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In this study, data from the Southern Hemispheraifibnal OZonesondes (SHADOZ) are used to
compute the spatially averaged water vapor g\d¥er low and mid-tropical Africa. Based on the
SHADOZ stations, reanalysis data from the NatioBahtres for Environmental Prediction and
Atmospheric Research (NCEP/NCAR) were partitioneid ifour grid cells: (1) over Ascension
[10.0°S to 7.5°S, 12.5°W to 15.0°W]; (2) Nairobi.g® N to 2.5°S, 35.0°E to 37.5°E]; (3) Irene
[27.5°S to 25.0°S, 27.5°E to 30.0°E] and (4) Renri@R.5°S to 20.0S, 55.0E to 57.5°E]. The
mean Water Vapor (WV) was computed over these @gils to obtain (WY). The temporal scales
of WVg fluctuations have been analyzed using waveknsforms and Principal Components.
Analysis (PCA) of the WY wavelet-transformed coefficients was used to destrate spatial
organization of WV. The results indicate that WVhiits localized spatial coherence patterns.
Further, the analysis show strong seasonal depead#nWV which is associated with global and
local atmospheric circulation.



1. Introduction

Generally, Water Vapor (WV) plays a key role intbdte radiative and dynamic
processes of the climate system (Zveryaev et @7 It is a major greenhouse
gas which predominantly absorbs the Earth’'s outgdirermal energy while,
part of this energy re-radiates back to the surfdtes the most variable
atmospheric constituent (Bevis et al., 1992; Suth landzen, 1993) which has
applications in both short-term Numerical Weatherdiction (NWP) (Cucurell
et al., 2000) and in Earth’s climate changes arftdiggical cycles (Johnsen,
2003). Global distribution and variability of atnpbgeric WV has also been
documented in the literature (see Dai, 2006) aratetlis also documented
literature on WV variability over regional scalesd. Trenberth et al., 2005).

A number of ground based and space-borne remosoiseare available that
measure vertical and horizontal profiles of watepaur: e.g. radiosondes, light
detection and Ranging (LiDAR-Raman), Global NavigatSatellite Systems
(GNSS) receivers, Very Long Baseline InterferométiyBl) and Water Vapor
Radiometers (WVR) (Raschke, 2002). One importamisiceration in WV
analysis is to show how the WV fluctuations areamiged into diurnal, synoptic,
seasonal and climatic categories and if WV varigbi$ associated with spatial
structure and dominant modes of the rotated Prahcomponent Analysis
(PCA) of the WV energy spectra. The rotated PCA ponent of WV would
capture the dominant modes of the WV in temporalescwith similar spatial
organization (Petr, 2005). This linear transformatof PCA allows for easy
interpretation of the strongest spatial relatiopshof WV features that drive
atmospheric weather systems, such as clouds, quattiaular region. Although,
the global spatial distribution and trends in W\é atlominated by large-scale
dynamics, such as the El Nino-Southern OscillafiBNSO) rather than the
thermodynamics, (see., Zveryaev and Allan, 20089, linkage between WV
anomalies and atmospheric circulation processeifisult to establish due to
the complexity of the spatial-temporal structurds V. The spatial and
temporal variability of WV in the mid and low-tragal Africa ranges from a few
kilometers to thousands of kilometers, and fronew Mminutes to several days,
similar to meso or synoptic-scale processes, réispdc (Husak, 2005).
Therefore, analyses of correlations of WV betwdendpatial grids are of great
practical importance for a better understandinthefbackground processes that
lead to the development of hazardous weather sgstgon example floods,
thunderstorms, tropical cyclones).

In order to understand the feedback processesdramd low-tropical Africa,
a robust methodology of examining the spatial-terabatructure of WV is
required. In this study, the spatial and temporghaization of WV is analyzed
simultaneously using orthogonal wavelet transforhictv allows for calculating
the total energy of WV by accumulating individualakes of the spatial or
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temporal scale. Results obtained would form thesbfar future comprehensive
analysis to establish the relation between WV \mlitg and the associated
atmospheric weather systems, as well as any atheinf mechanisms observed
in low and mid-tropical Africa.

