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Abstract

Two new solid-of-revolution axisymmetric finite elements which account for hoop
fibre rotations, are introduced. The first is based on an irreducible formulation, with
only displacement and rotation fields assumed independently. The second element,
based on a Hellinger-Reissner like formulation, possesses an additional assumed
stress field. Furthermore, an element correction, often employed in membrane ele-
ments with drilling degrees of freedom to alleviate membrane-bending locking, is
adapted to the axisymmetric case. The supplemental nodal rotations introduced
herein enhance modelling capability, facilitating for instance the connection be-
tween axisymmetric shell and solid models. The new elements are shown to be
accurate and stable on a number of popular benchmark problems when compared
with previously proposed elements. In fact, for cylinders under internal pressure
analysed with a regular mesh, our mixed elements predict displacement exactly, a
phenomenon known as superconvergence. The new elements are also shown to be
robust and accurate on a number of bending dominated problems.
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1 Introduction

In recent times, flat shell finite elements with in-plane rotational (drilling)
degrees of freedom have become quite popular. Apart from enrichment of the
displacement field, resulting in increased element accuracy, drilling degrees of
freedom allow for the modelling of, for instance, folded plates and beam-slab
intersections.
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The motivation for developing axisymmetric elements with rotational degrees
of freedom is similar. Hoop fibre rotational degrees of freedom are desirable in
solid-of-revolution axisymmetric elements, to accommodate their connection
to axisymmetric shell elements. Furthermore, the accuracy benefits attributed
to the enhanced displacement interpolations are shown herein to be similar to
the planar case.

Early obstacles in the development of finite elements with drilling degrees of
freedom were largely overcome by Hughes and Brezzi [1], who presented a
rigorous mathematical framework in which to formulate such elements. They
proposed a modified variational principle, based on the work of Reissner [2],
but with improved stability properties in the discrete form. Early finite ele-
ment implementations (in Cartesian coordinates) employing the formulation
of Hughes and Brezzi were presented by Hughes et al. [3] and Ibrahimbegovic
et al. [4,5].

Developments in mixed/hybrid membrane finite elements have been equally
important during recent years. Since the assumed stress finite element pre-
sented by Pian [6], numerous formulations have been proposed. A compilation
is presented by Pian [7]. Eventually, assumed stress formulations were applied
to elements with drilling degrees of freedom in a single element formulation,
e.g. see Aminpour [8,9], Sze and co-workers [10,11] and Geyer and Groenwold
[12].

Compared to finite element development in the Cartesian coordinate frame,
advances in axisymmetric finite elements residing in a cylindrical coordinate
system have been relatively slow. Besides the restrictions these elements place
on the geometry and boundary conditions that can be modelled, the slower
pace of development is presumably due to difficulties associated with directly
extending developments in planar elements to axisymmetric elements. For
example, reciprocal coordinate terms as well as stress and displacement terms
appearing directly in equations of equilibrium and the strain-displacement
operator, respectively, add complexities.

For the purposes of this discussion, axisymmetric finite element developments
may be grouped based on the origins of their variational formulations. For
example, several authors have made use of Hu-Washizu-like functionals to
derive accurate elements. Of these, some of the most notable are Bachrach and
Belytschko [13], who used a projection method employing Gramm-Schmidt
orthogonalization, to ensure the resultant stiffness matrix requires only block-
diagonal inversion, thereby reducing computational effort. Wanji and Cheung
[14], after earlier efforts [15], proposed a non-conforming and a refined hybrid
quadrilateral axisymmetric element. They developed a general approach for
constituting non-conforming displacement functions. More recently, Kasper
and Taylor [16] presented a mixed-enhanced formulation for axisymmetric
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problems extending their previous works in Cartesian coordinates [17].

Other authors draw on formulations based on modified Hellinger-Reissner
functionals. Examples include Tian and Pian [18] who extended the rational
approach for assumed stress finite element development, proposed by Pian and
Sumihara [19], to apply to axisymmetric problems. Unfortunately, as pointed
out in [14], these elements do not pass the patch test. Sze and Chow [20] in-
troduced an incompatible element, incorporating an ‘inversion crime’ (making
use of a simplified Jacobian in the strain-displacement operator). This element
was then modified using an extended Hellinger-Reissner principle, and finally
simplified using the concept of free formulation [21].

Finally, various researchers have used more conventional Hellinger-Reissner
principles to formulate axisymmetric elements. Zongshu [22] developed a series
of 8-node axisymmetric solid elements using the traditional Hellinger-Reissner
model. The assumed stress fields were chosen in global coordinates, so as to
satisfy equilibrium and such that the element has proper rank and is invariant
with respect to a co-coordinate system shift in the direction of the axis of
radial symmetry.

