Spectral matching
- Types of variability and Research Question
- Data description
- Method
- Results

- Problem II
 - Data description

Debba (CSIR)

- Background on Classification
- Introduction to hyperspectral remote sensing
- Spatial classification
- Spectral matching
- Types of variability and Research Question
- Data description
- Method 🕽
- 7 Results

- 9 Problem II
 - Data description

- Background on Classification
- Introduction to hyperspectral remote sensing
- Spatial classification
- Spectral matching
- Types of variability and Research Question
- Data description
- Method 🕽
- 7 Results

- Problem II
 - Data description

Debba (CSIR)

What is classification?

- The aim of classification is to assign an object x into one class ω_i of a set of c given classes {ω₁, ω₂,..., ω_c}.
- Clustering natural grouping for eg KNN, K-Means
- Classification predicts categorical class labels for eg MLC, DT, NN
- Clustering unsupervised learning no training data or ground truth data — no predefined classes or no examples that would show the desired relationships
- Classification supervised learning have training data or ground truth data — have predefined classes

3 / 51

イロト 不得下 イヨト イヨト

Common classification techniques

- Statistical
 - Parametric eg Naive Bayes, MLC
 - Non-parametric eg k-NN, Parzen
- Artificial Neural Networks
- Decision Trees
- Support Vector Machines

- The definition of similarity is subjective.
- Similarity measures *d_{ij}*:
 - Squared Euclidean distance $d(\mathbf{x}_i, \mathbf{x}_j)^2 = (\mathbf{x}_i \mathbf{x}_j)^T (\mathbf{x}_i \mathbf{x}_j)$
 - Spectral angle/correlation
 - Spectral Information Divergence, etc.

If $d_{ij} < T$, (T: user defined threshold), the two pixel vectors are regarded as similar.

A B < A B </p>

Overview of hyperspectral remote sensing

Hyperspectral sensors

- record the reflectance in many narrow contiguous bands
- various parts of the electromagnetic spectrum (visible near infrared short wave infrared)
- at each part of the electromagnetic spectrum results in an image

Overview of hyperspectral remote sensing (cont...)

Figure: Hyperspectral cube

7 / 51

Debba (CSIR)

Improving classification accuracy

(人間) トイヨト イヨト

Overview of hyperspectral remote sensing (cont...)

Figure: Pixels in hyperspectral image

8 / 51

< 🗗 🕨

- ∢ ≣ →

Overview of hyperspectral remote sensing (cont...)

Figure: Example of 3 different spectral signatures

Iterated Conditional Modes (ICM) Algorithm

- Adequate image segmentation takes into account both spectral features and spatial information.
- Markov Random Fields (MRF) have been useful in this respect.

 $\arg\min_{k} \left\{ \left(f_{ij} - \mu_{k}^{(\alpha)} \right)^{T} \left(f_{ij} - \mu_{k}^{(\alpha)} \right) - \beta \nu^{(\alpha)} N_{ij}^{(\alpha)}(k) \right\}$ (1)

$$\nu^{(\alpha)} = \frac{1}{N} \sum_{k=1}^{K} \sum_{(i,j) \in \mathbf{C}_{k}^{(\alpha)}} \left(f_{ij} - \mu_{k}^{(\alpha)} \right)^{T} \left(f_{ij} - \mu_{k}^{(\alpha)} \right).$$
(2)

10 / 51

۲

イロト 不得下 イヨト イヨト

Second order MRF for ICM

A second order MRF was applied in which the neighbors of each pixel consists of its eight adjacencies, with border pixels adjusted appropriately.

Figure: Calculation of $N_{ij}^{(\alpha)}(k)$ for an arbitrary interior pixel (i, j) belonging to category k.

- Study site Tedej Hungary.
- Crops: barely, maize, sugar beet, sunflower, alfalfa.
- Digital Imaging Spectrometer DAIS-7915 79 channel hyperspectral image.
- Spectral range from visible (0.4 μ m) to thermal infrared (12.3 μ m).
- Spatial resolution 3-20 m depending on the carrier aircraft altitude.

Figure: Study area in Tedej, Hajdu-Bihar area, Hungary.

E

Figure: Hyperspectral image of study area in Tedej, Hajdu-Bihar area, Hungary. Reflectance values for bands 29 (0.988 μ m), 39 (1.727 μ m) and 1 (0.496 μ m).

Figure: Original hyperspectral image. Reflectance values for bands 29 (0.988 μ m), 39 (1.727 μ m) and 1 (0.496 μ m).