2. Dataand M ethodology

The main data source used in this study is aboyeaBs of upper air
radiosonde/ozonesonde data archived at the Soutiemisphere ADditional
OZonesondes (SHADOZ) station network of four staioAscension, Irene,
Reunion and Nairobi (see Thompson et al., 2003fufdher details about the
SHADOZ network). The geographical locations of BidADOZ stations and
details about data periods considered in this papetabulated in Table 1.

Table 1. SHADOZ stations used in the current sty the time period
considered for analyses.

Station

Longitude
[

Latitude
[

Elevation
[m]

Launch
[No]

Time
Period

Nair obi

36.80 E

1.27S

1795.00

370

Jan 19
to Aug
2007

08

Reunion

5548 E

21.06 S

24.00

293

Jan 19
to Oct
2006

D8

Irene

28.22 E

2590 S

15.24

232

Nov 19
to Dec
2006

D8

Ascension

14.42 W

7.98 S

91.00

397

Jan 19
to Dec
2006

D8

The SHADOZ stations were configured in order toagbtspatially averaged
WV values (W\j) over four grid boxes and time series from reagialgata of
the National Centres for Environmental Predictiowd dAtmospheric Research
(NCEP/NCAR) (Kalnay et al., 1996). Time series mtegrated WV (hereafter,
WV, cep Was constructed from the average of the closast NCEP/NCAR
reanalysis data grid points at each one of the SBIARtations (see, figure 1)
using NCEP/NCAR reanalysis data. Take note tretNGEP/NCAR reanalysis
data have a latitude and longitude resolution 5f.2.
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Figure-1: The SHADOZ stations with the correspogdinid boxes formed by
the closest four grid points of reanalysis datanfrthe National Centers for
Environmental Prediction and Atmospheric ReseaksBEP/NCAR).

For each NCEP/NCAR grid point, the temporal sedésVV, is tested
manually for inherent normal distribution and thieansformed into Box-Cox
(Box and Cox, 1964) which ensures a normal distidiou Prior to the Box-Cox
transformation, the data have been detrended. érith order to account for
latitudinal distortions, each point of W\anomalies was weighted by the square
root of the cosine of latitude (North et al., 1982he resulting time series has
been linearly detrended and subjected to non-déditaar wavelet (Lindsay et
al., 1996) transform to capture localized tempé@atuations.

Comparable to the Fourier Transform (FT), the watv@lower spectrum
(absolute value squared of the wavelet transfomayigdes the total energy of
the WV, time series at a given scale. FT gives informatabbout what
frequencies are present in the signal, but laclks ahility to correlate the
frequencies with the time of their presence. Inggah the difference between
Fourier and wavelet coefficients is that the foriseinfluenced by a function on
its entire domain (global measure), while the fati® influenced by local
features. The wavelet power spectrum is therefti@sen in this paper as a
better measure of variance attributed to localezhts.

The wavelet coefficients at each time scale weegl tis compute the energy
spectrum per spatial scale to form a temporal ssslies (S) over the grid points
4



(G): i.e., a matrix D with dimensions of S x G.

3. Reaults

A daily vertically integrated WYtime series in mid and low-tropical Africa is
computed from the SHADOZ network points and frondded NCEP/NCAR

reanalysis data that extent over a period of 8syedthe SHADOZ point data
were integrated over the height column from 2 kni3km and whereas, the
NCEP/NCAR water vapor data integrated between 0@ fPa and 200 hPa
pressure levels. The upper and lower limits chosere respectively based on
the sensitivity of the balloon-borne measurememd mean-sea level of the
SHADOZ stations. In order to compare the correspandVV measurements
corresponding SHZXD@ates are

considered. The NCEP/NCAR reanalysis data arelablaifour times a day
(every six hours) and the daily mean was computad cbmparison with