Weissman and Taylor [23] introduced two elements based on the Hellinger-
Reissner functional. Their elements employ the popular Pian and Sumihara
interpolation, modified to obtain correct rank for the axisymmetric case. The
σrr, σzz and σrz terms are interpolated in the local coordinate system while
the hoop stress, σθθ, is interpolated in terms of global coordinates.

Renganathan et al. [24] proposed a hybrid stress element with the minimum
7 β−parameters and stress interpolations in global coordinates which sat-
isfy equilibrium as well as compatibility conditions. Most recently, Jog and
Annabattula [25] presented a procedure for the development of mixed axisym-
metric elements based on the Hellinger-Reissner variational principle in which
stress interpolations in local coordinates are formulated based on zero-energy
modes resulting from reduced integration.

The aim of this paper is to extend the existing work on planar membrane
elements with drilling degrees of freedom to the torsionless axisymmetric case.
Furthermore, in order to ensure that accuracy benefits are maintained in the
limit of near incompressibility, we introduce a mixed (assumed stress) element
accounting for rotational degrees of freedom, based on a Hellinger-Reissner-like
functional.
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2 Problem statement

We proceed, as in [26], by defining Ω̄ as a closed and bounded domain occupied
by a body in three dimensional space. The interior part of Ω̄ is denoted by Ω
and it’s boundary by ∂Ω, Ω∪∂Ω = Ω̄. The measure of Ω is V and the measure
of ∂Ω is S. V is the vector space associated with the Euclidean point space
and L the space of all linear applications of V into V, which possesses inner
product A ·B = tr(AtB), A,B ∈ L and At the transpose of A (see [26]).
Reference will also be made to subsets of L, namely S and W which contain,
respectively symmetric and skew-symmetric tensors in L.

The boundary ∂Ω is split into two parts, ∂Ωu and ∂Ωt, such that ∂Ωu ∪
∂Ωt = ∂Ω and ∂Ωu ∩ ∂Ωt = ∅. On ∂Ωu displacements ū are prescribed,
while on ∂Ωt the traction t̄ is prescribed. The discussion is limited to linear
elastic problems and boundary terms are omitted. Boundary conditions may,
however, be incorporated in the standard manner, e.g. see [4,27–29]

In the most general case, the stress tensor, σ ∈ L (which is not a priori as-
sumed to be symmetric), the displacement vector field u, the skew-symmetric
infinitesimal rotational tensor, ψ ∈ W, and the strain tensor ǫ ∈ S are taken
as independent variables. The variational formulation requires that the rota-
tions ψ, strains ǫ and stresses σ, together with the displacement generalised
derivatives ∇u, belong to the space of square-integrable functions over the
region Ω. The Euclidean decomposition of a second-rank tensor is used, e.g.,

σ = symm σ + skew σ, (1)

where

symm σ =
1

2
(σ + σt), and (2)

skew σ =
1

2
(σ − σt). (3)

The problem under consideration is now constructed as follows: Given f , the
body force vector, find u, ψ, σ and ǫ such that:

div σ + f = 0, (4)

skew σ = 0, (5)

ψ = skew ∇u, (6)

ǫ = symm ∇u, (7)

symm σ = c ǫ, (8)

for all x ∈ Ω, and where c is the elasticity tensor. Equations (4) through (8)
are, respectively, the linear and angular momentum balance equations, the
definition of rotation in terms of displacement gradients, the compatibility
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condition for strain in terms of displacement gradient and the constitutive
equations.

Now, assuming a cylindrical coordinate system, the strain tensor contains the
terms

ǫrr =
∂ur

∂r
, ǫrθ =

1

2

(

1

r

∂ur

∂θ
+
∂uθ

∂r
−
uθ

r

)

, (9)

ǫθθ =
1

r

∂uθ

∂θ
+
ur

r
, ǫrz =

1

2

(

∂uz

∂r
+
∂ur

∂z

)

, (10)

ǫzz =
∂uz

∂z
, ǫθz =

1

2

(

∂uθ

∂z
+

1

r

∂uz

∂θ

)

, (11)

and the components of rotations are defined from continuum mechanics con-
siderations as

ψθr =
1

2r

(

∂(ruθ)

∂r
−
∂ur

∂θ

)

, ψrz =
1

2

(

∂ur

∂z
−
∂uz

∂r

)

, and ψzθ =
1

2

(

1

r

∂uz

∂θ
−
∂uθ

∂z

)

.

