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Abstract

When developing speech recognition systems in resource-
constraned environments, careful design of the training corpus
can play an important role 1n compensating for data scarcity.
One of the factors Lo consider relates to the speaker composition
of 4 corpus: finding the appropriate balance between the num-
ber of speakers and number of speaker-specific utterances. We
denine a model stability measuré hased on the Bhattacharyya
bound and apply this to analyse inter- and intra-speaker vari-
ability of a training corpus. We find that the different phone
groups exhibit significanily different behaviour across groups,
but within groups similar trends are observed. We demonstrate
that, at a predictable point, additional data from one speaker
does not comribute further to modelling accuracy and demon-
strate the trends that can be expected when additional speakers
are added. We also note that inter- and intra-speaker variabil-
ity are independent effects, with some phone groups requiring
more speaker-specific data. and others more cross-speaker data
More complex models require more training data, but exhibit
suniiar overall trends to a simple Gaussian model.

1. Introduction

When building speech recognition systems for the languages of
the developing world, it is often necessary to create new speech
recognition corpora with limited resources. It is therefore im-
portant to design a speech corpus carefully in order to compen-
sale Lo the extent possible for the scarcity of data. For example,
even though the Lwazi corpus [1] is currently the most compre-
hensive speech recognition corpus available for South African
languages, it contains only approximately 2 hours of annotated
audio for each of the 11 languages — significantly less resources
than typically used in the construction of a speech recognition
system.

When designing a speech corpus, we are interested in the
interplay between the number of speakers and number of ul-
lerances per speaker on the estimation accuracy of acoustic
models for different phone types. Adding additional utterances
from one speaker 1s more cost-efficient than adding additional
speakers. How should the variety of speakers and utterances
per speaker be balanced? Can we estimate whether the cost of
adding addiuonal data will be justified?

In this paper, we address these questions in the conlext of
standard Guussian Mixwre Models (GMMs) as employed in a
hidden Markov Model (HMM) based speech recognition sys-
tem. Specifically, we utilise a Monte Carlo estimation of the
Bhattacharyya bound to characterise the similarity of two mod-
els, and use the stability of this measure when estimated for
different subsels of the same data sel to characlerise the esti-
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mation accuracy that can be obtained with a specific type of
acoustic model, using that data set. The effect of an increasing
number of speakers and utterances is then analysed using this
technique for acoustic models of different types of phones, and
some interesting trends are observed.

The similarity lechnique we define here also allows us to
understand the similarity between different phones, for exam-
ple, the same nominal phone across languages. This is useful
when combining training data across languages in order Lo com-
pensate for a lack of sufficient training data, a useful strategy
in resource-scarce environments. By evaluating model stabil-
ity we can betier understand whether the measured differences
between models stem from an actual variance in the data, or
from vanability introduced by estimation errors, and also es-
timate whether different models are similar enough 1o support
data sharing.

The paper is structured as follaws: In Section 2 we dis-
cuss related work and provide some background on the Bhat-
tacharyya bound. In Section 3 we describe the general tech-
nique we use for the analysis of model similarity and stabil-
ity. In Section 4 we use this technique to analyse our data set,
specifically with regard to the effect of an increasing number of
speakers and utierances for different types of phones and types
of acoustic models, and discuss the trends observed. Section §
contains some concluding remarks.

2. Background

Data selection strategies for speech recognition purposes typi-
cally focus on selecting informative subsets of data from large
corpora, with the smaller subset yielding comparable results [2];
ar the use of active learning to improve the accuracy of existing
speech recognition systems [3]. Both techniques provide a per-
spective on the sources of variation inherent in a speech corpus,
and the effect of this variation on speech recognition accuracy.

In [2], Principle Component Analysis (PCA) is used to clus-
ler data acoustically. These clusters then serve as a starting point
for selecting the optimal utterances from a training database. As
a consequence of the clustering technique, it is possible to char-
acterise some of the acoustic properties of the data being anal-
ysed, and to oblain an understanding of the major sources of
variation, such as different speakers and genders. Interestingly,
the effect of utterance length has also been analysed as a main
source of variation [3].

Active and unsupervised learning methods can be combined
lo circumvent the need for transcribing massive amounts of data
[3]. The most informative untranscribed data is selected for a
human to label, based on acoustic evidence of a partially and
ileratively trained ASR system. From such work, it soon be-
comes evident that the optimisation of the amount of variation



inherent 1o training data is needed, since randomly selected ad-
dittonal data does not necessarily improve recognition accuracy.
By focusing on the selection (based on existing transcriptions)
of @ uniform distribution across different speech units such as
words and phonemes, improvements are obtained {4].