from NCEP/NCAR

reanalysis data,

SHADOZ observations which occur once a day.
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stations and from the NCEP/NCAR reanalysis datgploied in figure 2. It is

clear from the figure that the NCEP/NCAR reanalykita exhibit a cyclic trend
over the period of observations, whereas such syate not evident in the
SHADOZ observations. The difference might be dughe coarse latitude and
longitude resolution of NCEP/NCAR data that wereraged over the station
grid box, while each SHADOZ station correspondsatparticular location. In

addition, sensitivity of the balloon measurementsyrhave contributed to the
differences in WY from the two measurements. Further to this NCERARC

reanalysis data are based upon simulation withilplesgnherent biases. The
differences between the NCEP/NCAR reanalysis dadaSHADOZ station data
were calculated for each station. Results conclutlatithe Irene and Reunion
stations have higher mean deviations (~ 40mm) vthéeNairobi and Ascension
stations show a mean VWydeviation of ~ 30 mm (figures are not shown).

It is understandable from figure 2 that Wiuctuations are difficult to discern
from the time series. The excursions from the mdéanote the presence of
exogenous processes that play a significant rol&Vw, fluctuations. These
stochastic processes are manifestations of locath@e system processes (eg.,
convection, precipitations etc.). In order to betinderstand these fluctuations,
the nature of distribution needs to be known. Thandard probability
distributions of W\ are used and are compared to the normal Guassian
distribution. The normal Guassian distribution h&en generated by selecting
random data sets. In order to assess the normab§ia) distributions of WY
the Quartile-Quartile (QQ-plot were drawn betwelee Guassian generated and
the probability distribution of WYj. A linear variation in the QQ plot could
signify a normally distributed time series. The tdigition has been tested,
individually for each station (figure 3). The regs®n co-efficients obtained
illustrate that the SHADOZ station Ascension haghHinearity in comparison to
that of Nairobi, Irene and Reunion. A maximum nipeér fluctuation
component of ~10% was obtained for Reunion. On dtieer hand, Irene,
Nairobi and Ascension have values of ~8%, 5% andr&%pectively. It implies
that Ascension results follow a normal distributeomd appear not to be affected
by non-linear local weather conditions.
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Figure 3: Quartile-quartile (QQ) plot of a Gaussidistribution, and the
probability distribution of W\ at the four SHADOZ stations under
consideration.

In order to study the local temporal fluctuatiorfsVdV, the Haar wavelet
transform of Maximum overlap discrete technique ha&en applied. The
wavelet coefficients derived from the wavelet tfanm capture local
fluctuations in time series in both time and fremqge Each SHADOZ station’s
data were grouped in terms of month and year, atig by the calculation of
the corresponding mean. The corresponding montidgn over the 8-years
period of data is subjected to the wavelet tramsfafter performing de-trending.
Figure 4 depicts the obtained wavelet co-efficiéamplitude) at different
temporal scales of 3, 8, 12 and 36 months (frontobotto top) or the time
period of oscillation of WY at a given location. The relation between pedbd
oscillation of W\ fluctuations and the wavelet scale index is basedhe
relation s=2*, where the'f index denotes the period. The method of deducing
the wavelet co-efficient is documented in Perciaald Walden (2000).
Although, scale-1 (~3 month) does not offer anyaclénformation on the
fluctuations, other higher order scales show aifsigimt oscillation at all the
stations. Notably, the annual oscillation (scglésXlearly distinguishable at all
the stations. If compared to the other statiorairdtbi exhibits a clear cyclic
variation. For almost all the stations, the scal@4/ear) component does not
complete one period of a cycle, inferring that gegiodicity is more than 12-
years. It is noted here that the maximum posgibieaber of scales obtained
depends on the length of data period used. Thdolpglot of the wavelet
energy (not shown here) reveal an approximate ptavescaling at lower time
scales, which breaks down at high time scales. & hesults are consistent with

those of Lay (1997). At high time scales, the bradkwvn in the linear
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relationship is associated with response of MMctuations to tele-connection
patterns such as the influence of ENSO in the Iod/ mid- tropical Africa, see
for example Trenberth et al., (2005).
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Figure 4: Haar wavelet spectra at different scated, 2, 3, 4) and at different
station locations (AscensiolReunion, Irene and Nairobi) - from left to right,
respectivily. See Table 1 for the correspondingggapehic coordinates.