- 🔹 🗐

Figure: ICM Segmented image with eight categories.

E

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Endmember Spectra

Figure: Plot of 7 endmembers from USGS spectral library for the 30 selected bands, enhanced by continuum removal.

Spectral Angle Mapper (SAM) Classifier

- SAM pixel based supervised classification technique
- Measures the similarity of an image pixel reflectance spectrum to a reference spectrum
- Spectral angle (in radians) between the two spectra

$$\theta(\vec{\mathbf{x}}) = \cos^{-1} \left(\frac{f(\lambda) \cdot e(\lambda)}{||f(\lambda)|| \cdot ||e(\lambda)||} \right) , \qquad (3)$$

 $f(\lambda)$ – image reflectance spectrum and $e(\lambda)$ – reference spectrum.

• Results in a gray-scale rule image - values are the angles

18 / 51

イロト 不得下 イヨト イヨト

Spectral Angle Mapper (SAM) Classifier

Figure: Spectral angle.

Improving classification accuracy

Rhodes University 2009

Figure: A generalized geological map of the Rodalquilar study area showing the flight line and the hyperspectral data

20 / 51

(日) (同) (三) (三)

Data Used

- HyMap: 126 bands 0.4–2.5 μ m
- Geology: 30 bands 1.95–2.48 μ m
- Distinctive absorption features at wavelengths near 2.2 $\mu{\rm m}$
- We collected field spectra during the over-flight using the Analytical Spectral Device (ASD) fieldspec-pro spectrometer $0.35-2.50 \,\mu$ m

21 / 51

< ロト < 同ト < ヨト < ヨト

SAM Rule Image for Alunite

Figure: SAM classification rule image for alunite. Dark areas indicate smaller angles, hence, greater similarity to alunite.

Debba (CSIR)

Improving classification accuracy

Continuum Removal

Spectra are normalized to a common reference using a continuum formed by defining high points of the spectrum (local maxima) and fitting straight line segments between these points. The continuum is removed by dividing it into the original spectrum.

Figure: Concept of the convex hull transform; (A) a hull fitted over the origina spectrum; (B) the transformed spectrum.

Debba (CSIR)

Improving classification accuracy

Continuum Removal

Figure: Original and continuum removed spectra.

Debba (CSIR)

Improving classification accuracy

< ロト < 同ト < ヨト < ヨト

Spectral Feature Fitting (SFF)

- SFF pixel based classification technique.
- Remove the continuum from both the reference and unknown spectra.
- SFF produces a scale image for each endmember selected for analysis by first subtracting the continuum-removed spectra from one (inverting it), and making the continuum zero.
- SFF determines a single multiplicative scaling factor that makes the reference spectrum match the unknown spectrum.

25 / 51

∃ → (∃ →

Spectral Feature Fitting (SFF)

- SFF then calculates a least-squares-fit, band-by-band, between each reference endmember and the unknown spectrum.
- The total root-mean-square (RMS) error is used to form an RMS error image for each endmember.
- Scale/RMS provides a fit image that is a measure of how well the unknown spectrum matches the reference spectrum on a pixel-by-pixel basis.

26 / 51

∃ → (∃ →

SFF Rule Image for Alunite

Figure: SFF fit image for alunite. Lighter areas indicate better fit values between pixel reflectance spectra and the alunite reference spectrum.

Debba (CSIR)

Improving classification accuracy

The Problem

- The 2 main types of variability, necessary for any image classification and/or spectral unmixing techniques are (i) the variability within a species class, and (ii) the similarity between the species classes.
- When the variability within a species class is small compared to the variability between the species classes, this results in relatively good accuracy for image classification and/or spectral unmixing.
- When the species spectra is similar, the within-species variability can be large compared to the between-species class variability ---prominent in vegetation studies - producing poor results for image classification and/or spectral unmixing techniques.

This research studies the variability within a species class and the variability between the species classes of seven spectrally similar tree species and presents ways in which the within-species class variability can be reduced compared to the between-species class variability.

イロト イポト イヨト イヨト

Data description

- ASD spectrometer used to record hyperspectral measurements of leaf samples taken from several different savannah trees in the Kruger National Park in South Africa, in an attempt to assess tree species diversity in the park.
- The hyperspectral data consist of 2151 spectral bands at a spectral resolution of 1 nm for seven common plant tree species in the area.
- The seven tree species include Lonchocarpus capassa, Combretum apiculatum, Combretum heroense, Combretum zeyherrea, Gymnospora buxifolia, Gymnospora senegalensis, and Terminalia sericia.
- Each tree species has 10 measurements recorded with the exception of Gymnospora Buxifolia, which has only seven. The total data set therefore had 67 observations for the species measurements.