(12)

However, assuming torsionless axisymmetry, these relations simplify to:

ǫrr =
∂ur

∂r
, ǫrθ = 0, (13)

ǫθθ =
ur

r
, ǫrz =

1

2

(

∂uz

∂r
+
∂ur

∂z

)

, (14)

ǫzz =
∂uz

∂z
, ǫθz = 0, (15)

and

ψθr = 0, ψrz =
1

2

(

∂ur

∂z
−
∂uz

∂r

)

, and ψzθ = 0. (16)

In the sections to follow, this problem will be embodied in an irreducible finite
element formulation, which requires only independent displacement and rota-
tion fields. A second element, based on an assumed stress Hellinger-Reissner-
like formulation, will also be presented.

3 Irreducible element with rotational degrees of freedom

In this section, an irreducible element with rotational degrees of freedom is
introduced. Here, the term ‘irreducible’ refers to a formulation with the mini-
mum number of indepedent assumed fields, i.e. ur, uz and ψrz which adequately
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embodies equations (4) to (8) 1 . The resulting elements have three degrees of
freedom per node, namely two displacements, ur and uz, and a rotational
degree of freedom, ψrz, representing a fibre hoop rotation tangent to the fibre.

Details of the variational formulation of elements with rotational degrees of
freedom are not repeated in this paper, since a more thorough discussion can
be found in the references presented in Section 1. Instead, only the functionals
from which the elements are derived, are presented here.

3.1 Variational formulation

The irreducible functional with only kinematic independent variables can be
written as

π(u,ψ) =
1

2

∫

Ω

c symm ∇u · symm ∇u dV +
γ

2

∫

Ω

|skew ∇u−ψ|2 dV

−
∫

Ω

f · u dV + Boundary Terms. (17)

The variational equations arising from π can be shown to be

0 = δπ =
∫

Ω

c symm ∇u·symm ∇δu dV+γ
∫

Ω

(skew ∇u−ψ)·(skew ∇δu−δψ) dV

−
∫

Ω

f · δu dV + Boundary Terms. (18)

3.2 Finite element implementation

The finite element interpolations employed in the elements arising from the
variational formulations highlighted in the foregoing are presented in this sec-
tion. It is required that only the independent translation and hoop rotation
fields are interpolated.

Consider a 4-node quadrilateral element with degrees of freedom as depicted
in Figure 1. The reference surface of the element is defined by

x =
4
∑

I=1

NI(ξ, η)xI , (19)

1 Technically speaking, only ur and uz are required to describe this problem if
skewσ is a priori assumed zero, since ψrz can be derived from the displacements.
We nevertheless refer to these elements as irreducible to distinguish them from the
mixed elements to follow.
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where x represents coordinates (r, z) and NI(ξ, η) are the isoparametric shape
functions [30]. The independent rotation field is interpolated as a standard
bilinear field over each element

ψrz =
4
∑

I=1

NI(ξ, η)ψrzI . (20)

The r–z (in-plane) elemental displacement approximation is taken as an Allman-
type interpolation, similar to the development of membrane elements [5], i.e.







ur

uz





 = u =
4
∑

I=1

NI(ξ, η)uI +
8
∑

I=5

NSI(ξ, η)
lJK

8
(ψrzK −ψrzJ)nJK , (21)

where lJK and nJK are the length and the outward unit normal vector on
the element side associated with the corner nodes J and K, and NSI are the
serendipity shape functions. Employing matrix notation we define

symm ∇u = B1I uI + B2I ψrzI , (22)

where uI and ψrzI are nodal values of the displacement and the rotation fields,
respectively. The B1I matrix in (22) has the standard form

B1I =























NI,r 0
NI

r
0

0 NI,z

NI,z NI,r























; I = 1, 2, 3, 4, (23)

where, for example, NI,r = ∂NI

∂r
. The part of the displacement interpolation

associated with the rotation field is defined as

B2I =
1

8





































(lIJ cosαIJ NSL,r − lIK cosαIK NSM,r)

0

(lIJ sinαIJ NSL,z − lIK sinαIK NSM,z)


























lIJ cosαIJ NSL,z − lIK cosαIK NSM,z

+

lIJ sinαIJ NSL,r − lIK sinαIK NSM,r































































. (24)

Now considering terms associated with the skew-symmetric part of the dis-
placement gradient, we begin by denoting

skew ∇u− ψrz = b1I uI + b2I ψrzI , (25)
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where

b1I =
[

−
1

2
NI,z

1

2
NI,r

]

; I = 1, 2, 3, 4, (26)

and

b2I =
[

−
1

16
(lIJ cosαIJ NSL,z lIK cosαIK NSM,z)

+
1

16
(lIJ sinαIJ NSL,r lIK sinαIK NSM,r) −NI

]

; I = 1, 2, 3, 4. (27)

The indices J, K, L, M in (21), (24) and (27) are defined in, for example [5,31].
The foregoing definitions may now be used to construct the element stiffness
matrix for the irreducible element.