In the current work, the separability of two probability den-
sity functions 1s measured by a widely-used upper bound of the
Baycs error, numely the Bhattacharyya bound [5]. If the Bayes
error is given by

€ = /min[Plpx(X),ngg(X)]dX (n

(with 7, and p;(X') denoting the prior probability and class-
conditional density function for class ¢, respectively), the upper
bound of the integrand can be determined by making use of the
fact that

menla b < a’b' T 0<s< (2)

and 15 called the Chernoff bound, with s a parameter 1o be es-
umated through optimisation (Eq. 2 states that the geometric
mean of (wo positive numbers is larger than the smaller one). If
the condition for selection of an optimal s is relaxed by choos-
ing s = 0.5, this simplified bound is referred to as the Bhat-
tacharyya bound:

= VAP [ R G)
When both density funcuons are Gaussian with mean A/, and
covanance mairix ¥, integration of ¢ Jeads to a closed-form
expression for ¢

e = P Pttty (4)
where
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15 referred (o as the Bhattacharyya distance. For complex distri-

butions. the Bhattacharyya bound can be estimated via Monte
Carlo simulation.

3. Approach

We approach the task of analysing model estimation accuracy
by first defining an appropriate similarity measure [6] and then
defining a measure of model estimation stability based on this
similarity measure. These two techniques are described below.

3.1. Measuring model similarity

From Eq. 3 und using the sample value of the expectation of the
integral, we derive an estimator for the Bhattacharyya bound of
two Graussian Mixture Models. In practice we calculate:

| -
= VI [
v Ty g 2

where z, are the actual samples and both n; and n, are the
number of samples with regard 1o each of the two probability
densities respectively. For our purpose we assume that the prior
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values P, = D = 0.5 and utilise equal numbers of sampleg
drawn from each distribution. We ensure that we utilise 5 Suffi.
cient number of samples by first selecting a set of mode] Pairs
that cover a range of similarity values, and then evaluating the
variance observed in the estimated bound between these mode]
pairs over various runs (initiated with different sampling seeq
values) using an increasing number of samples per rup, The
number of samples is then selected where the variance acrogg
different runs falls below an acceptable threshold.

Note that the ¢ errar bound can easily be converted to 4
distance measure using Eq. 4 but we find it more intuitive o
work with the bound directly.

3.2, Measuring model estimation stability

In order to estimate the stability of an acoustic model, we sep-
arate the training data for that model into a number of disjoint
subsets. All subsets are selected to be mutually exclusive with
respect to the speakers they contain. For each subset, a separate
acoustic model can be trained, and the Bhattacharyya bound be-
tween each pair of models is calculated. By calculating both the
mean of this bound and the standard deviation of this measure
across the various model pairs, a statistically sound measure of
model estimation stability is obtained.

4. Analysis and results
4.1. Data and experimental setup

We use the November 1992 ARPA Continuous Speech Recog-
nition Wall Street Journal Corpus as training data for our analy-
sis. The dataset consists of 102 speakers recorded over the same
channel. This enables us to experiment with up to 20 hours of
data, which is comparable to the amount of data contained in
the Lwazi corpus. In order to be able to control the number of
phone observations used to train our acoustic models, we first
train a speech recognition system and then use forced alignment
to label all of the utterances.

We perform speech recognition using standard HIMMs with
three emitting states, tied across models, each containing up
to 12 GMMs trained on 39-feature MFCC-based vectors (13
MFCCs, deltas and double-deltas with cepstral mean subtrac-
tion). Similar feature vectors are utilised in our analysis.

Using the process discussed in section 3.1, we estimate
the number of samples required for our Bhattacharyya estima-
tor and find that 20.000 samples are sufficient for our purpose.
Table 1 summarises the number of samples required to keep
standard deviations below a threshold of 0.0100 for the various
model comparisons. With 20,000 samples, the standard devi-
ation among different estimations of bounds between GMMs
containing up to 6 mixtures are below 0.0020 for very similar
phones and below 0.0061 for quite dissimilar phones. (Model
pairs with Bhattacharyya bounds of approximately 0.5 and 0.1
respectively). We also find that with 20,000 samples and a sin-
gle GMM, these estimates are within 0.0002 and 0.0020 from
the corresponding analytically calculated values. We separate
our data set into 5 disjoint subsets and estimate the mean of the
10 distances obtained between the various model pairs.