29 / 51

< ロト < 同ト < ヨト < ヨト

Figure: Study Area: Kruger National Park, South Africa

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

E

Figure: Variation of tree species in the Kruger National Park, South Africa

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

E

Combretum apiculatum

Figure: Reflectance spectra of the 10 samples for Combretum apriculatum.

Debba (CSIR)

32 / 51

A (1) > 4

Terminalia sericia

Figure: Reflectance spectra of the 10 samples for Terminalia sericia.

Debba (CSIR)

Improving classification accuracy

・ロト ・ 日 ト ・ 日 ト ・ 日

Mean of species

Figure: Mean spectral reflectance for all seven species. Also, band selection using stepwise discriminant analysis. For SDA the results for the best 10, 20, 30 and selected bands are shown. Debba (CSIR) Improving classification accuracy Rhodes University 2009 34 / 51

Variance of species

Figure: Variance of the spectral reflectance for all seven species.

Figure: Causes of high intra-species variability.

Debba (CSIR)

Improving classification accuracy

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Method

Method

- Let y_i^k denotes the *d*-dimensional feature vector (*d* represents the number of bands) selected from the *i*th sample of the *k*th class, c_k , with n_k samples in the *k*th class.
- Also, let μ_k (k = 1,..., c) be the mean vector of kth class and μ be the total mean vector in this d-dimensional feature space.
- The within-class variability, S_w and between-class variability, S_b :

$$S_{w} = \frac{1}{c} \sum_{k=1}^{c} \left[\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \left(y_{i}^{k} - \mu_{k} \right)^{T} \left(y_{i}^{k} - \mu_{k} \right) \right]$$
(4)

$$S_{b} = \frac{1}{c} \sum_{k=1}^{c} (\mu_{k} - \mu)^{T} (\mu_{k} - \mu).$$
 (5)

• The ratio of the between-class variability to the within-class variability, commonly known as Fisher's criterion ratio, is a measure for class separation, with high values indicating greater class separation.

Debba (CSIR)

Improving classification accuracy

Method

A comparison is made through evaluating the within-class species variability and the between-class species variability using:

- the original, first and second derivative spectra.
- for each, of the above, the experiment was conducted
 - **(**) over the entire electromagnetic spectrum (EMS) (0.350–2.500 μ m),
 - 2 the visible (VIS) (0.400–0.740 μ m) region,
 - \odot the near infrared (NIR) (0.741–1.300 μ m) region,
 - ④ the short wave infrared (SWIR) (1.301–2.500 μ m) region,
 - using band selection, for example, best 10, 20, 30 and 65 bands selected, through linear stepwise discriminant analysis (SDA),
 - using sequential selection of bands, for example, every 5th, 9th, 15th, 19th or 25th band selected and
 - spectral degradation of the spectral bands by averaging the reflectance values for every 5th, 9th, 15th, 19th or 25th band.

38 / 51

イロト 不得下 イヨト イヨト

Table: Within- and between-class variability for various regions of the EMS											
	Bands	Within-class var	Between-class var	Ratio							
	All										
	Original	5.574	5.030	0.902							
	1st derivative	$9.007 imes10^{-3}$	$4.000 imes10^{-3}$	0.444							
	2nd derivative	$1.522 imes10^{-2}$	$3.582 imes 10^{-2}$	0.235							
	VIS										
	Original	0.316	0.291	0.920							
	1st derivative	$2.220 imes10^{-4}$	$1.160 imes10^{-4}$	0.523							
	2nd derivative	$1.787 imes10^{-4}$	$2.797 imes10^{-5}$	0.157							
	NIR										
	Original	2.090	0.481	0.230							
	1st derivative	$1.163 imes10^{-4}$	$4.254 imes10^{-4}$	0.366							
	2nd derivative	$2.557 imes10^{-4}$	$7.420 imes10^{-5}$	0.290							
	SWIR										
	Original	3.162	4.241	1.341							
	1st derivative	$3.594 imes10^{-4}$	$1.568 imes10^{-4}$	0.436							
	2nd derivative	$7.013 imes10^{-4}$	$8.371 imes10^{-5}$	0.119							

Debba (CSIR)