3.2.1 A4R finite element based on functional π

The stiffness matrix for the element derived from (18) may be directly written
as

KA4R a = f , where a =











u

ψrz











, and with (28)

KA4R = K + p. (29)

The first term in the stiffness matrix can be written explicitly as

K =
∫

Ω

[B1 B2]
T
C [B1 B2] dΩ. (30)

Employing the interpolations for displacement (21) and rotations (20) and
combining with (25) leads to

p = γ

∫

Ω











b1

b2











[b1 b2] dΩ, (31)

representing the second term in (18). The matrix p is integrated by a single
point Gaussian quadrature. By integrating K using a full 9-point scheme and
combining with p, spurious zero energy modes are prevented. 2

This element depends on a penalty parameter γ. Appropriate values for γ
have been the topic of a number of studies [1,4,12,34,35]. A value of γ = µ,
with µ the shear modulus, is used throughout, even though this value may
not necessarily be optimal.

2 This is also true if a 5-point modified reduced integration scheme (e.g. see [32,33])
is employed.
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Note that an element in which the skew-symmetric part of the stress tensor is
retained has also been implemented, and results for this element are available
from the first author upon request. In the interests of brevity, however, we
present only the irreducible element considered above.

4 Mixed element with rotational degrees of freedom

We now present a mixed assumed stress element, accounting for nodal hoop
rotations. Once again, the full variational formulation is not given, since it
may be found in for instance [1,12].

4.1 Variational formulation

The Hellinger-Reissner-like functional, corresponding to the π functional, can
be shown to be given by

Π(u,ψ, symmσ) = −
1

2

∫

Ω

s symmσ·symmσ dV+
∫

Ω

symm ∇u·symmσ dV

+
γ

2

∫

Ω

|skew ∇u−ψ|2 dV −
∫

Ω

f · u dV + Boundary Terms, (32)

where s = c−1. Setting the first variation of Π to zero, results in

δΠ = 0 = −
∫

Ω

s symmσ · symm δσ dV +
∫

Ω

symm ∇u · symm δσ dV

+
∫

Ω

symmσ · symm ∇δu dV + γ

∫

Ω

(skew ∇u−ψ) · (skew ∇δu− δψ) dV

−
∫

Ω

f · δu dV + Boundary Terms. (33)

4.2 Finite element implementation

The element derived from Π requires interpolations for not only displacements
and rotations, but an additional (independently) assumed symmetric stress
field. Since the interpolations and operators presented in Section 3.2 remain
applicable here, only the stress interpolation is considered in more detail in
this section.

Practically all issues surrounding the selection of stress interpolations for
mixed low-order planar elements have been resolved, and community con-
sensus on the appropriate interpolation has essentially been reached. The sit-
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uation with axisymmetric elements is very different, with a wide variety of
approaches and interpolations continually being proposed.

Some authors propose interpolation in the global coordinate system [22,24],
however the selection of stress fields in cylindrical coordinates is far more
complex than in the case of planar or solid elements in Cartesian coordinates.
Finding an interpolation that has the minimum number of stress modes, that
is coordinate frame invariant and that does not result in element rank defi-
ciencies, is already a challenge.

Additional complications are associated with equilibrium equations in cylin-
drical coordinates. The first is the necessity for reciprocal terms in the stress
interpolation, which becomes problematic as r → 0. Furthermore, as pointed
out by Sze and Chow [20], radial and hoop stresses appear directly in the
equilibrium equations. As a result, elements which a priori or a posterior
satisfy equilibrium, demonstrate a false shear phenomenon due to coupling
between constant and higher order stress components. For these reasons we
opt to interpolate in a local coordinate system, as also done in for example
[15,16,18,23,25].