PCA has been determined for the wavelet coeffisieit all the four
stations, and the calculated variance is presemtdjure 5. The first three
variance components account for 98% of the MAariations. The first
component represents high frequency temporal faictos (monthly time
scales), and accounts for 67% of the variabilitymponent two represents the
variance associated with annual fluctuations, asmbants for about 27% of the
WV fluctuations. About 4% of Wyvariability is associated with low frequency
fluctuations (1< timescales < 9-year). Decadattflations cannot be inferred
convincingly due to the short time-span of the d@a/ears: 1998 to 2006.
These results show that there is a distinct spatiacture for each short term
temporal W\ variation in the low and mid-tropical Africa regighat could be
attributed to synoptic/seasonal-scale weather sygstevhich is consistent with
findings from Husak (2005) who reported that seabomeather systems,
topography, the Inter-tropical Convergence ZoneC@J and monsoon winds
affect WV distribution and fluctuation. Jin et #2008) also reported that the
variability of water vapor in China is dominated bgasonal variations. In
addition, the spatial distribution of WV dependerme the thermodynamic
relationship between WV and temperature has begorted in Zveryaev and
Allan, 2005. The marked differences between WV tflations at longer
timescales could be attributed to the WV respopstele-connection patterns
such as ENSO in the low and mid-tropical Africa,icthis in line with the
findings of Trenberth et al. (2005) who had indézhthat the variability of WV
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Figure 5: Co-variance of the Principle Componentlisis (PCA) components
obtained from the four stations under consideration

is dominated by the evolution of ENSO. This linkogls a strong relationship
over the oceans between WV and Sea Surface TempesdSSTs). Further, the
African low and mid- latitude WV has a strong litk rainfall due to its close
association with the mean wind flow, and convergen€ moisture by trade
winds as well as the links to SSTs. In additione ttorrelation analyses
performed between surface temperature and WV shioatsthere exists a link
between WV anomalies to regional air temperaturgatians with marked
seasonal dependence (the results are not showh dwee all four SHADOZ
stations.

4. Concluding Remarks

In an effort to analyze regional spatial and terap&eatures of WV variability
over low and mid-tropical Africa, NCEP/NCAR rearsily data around the
SHADOZ network of four stations were used to calteilspatially averaged WV
(refer to VW) over the period 1998 to 2006. \}Was calculated as spatial
average of the four closest NCEP/NCAR grid pointsuad the SHADOZ
stations to form grid cells. Based on these gridscedata from NCEP/NCAR
reanalysis data were also used to calculate thécaky integrated column of
WV over the same time epoch for comparison. For fitg time, the WY\
variability in the low and mid-tropical Africa weranalyzed using point data
from the SHADOZ network indicating high frequenéyctuations in the wavelet
space. Common to the entire SHADOZ network consitdién this study is the
pattern of temporal Wy/fluctuations with monthly time scales dominatifignis
dominant variance appears to be associated withlyodriven WV variations
such as the local weather systems. Our results gimwower law scaling in the
wavelet energy. The approximate log-log lineartrefeship at smaller temporal
scales that breaks down at synoptic scales sugthedtthe energies at W\bn
different temporal scales are closely related. dditoon, from the PCA, three
dominant modes emerge that explains ~ 98% of tta $patial variance of the
normalized energy. To validate the current findjrfgéure studies will involve
the use of observations such as HALOE (ref., Rustehl., 1993), ECMWF
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(ref., Bock et al., 2007) and regional numericahdation model data sets to
determine the temporal and spatial organizatioR\W\ data at finer spatial and
temporal scales.
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