▲□▶ ▲圖▶ ▲温▶ ▲温≯

æ

Т	Table: Within- and between-class variability for selected bands using SDA.												
	Bands	Within-class var	Between-class var	Ratio									
	SDA10												
	Original	0.013	0.021	1.600									
	1st derivative	$6.621 imes10^{-8}$	$1.445 imes10^{-7}$	2.183									
	2nd derivative	$4.763 imes10^{-11}$	$1.273 imes10^{-10}$	2.672									
	SDA20												
	Original	0.026	0.038	1.463									
	1st derivative	$1.339 imes10^{-6}$	$8.253 imes10^{-7}$	0.616									
	2nd derivative	$2.061 imes 10^{-7}$	$3.661 imes 10^{-8}$	0.178									
	SDA30												
	Original	0.037	0.055	1.473									
	1st derivative	$4.520 imes10^{-6}$	$3.194 imes10^{-7}$	0.707									
	2nd derivative	$2.061 imes 10^{-7}$	$6.138 imes10^{-8}$	0.247									
	SDA65												
	Original	0.095	0.135	1.428									
	1st derivative	$7.298 imes10^{-6}$	$4.482 imes10^{-6}$	0.614									
	2nd derivative	$3.271 imes10^{-6}$	$3.130 imes10^{-7}$	0.096									

▲□▶ ▲圖▶ ▲温▶ ▲温≯

æ

Table: Within- and between-class variability for sequentially selected bands.											
Bands	Within-class var	Between-class var	Ratio								
Every 5th spectrum											
Original	1.114	1.006	0.902								
1st derivative	$6.060 imes 10^{-5}$	$5.062 imes 10^{-5}$	0.835								
2nd derivative	$1.135 imes10^{-6}$	$5.649 imes10^{-7}$	0.498								
Every 9th spectrum											
Original	0.619	0.559	0.903								
1st derivative	$3.002 imes 10^{-5}$	2.636×10^{-5}	0.878								
2nd derivative	$1.755 imes 10^{-7}$	$1.327 imes 10^{-7}$	0.756								
Every 15th spectrum											
Original	0.371	0.335	0.902								
1st derivative	$1.658 imes 10^{-5}$	$1.480 imes 10^{-5}$	0.893								
2nd derivative	$6.056 imes 10^{-8}$	$5.305 imes 10^{-8}$	0.876								
Every 19th spectrum											
Original	0.293	0.264	0.902								
1st derivative	$1.232 imes 10^{-5}$	$1.113 imes10^{-5}$	0.904								
2nd derivative	$3.592 imes 10^{-8}$	$3.265 imes 10^{-8}$	0.909								
Every 25th spectrum											
Original	0.223	0.201	0.902								
1st derivative	$8.837 imes 10^{-6}$	$7.753 imes 10^{-6}$	0.877								
2nd derivative	$2.038 imes 10^{-8}$	$1.702 imes10^{-8}$	0.835 🤐	Sir							

▲白♪ ▲圖♪ ▲国≯ ▲国≯

- 2

Table: Within- and between-class variability for spectrally degraded bands.											
Bands	Within-class var	Between-class var	Ratio								
Every 5th averaged											
Original	1.114	1.005	0.902								
1st derivative	$5.514 imes 10^{-5}$	$4.819 imes 10^{-5}$	0.874								
2nd derivative	$5.582 imes 10^{-7}$	$3.339 imes10^{-7}$	0.598								
Every 9th averaged											
Original	0.619	0.559	0.902								
1st derivative	$2.799 imes 10^{-5}$	$2.511 imes 10^{-5}$	0.897								
2nd derivative	$1.260 imes 10^{-7}$	$1.089 imes10^{-7}$	0.864								
Every 15th averaged											
Original	0.371	0.334	0.901								
1st derivative	$1.504 imes10^{-5}$	$1.356 imes 10^{-5}$	0.902								
2nd derivative	$4.713 imes 10^{-8}$	$4.219 imes 10^{-8}$	0.895								
Every 19th averaged											
Original	0.293	0.264	0.902								
1st derivative	$1.090 imes10^{-5}$	$9.880 imes10^{-6}$	0.906								
2nd derivative	$2.737 imes 10^{-8}$	$2.478 imes10^{-8}$	0.905								
Every 25th averaged											
Original	0.222	0.201	0.902								
1st derivative	$7.383 imes 10^{-6}$	$6.591 imes10^{-6}$	0.893								
2nd derivative	$1.399 imes 10^{-8}$	$1.193 imes10^{-8}$	0.853								

▲□▶ ▲圖▶ ▲温▶ ▲温≯

42 / 51

æ

Conclusions and future research

- For this data set, there are important bands from the original spectra, the first and second derivative spectra and from various regions of the EMS (VIS, NIR, SWIR) for species separability. We recommend further research and improvement to selecting spectral bands from a broader combined set of the original, first and second derivative spectra.
- There seem to be a number of sub-classes within each of the seven classes. We recommend further investigations to cluster spectra within each species by also incorporating their geographical location (spatially Jun and Ghosh, 2009) and temporally when data is collected at different time.