In matrix form, the stress interpolation can be expressed in terms of element
parameters β, as

symm σ = symm σc + symm σh = Icβc + TP hβh, (34)

where

[symm σ]T = [σrr σθθ σzz σrz]. (35)

Ic is a 4 × 4 identity matrix and there are 4 corresponding β−parameters in
βc, allowing for the accommodation of constant stress states required to pass
the patch test. The transformation matrix is given by

T =





















(J11)
2 0 (J21)

2 2J11J21

0 1 0 0

(J12)
2 0 (J22)

2 2J12J22

J11J12 0 J21J22 J11J22 + J12J21





















, (36)

with terms defined using the Jacobian, relating the ξ − η and the r − z coor-
dinate systems, i.e.

J(ξ, η) =







J11 J12

J21 J22





 . (37)

Kasper and Taylor [16] proposed the use of an average Jacobian in computing
the transformation matrix T , but we have found the transformation based on
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the expression in (36) to be adequate. Alternatively, some numerical cost may
be spared by using a constant T , evaluated at the element centroid.

There are now various possibilities for constructing the higher-order (non-
constant) stress interpolations P h. We restrict ourselves to a single option
however. Essentially, we adopt the procedure suggested by Jog and Annabat-
tula [25], who proposed the selection of interpolation functions such that zero-
energy modes (associated with reduced integrations schemes) are captured.

In their paper Sze and Ghali [11] proposed such an interpolation scheme
for planar elements employing Allman shape functions. Similar to Jog and
Annabattula [25], we append the interpolation of Sze and Ghali with a term
to capture the mode associated with the planar rigid body rotation (a mode
which contributes to strain in the axisymmetric case). Specifically, we choose

P hβh =





















η 0 0 0 η2 0

0 0 0 0 0 zg

0 ξ 0 0 −ξ2 0

0 0 η ξ 0 0





















[β5 β6 β7 β8 β9 β10]
T
, where (38)

zg = J12ξ + J22η. (39)

Once again, J12 and J22 could be replaced by their values at the origin of the
local coordinate system. Considering zg further, although Jog and Annabat-
tula [25] suggest setting zg = J12ξ+ J22η, they report this to be similar to the
interpolation used in Weissman and Taylor’s degenerate stress field (DSF)
element [23], in which this term is interpolated in global coordinates, i.e.
zg = b1ξ + b3η + b2ξη, where b1, b2 and b3 represent Jacobian entries com-
puted at ξ=η=0. For the proposed element, we have found little difference
between the two methods. The results presented in Section 6 therefore use zg

as defined in (39) throughout.

There are naturally many other interpolations which could be evaluated, but
in the interests of brevity, we will evaluate only the one presented here.

It is now possible to construct the stiffness matrix for the mixed element with
hoop rotations using the assumed stress field proposed in the foregoing.
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4.2.1 A4Rσ element based on functional Π

Developing a discrete form of (33), we get:







p [G]T

G −H

















a

β











=











f

0











. (40)

The matrix forms of G and H take on their standard forms, namely

G =
∫

Ω

[P ]T [B1 B2] dΩ, (41)

and

H =
∫

Ω

[P ]TSP dΩ. (42)

In our current implementation, a full 9-point Gauss quadrature is used to
evaluate both G and H , even though a modified reduced 5-point integration
scheme is sufficient to suppress spurious zero energy modes. In order to write
the problem in the standard force-displacement form, i.e.

KA4Rσ a = f , (43)

simplifications using static condensation on the element level are required.
Specifically, the unknown β–parameters are condensed out, resulting in

β = [H ]−1Ga, (44)

and we can define

Kσ = [G]T [H ]−1G. (45)

Finally, the stiffness matrix becomes

KA4Rσ = Kσ + p, (46)

where Kσ is given by (45) and p, integrated using a one-point rule, is given
by (31).

5 Element strain correction

Often, membrane elements with in-plane rotations defined using Allman inter-
polations, employ a so-called ‘membrane-bending locking correction’ [12,31,36].
This is especially true when the membrane element is used as the in-plane
component of a flat shell element. This correction is reported to alleviate un-
desirable interactions between membrane and (plate) bending actions [36].
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The correction, introduced by Jetteur and Frey [37] and further developed by
Taylor [36] modifies the strain definition in (22) as follows:

ǭ = B1I uI +B2I ψrzI + ǭ0, (47)

where ǭ0 is found by augmenting the potential energy functional with the
statement ∫

Ω

σ̄T (B2I ψrzI + ǭ0) dΩ, (48)

with both σ̄ and ǭ0 being constant over the element, and thereby enforcing
the statement

B2I ψrzI + ǭ0 = 0, (49)

in a weak sense. Thus, ǭ0 may be shown to be

ǭ0 = −
1

Ω

∫

Ω

B2I dΩ ψrzI , (50)

which can in turn be substituted back into (47).