4.2. Initial analysis

During our initial analysis we develop speaker-and-utterance
three-dimensional plots for acoustic models of different phone
types at two levels of model complexity: a simple single Gaus-
sian model (GMM with | mixture) and a complex 6-mixture
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Figure 1: Speaker-

[ Num mixtures | Samples required | ¢ ]
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[ i [ 5,000 0.1 100100
f 0.3 | 0.0073
l 0.5 | 0.003]
‘ 2 10,000 0.110.0062

0.3 | 0.0060
i 05| 0.0018
TR 20,000 i 0.1 1 0.0045
! 1 03] 0.0020
| 0.5 | 0.0017
} 6 20,000 0.1 70.0061

0.3 | 0.0045
| 0.5 | 0.0020

Tuble V' Number of samples required for accurate estimation of

bounds

GMM. (The choice w0 utilise a 6-mixture GMM was made 1o

bulance high speech recognition accuracy for our data set with
“omputational requirements during bound estimation.) Each
Plotindicates the value of the Bhattacharyya mean, as described
1 Section 3.2, as a function of both the number of speakers in
the taming corpus and the number of phone occurrences per
Speaker As the mean value shown is an estimate of the Bhat-
Wcharyyy bound, this value should approach (1.5 once a model
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and-utterance three-dimensional plot for the phone /ah/

is fully trained on an optimal set of data. An example of such a
plot for the phane /ah/ is shown in Figure 1.

From this analysis the following was observed: (1) A spe-
cific number of speakers and phone occurrences result in sig-
nificantly different results for the different phones. (2) While
phones from the different broad phone categories (such as vow-
els, plosives or fricatives) exhibit varying learning behaviour,
phones within a specific phone group follow remarkably simi-
lar trends. (3) Similar trends are observed when utilising either
the more simple or the more complex acoustic model,

These initial observations are explored further in the follow-
ing sections for a number of broad phone categories. For each
broad category, a number of representatives are selected (o illus-
trate the trends observed. Speci fically, the following phones are
selected: /ah/ and /il/ (vowels), /n/ (nasals), A/ and /t/ (liquids),
/d/ (voiced plosives), /t/ and /p/ (unvoiced plosives), f2/ (voiced
fricatives) and /s/ (unvoiced fricatives), after verifying thal these
phones are indeed representative of the larger groups. Given (3)
above, the next two sections first discuss trends obuined using
the simpler model, before the effect of moving towards a more
complex model is discussed in Section 4.5

4.3. Number of phone oceurrences required per speaker

In this section we aim to understand whether a saturation point
is reached after which additional examples of phones by a spe-
cific speaker no longer improve the accuracy of the speaker in-
dependent acoustic model for that phone. We therefore take a
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Figure 20 Effect of number of phone witerances per speaker on mean of Bhattacharyya bound for different phone groups using data

from 20 speakers

crossssection of the 3-I) plot in Figure |, for a specific num-
ber uf speakers (20) and evaluate the effect of increasing the
phone observations per speaker.  As clearly demonstrated in
Figure 2. the means all reach an asymptote quite quickly and
for 20 speakers, this asymptote does not yet approach the ideal
0.5 level for most of the phone types. When this experiment
1s repeated with 50 speakers, even fewer phone observations
per speaker are required to reach the asymptote, and all the
asymptotes are also nearer to the ideal level of 0.5. Interestingly
though, the total numbers of phone observations necessary for
the model of a phone (o reach the asymptote are comparable for
the 20 and 50 speaker cases. '

For the different phone types we observe that vowels are
the slowest to reach the saturation point (at approximately 100
phone observations per speaker in the 20-speaker cuse) while
unvoiced plosives and fricatives stabilise the most quickly,
reaching (hts point at only 35 phone observations for /s/, 45
phone observations for // and 25 phone observations for /p/
or /. There is a clear difference between the unvoiced and
voiced versions of the plosives, with voiced versions taking sig-
nificantly longer (o stabilise (compare /d/ at 85 phone obser-
vations with /t/ at 25 phone observations). For most phones,
those that saturale more quickly achieve a higher bound (closer

'Note that in order (© be able (0 evaluaie the effect at S0 speakers,
only 2 models could be trained and | distance estimated, in comparison
to the 5 models and 10 distances possible at the 20-speaker level.
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to the ideal 0.5). However for same phones, such as /d/, a large
number of phone occurrences are required per speaker, but the
higher bound indicates that fewer speakers are required to ob-
tain an accurate estimate. Similarly, the fricatives (/s/ and /2/)
reach their asymptote very quickly, but this asymptote is fairly
low, indicating low intra-speaker but high inter-speaker variabil-
ity for this phone. s

4.4. Number of speakers required per phone

In this section we aim o understand the effect of adding ad-
ditional speakers to a lraining corpus during acoustic model
construction. We select a number of phone observations per
speaker (100) where the asymptote has already been reached for
all phones if 20 waining speakers are employed. We construct
a training set where we systematically add 100 observations for
each new speaker. The results of this experiment are shown in
Figure 3.