E 5 4 E 5

Conclusions and future research

• Furthermore, for this data set, there does not seem to be any decrease in species separability by degrading the spectral bands through averaging the reflectance. This implies that hyperspectral (extremely high spectral) measurements did not prove useful in species separability compared to a lower spectral resolution data.

More details: Debba *et. al.* (2009). Within- and between-class variability of spectrally similar tree species. *In Proceedings of 2009 IEEE International Symposium on Geoscience and Remote Sensing.* July 13–17, 2009 Cape Town, South Africa. Accepted.

イロト 不得下 イヨト イヨト

Further exploration

We have explored two classification approaches with spectral angle mapper: (i) using a spectral library composed of one spectrum (endmember) per species and (ii) a multiple endmember approach conventionally called K-nearest neighbour classifier.

۲

Data description

- Eight sites were chosen for the study including two sites in the KNP, two sites in private game reserves and four sites in communal lands.
- The species data used in this study consist of tree species generally more than 2 m tall identified and geo-registered using a Leica differential global positioning system (GPS).
- Eighteen dominant species are examined in the study. These include Acacia gerradii, Acacia nigrescens, Combretum apiculatum, Combretum collinum, Combretum hereroense, Combretum imberbe, Combretum zeyheri, Dichrostachys cinerea, Euclea sp (E. divinurum and E. natalensis, Gymnosporia sp (G. buxifolia and G. senegalensis), Lonchocarpus capassa, Peltoforum africanum, Piliostigma thonningii, Pterocarpus rotundifolia, Sclerocarya birrea, Strchynos sp (S. madagascariensis, S. usambarensis), Terminalia sericea and Ziziphus mucronata.

< ロト < 同ト < ヨト < ヨト

Figure: Study area showing Carnegie Airborne Observatory (CAO) image scenes in the Kruger National Park, South Africa

イロト イポト イヨト イヨト

A

	AG	AN	CA	œ	CH	α	cz	DC	Ð	GY	LC	PA	РТ	PR	SB	SY	TS	ZM	sum	User ac	curacy(%)
AG	7	5	2	2	0	4	0	0	3	1	2	2	1	0	0	1	4	4	38	18.4	
AN	0	1	1	0	1	1	0	1	1	0	2	0	0	0	0	0	0	1	9	11.1	
CA	1	1	0	0	- 1	1	3	2	2	1	0	- 1	0	0	6	0	0	1	20	0.0	
C	11	3	0	12	0	3	0	4	3	2	6	2	5	0	8	1	2	3	65	18.5	
CH	0	0	1	0	1	0	0	0	0	0	0	0	0	0	4	0	0	0	6	16.7	
a	2	3	1	0	1	3	0	1	1	0	1	0	0	0	6	0	0	0	19	15.8	
œ	0	0	1	0	0	3	15	0	0	0	0	1	0	1	12	1	4	0	38	39.5	
DC	0	1	2	1	1	1	0	0	4	0	0	0	0	3	1	0	0	0	14	0.0	
Ð	4	1	0	2	0	1	1	3	6	0	3	0	0	0	8	5	1	2	37	16.2	
GY	1	9	1	3	2	8	5	5	3	13	4	3	0	0	20	0	22	2	101	12.9	
LC	1	0	0	3	2	2	5	2	0	0	1	0	0	0	1	1	9	0	27	3.7	
PA	1	3	1	1	0	0	0	1	2	0	0	0	0	1	0	0	0	0	10	0.0	
PT	0	0	0	18	0	0	0	0	13	2	2	2	11	0	12	1	3	0	64	17.2	
PR	1	1	3	0	0	0	0	2	0	4	0	1	0	14	0	0	2	0	28	50.0	
SB	0	2	0	1	- 1	0	1	0	2	3	2	0	0	0	1	0	2	1	16	6.3	
SY	3	3	1	2	- 1	0	0	2	0	0	1	0	1	0	2	1	3	0	20	5.0	
TS	0	0	0	0	0	1	0	0	1	0	0	0	0	0	2	0	0	0	4	0.0	
ZM	1	4	0	1	1	0	0	1	2	1	0	0	0	0	3	1	1	1	17	5.9	
sum	33	37	14	46	12	28	30	24	43	27	24	12	18	19	86	12	53	15	533		
Producer																					
accuracy(%)	21.2	2.7	0.0	26.1	8.3	10.7	50.0	0.0	14.0	48.1	4.2	0.0	61.1	73.7	1.2	8.3	0.0	6.7			
Overali																					
accuracy(%)	16																				