This correction is reminiscent of a correction to ensure satisfaction of the
patch test, popular in incompatible elements, see for example [38]. The net
result of the modified strain definition in (47) is that, at least in a weak sense,
the contribution of higher-order components of the Allman interpolations are
eliminated. As a result, to pass the patch test, although higher-order displace-
ment interpolations are employed the consistent nodal loads are computed
using only bilinear interpolations, thereby simplifying pre-processing.

If however this correction is not employed, the patch test can still be passed.
However, the full Allman interpolations are required to compute the consistent
nodal loads, generally resulting in associated nodal moments. Complications
may however be experienced at boundaries where essential boundary condi-
tions are specified.

The numerical results to follow report on elements both with and without the
correction presented in (47).

6 Numerical results

The proposed elements are now evaluated on a number of standard test prob-
lems. Their performance is judged based on a comparative study with several
existing elements, whose results are sourced from data collated by Wanji and
Cheung [14]. Elements considered in the comparison include the following:

A4 : the standard four-node isoparametric axisymmetric element (see for ex-
ample [27,30]),
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LA1 : the quadrilateral non-conforming element proposed by Sze and Chow
[20],

AQ4 : the quadrilateral non-conforming element proposed by Wu and Cheung
[39],

SQ4 : the generalised hybrid element proposed by Wanji and Cheung [15],
HA1/FA1 : the hybrid stress elements proposed by Sze and Chow [20],
FSF/DSF : the mixed element proposed by Weissman and Taylor [23],
NAQ6 : the non-conforming element proposed by Wanji and Cheung [14], and
RHAQ6 : the refined non-conforming hybrid element presented by Wanji and

Cheung [14].

Furthermore, the elements proposed in this paper are denoted as follow:

A4R : the irreducible 4-node axisymmetric element with rotational degrees of
freedom based on functional π, and with stiffness matrix given by (29), and

A4Rσ : the 4-node axisymmetric element(s) with rotational degrees of free-
dom based on functional Π, with an assumed stress field, with stiffness
matrix as in (46).

6.1 Eigenvalue analysis

Firstly, an eigenvalue analysis of a regular, undistorted element is carried out
to confirm that the new elements possess the appropriate number of non-zero
eigenvalues. Indeed, the proposed elements fulfill the requirement of displaying
only a single zero eigenvalue, associated with a rigid body translation along
the axis of radial symmetry.

6.2 Patch test

Next, each element is subjected to a standard patch test. The problem under
consideration is similar to the patch test proposed by Wanji and Cheung
[14], in which the boundary displacement is given by (in the radial direction)
ur = 2r, and (in the direction of the axis of radial symmetry) uz = 1 + 4ν,
with ν representing Poisson’s ratio and r the radial coordinate.

Figure 2 depicts the arbitrary mesh used for the patch test, slightly offset from
the axis of symmetry. Our new elements pass this prescribed displacement, as
well as an equivalent prescribed force, patch test. The patch test is passed for
any value of γ > 0, with or without the correction highlighted in Section 5.
However, as pointed out in Section 5, the appropriate consistent nodal loads
should be used.
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6.3 Node numbering invariance

This single element problem, proposed by Sze and Chow [20] and depicted in
Figure 3, is used to assess the invariance (or lack thereof) of an element to node
numbering. All four possible node numbering sequences are used to compute
the displacement of point A, and the results compared. The newly proposed
elements are found to be, to machine precision, invariant with respect to node
numbering.

6.4 Thick walled cylinder under internal pressure

An infinitely long thick walled cylinder under internal pressure, analysed by
considering a slice of unit thickness, is depicted in Figure 4. Figure 4(a) depicts
a cylinder with an inner radius of 5 and a wall thickness of 5, analysed using
a regular mesh, while Figure 4(b) and 4(c) represent the MacNeal-Harder test
[40], employing a regular and a distorted mesh, respectively. The corresponding
results are presented in Tables 1, 2 and 3.

As expected, our irreducible element does not perform as well as the assumed
stress element, especially in the near incompressibility limit. In fact, apart
from the added modelling capability, the irreducible A4R element does not
offer significant benefits over the standard isoparametric A4 element. This is
not surprising since the rotational degrees of freedom are not activated in these
tests, and are in fact prescribed to be zero.