This time, the asymptote is not reached, and it is clear that
additional speakers would improve the modelling accuracy for
all phone types. On theoretical grounds we expect that the
means should in all cases approach 0.5, and this expectation
is supported by the observed trends. Again we observe that
the unvoiced plosives and fricatives quickly achieve high val-
ues for the bound (close to the ideal 0.5). Low inter-speaker
variability for the phone /d/ is also confirmed wilh high bound
vatues. The high inter-speaker variability of the fricative phones
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Figure 31 Effect of number of speakers on mean of Bhattacharyya bound for different phone groups using 100 utterances per speaker

are apparent in the unstable behaviour they exhibit (varying be-
tween 0.4 to 0.45 up 10 20 speakers). Interestingly the vowels
are not the slowest 1o reach large bound values as the speakers
arc increased: the phones /n/ (nasals) and /1/ (liquids) converge
more slowly, signalling a higher inter-speaker vanability for this
group.

These results confirm the results obtained in Section 4.3
and comparative behaviour for the different phone types is sum-
mansed in Table 2.

Phone type Inter-speaker | Intra-speaker
variability vanability

. Unvoiced plosives low low
| Voiced plosives low high
i Unvoiced fncatives medium low
Voiced fricatives medium low
Vowels medium high

Nasals high medium

Liquids high medium

Table 2: Comparative inter- and intra-speaker variabiliry for
differers phone rypes.
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4.5. Effect of model complexity

The numerical values of the Bhattacharyya bound for different
model types cannot be compared directly, since factors such as
the existence of local minima during training increase the appar-
ent variability of more complex models. We therefore compare
such models by studying the observed bound values as a frac-
tion of the observed asymptotic values. While the more com-
plex model requires additional samples before the asymptote is
reached, the same trends across phone groups are observed for
more complex models. This is illustrated in Figure 4 where
this fraction is shown, as the number of phone occurrences per
speaker is increased. In these figures, data from 20 speakers is
shown for both the simple single Gaussian model as well as the
more complex 6-mixture GMM.

5. Conclusions

We have introduced a systematic approach that enables us to
study the resource requirements for speech-recognition sys-
temns, based on the mean Bhattacharyya bound between models
trained on different subsets of the data. We find that the differ-
ent broad categories of phones have significantly different data
requirements: whereas as few as 20 speakers and fewer than 50
samples per speaker are sufficient for the plosives /t/ and /d/,
even 100 samples per speaker from each of 50 speakers do not
describe the vowels, liquids or nasals adequately. Overall, the
number of speakers for even a basic speaker-independent re-



1.05 : : ‘
1 - = " OO RO
0.95 F 4+7 ER A y ' o
3 0.9 I, ‘< 45
Q . 1]
R ) ]
08 F - : : -
075 F IH (Single mixture)  + 4
H ?6 mixtures? x
0.7 L
0 50 100 150 200
Phone Observations per Speaker
1.05 , , :
1 = B = i » i
TR
095 F = rt , B
5 09 F - SR : 45
[} i 5
S 085 S 3 18
08+ 7 , ‘ 1
075 AH (Single mixture) ¢
“ AH ?6 mixtures) - = -
0.7 .
0 50 100 150 200

Phone Observations per Speaker

1.05 T T T
1 B = NI .
0.95 : N
XCl T : i
0.8 : .
0.75 F Z (Single mixture} ~ - |
Z 46 mixtures? X -
0.7 :
0 50 100 150 200
Phone Observations per Speaker
1.05 T T T
1 : B ‘-,gw:nv»-f‘%;é-—m—-m-&u“-——-\
0.95 b S -
i 7 : X
0.8 | ’ ; : .
0.75 po o S (Single mixture}  + -
SEJB mixtures) - X -
0.7 L
0 50 100 150 200

Phone Observations per Speaker

Figure 4: Compuring ihe effeci of model complexiry on the relative distance to asymplote for two phone groups

source collection therefore needs o contain significantly more
than 50 speakers. (We are not able to suggest a reasonable lower
bound based on the data used in this study.)

We found similar trends for simple and more complex mod-
els, with the more complex models requiring somewhat more
speakers and phone occurrences to stabilise. Our work has fo-
cused on simple models, and can be extended in various direc-
tions. It would be interesting to see whether robust asymptotes
are achieved as the number of speakers is increased; other vari-
ables, such as gender or speaking style should also be studied
along with more complex models (e.g. context-specific models,
multistate models such as HMMs and more complex density es-
umators). [nour current work we are also investigating how the
measurements described here relate to actual speech recognition
performance obtained.

These insights are likely to play an increasingly important
role as the reach of speech processing systems extends beyond
the major languages of the world.
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