Figure: Using the mean spectra of the training sets as reference spectra.

æ

- ∢ ≣ →

< □ > < ---->

в

	AG	AN	CA	œ	ан	α	œ	DC	Ð	GY	LC	PA	РТ	PR	SB	SY	TS	ZM	sum	User accuracy(%)
AG	12	4	1	2	1	2	0	1	0	1	0	0	0	4	2	1	1	0	32	37.5
AN	3	18	1	0	1	2	0	0	2	2	0	2	0	0	3	0	1	0	35	51.4
CA	1	0	4	0	1	0	2	0	1	0	0	0	0	0	0	0	0	0	9	44.4
œ	1	0	0	26	1	2	0	3	5	1	2	3	3	0	3	0	0	2	52	50.0
СН	0	1	0	1	2	0	1	1	0	0	0	0	0	0	1	0	2	0	9	22.2
a	1	1	1	3	2	10	0	0	2	0	1	1	0	0	2	0	1	1	26	38.5
œ	0	0	2	0	0	0	20	1	0	0	0	2	0	0	10	0	2	0	37	54.1
DC	5	1	0	1	0	3	0	6	3	0	0	0	0	0	1	3	3	0	26	23.1
Ð	3	2	0	2	1	2	0	4	23	0	2	0	0	0	3	0	0	1	43	53.5
GY	0	2	0	0	0	0	0	1	1	14	0	0	0	0	1	0	0	1	20	70.0
LC	0	1	0	1	0	2	0	1	2	0	8	0	3	0	6	1	0	0	25	32.0
PA	1	0	0	0	0	1	1	0	0	1	0	3	0	0	0	0	0	0	7	42.9
РТ	4	0	0	3	0	0	0	0	0	1	2	0	8	0	2	0	0	1	21	38.1
PR	0	1	0	0	0	0	0	0	0	1	0	0	0	12	0	0	0	2	16	75.0
SB	0	3	2	4	1	2	2	4	2	2	5	0	2	1	45	1	4	1	81	55.6
SY	1	2	0	2	2	1	0	0	0	0	1	1	2	0	2	3	0	0	17	17.6
TS	0	1	3	1	0	1	4	1	2	4	2	0	0	2	2	3	39	1	66	59.1
ZM	- 1	0	0	0	0	0	0	1	0	0	1	0	0	0	3	0	0	5	11	45.5
sum	33	37	14	46	12	28	30	24	43	27	24	12	18	19	86	12	53	15	533	
Producer accuracy(%) Overall accuracy(%)	36.4 48	48.6	28.6	56.5	16.7	35.7	66.7	25.0	53.5	51.9	33.3	25.0	44.4	63.2	52.3	25.0	73.6	33.3		

Figure: Using all training spectra for each species as reference spectra (K-nearest neighbour classifier, k=1).

Conclusions

- Intra-species spectral variability and the reference data sample size are two important factors that affect tree species differentiation in the savanna ecosystem.
- We recommend the utilisation of the multiple endmembers SAM approach as opposed to the traditional SAM classifier involving single spectrum endmember per species for mapping of Kruger National Park species.
- The training endmembers should be truly representative of the different distributions in the population.
- The classification of the species could be limited to the dominant species.

More details: Cho *et. al.* (2009). Spectral variability within species and its effects on savanna tree species discrimination. *In Proceedings of 2009 IEEE International Symposium on Geoscience and Remote Sensing.* July 13–17, 2009 Cape Town, South Africa. Accepted.

Debba (CSIR)

Improving classification accuracy

Future research

- Feature selection and feature extraction (original, higher order derivatives)
- Spatial and temporal sub-classes.
- Improved classification techniques.
- Classification of hyperspectral images.
- SNR not constant throughout EMS.
- Classification on continuum removed spectra.

51 / 51

- 4 E b