On the other hand, the assumed stress A4Rσ element performs very well
when judged on either displacement or on stress prediction, and is almost
completely insensitive to incompressibility effects. For both problems anal-
ysed with a regular mesh, displacement is predicted exactly, a phenomenon
known as ‘superconvergence’ [25] which has only previously been observed
with elements developed by Jog and Annabattula [25] and the DSF element
of Weissman and Taylor [23].

6.5 Uniformly loaded simply supported circular plate

The next test problem is depicted in Figure 5 and represents a simply sup-
ported, uniformly loaded, circular plate of thickness t. The plate is discretized
using two different meshes as depicted in Figures 5(a) and 5(b) respectively.
Results for the mesh depicted in Figure 5(a) with varying distortion e, and
plate thickness t are presented in Tables 4, 5 and 6, while results for the highly
distorted mesh shown in Figure 5(b) are presented in Table 7.

15



From the results of this bending dominated problem presented in Tables 4
and 5, and for values of Poisson’s ratio sufficiently lower than 0.5, it is appar-
ent that the irreducible A4R element performs significantly better than the
standard isoparametric A4 element on displacement accuracy. Stress accuracy
is, however, not compared since displacement based elements are incapable of
computing stress directly at the axis of symmetry due to the reciprocal term
in hoop strain, from which the radial stress is partly derived.

Again, the assumed stress element (with or without the element strain cor-
rection) performs very well indeed, and exhibits little accuracy sensitivity to
Poisson’s ratio, even in the limit of incompressibility. The A4Rσ element also
achieves favourable displacement and stress predictions when compared to
results from previously published elements.

Still considering the problem depicted in Figure 5(a), Table 6 compares the
element displacement accuracy for various values of element aspect ratio and
distortion, while Poisson’s ratio is fixed (ν = 0.25). These results indicate
that the strain correction presented in Section 5 significantly stiffens the A4R
and the A4Rσ elements when element aspect ratio is high. However, without
this (optional 3 ) correction, the elements are shown to be extremely robust.
In particular, the A4R element is apparently only susceptible to element as-
pect ratio when the elements are distorted and the aspect ratio is extreme.
The A4Rσ element is shown to be extremely robust, demonstrating superior
performance when compared to results for previously published elements.

It should however be emphasised that the differences between elements with
and without the element strain correction only become notable when element
aspect ratios are extreme. The correction therefore nevertheless has merit since
it simplifies pre-processing of the element consistent nodal loads.

Finally, the results for the highly distorted mesh depicted in Figure 5(b) are
presented in Table 7. Once again, the assumed stress A4Rσ element performs
well when compared to previously proposed elements on both displacement
and stress accuracy.

6.6 Sphere under internal pressure

The final test of element accuracy is depicted in Figure 6, and represents a
thin sphere with inside radius, ri, and outside radius, ro, subjected to a unit
internal pressure. Only the top hemisphere is modelled using 10 evenly spaced
elements, thereby exploiting the problem symmetry. An analytical solution to

3 Recall that both elements pass the patch test and have the proper rank with or
without the correction.
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this problem may be found in, for example, [41]. The material properties are
as shown in the figure.

The normalised displacements at points A and B are summarised in Table 8
for various values of Poisson’s ratio ν. For values of Poisson’s ratio sufficiently
lower than 0.5, the irreducible A4R element again performs very well. Once
again, compared to previously published elements, our assumed stress A4Rσ
element achieves excellent results.

7 Conclusions

In this paper, two new axisymmetric solid-of-revolution elements with hoop
fibre rotational degrees of freedom were introduced. The primary objective for
developing these elements was to enhance existing modelling capability, the
additional rotational degree of freedom facilitating, for instance, the connec-
tion between axisymmetric shell and axisymmetric solid models. However, the
new elements were shown to also demonstrate improved accuracy and robust-
ness on a number of popular benchmark problems when compared to existing
elements.

The first element, denoted A4R, possesses two displacement degrees of freedom
per node, standard in axisymmetric elements, as well a single rotational degree
of freedom accounting for hoop fibre rotations. A second element, based on a
mixed assumed stress formulation, possessing the aforementioned rotational
nodal degree of freedom was also proposed. This element, denoted A4Rσ,
further improved element performance, especially in the near incompressibility
limit.

The elements were derived from a variational framework, shown to be stable in
the discrete form. Rotations are based on the continuum mechanics definition
of rotation, and the stress tensor is not a priori assumed to be symmetric.
Stress interpolations, possessing the minimum number of stress parameters,
for the mixed elements were proposed.

Furthermore, an element strain correction often used in membrane elements
to alleviate membrane-bending locking in flat shell elements, was adapted to
the axisymmetric case. This correction effectively removes strain contributions
from higher-order components of the Allman interpolation in a weak sense.
The patch test was accordingly passed using the consistent nodal loads of the
standard 4-node isoparametric axisymmetric element, thereby simplifying pre-
processing. The correction may, however, hamper element performance when
the element aspect ratio becomes very large. Nevertheless, the correction is
optional since the patch test is passed even if it is omitted. The proposed
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elements were evaluated with and without the correction.

The performance of the irreducible (i.e. without assumed stress) A4R element
was shown to be superior to standard displacement elements, especially when
used to analyse bending dominated problems. However, since the element is
essentially displacement-based, it tends to lock in the near incompressibility
limit. Furthermore, it is incapable of directly predicting stress at the axis of
symmetry due to reciprocal coordinate terms in the strain evaluation.

On the other hand, the mixed assumed stress A4Rσ element was found to be
extremely accurate and robust when compared to a number of previously pro-
posed elements on a variety of test problems. This is especially true when the
aforementioned element correction was omitted. For undistorted meshes, the
element predicts the exact displacement for a cylinder under internal pressure,
a phenomenon known as superconvergence. The element was also found to per-
form excellently on a number of other benchmark problems when compared
to previously proposed elements.
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ν = 0.49 ν = 0.499 ν = 0.4999

Element ur
† σrA σθA σzA ur

† σrA σθA σzA ur
† σrA σθA σzA

A4 0.906 0.817 0.963 1.129 0.494 -0.026 0.778 1.704 0.089 -0.856 0.597 2.275

LA1 0.992 -1.282 0.851 0.356 0.992 1.090 -0.584 -5.821 0.992 30.731 -14.937 -67.698

AQ6 0.992 0.996 1.011 1.029 0.992 0.996 1.011 1.028 0.992 0.996 1.011 1.028

NAQ6 0.992 0.996 1.011 1.029 0.992 0.996 1.011 1.028 0.992 0.996 1.011 1.028

SQ4 0.992 0.996 1.011 1.029 0.992 0.996 1.011 1.028 0.992 0.996 1.011 1.028

HA1/FA1 0.992 0.996 1.011 1.029 0.992 0.996 1.011 1.028 0.992 0.996 1.011 1.028

RHAQ6 0.992 0.996 1.011 1.029 0.992 0.996 1.011 1.028 0.992 0.996 1.011 1.028

A4R‡ 0.906 0.817 0.963 1.130 0.494 -0.028 0.778 1.706 0.089 -0.857 0.597 2.277

A4Rσ‡ 1.000 1.011 1.006 1.000 1.000 1.011 1.006 0.999 1.000 1.011 1.006 1.001

Exact 31.780 -2.450 4.570 1.040 31.830 -2.450 4.570 1.060 31.830 -2.450 4.570 1.060

† Radial displacement measured at r = 5.

‡ Same results with and without element strain correction.

Table 1. Normalised results for a thick-walled cylinder with regular mesh and variable Poisson’s ratio (see Figure 4(a)). Exact results in
10−2.
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A4 0.994 0.988 0.847 0.359 0.053 5.61×10−4

FSF 0.994 0.990 0.986 0.986 0.986 –†

DSF 1.000 1.000 1.000 1.000 1.000 –†

AQ6 0.994 0.990 0.986 0.985 0.986 0.985

NAQ6 0.994 0.990 0.933 0.986 0.986 0.986

RHAQ6 0.994 0.990 0.986 0.986 0.986 0.986

A4R‡ 0.994 0.988 0.846 0.358 0.053 5.59×10−4

A4Rσ‡ 1.000 1.000 1.000 1.000 1.000 1.000

† No results reported.

‡ Same results with and without element strain correction.

Table 2
MacNeal-Harder test, regular mesh (see Figure 4(b)). Normalized displacement at
point A.
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A4 0.989 0.982 0.816 0.315 0.044 4.43×10−4

FSF 0.985 0.981 0.976 0.976 0.976 –†

DSF 0.997 0.997 0.997 0.997 0.997 –†

AQ6 0.991 0.985 0.938 0.718 0.472 0.410

NAQ6 0.989 0.985 0.939 0.713 0.445 0.372

RHAQ6 0.989 0.987 0.983 0.983 0.983 0.983

A4R‡ 0.988 0.982 0.815 0.313 0.044 4.55×10−4

A4Rσ‡ 0.994 0.993 0.984 0.982 0.982 0.982

† No results reported.

‡ Same results with and without element strain correction.

Table 3
MacNeal-Harder test, distorted mesh (see Figure 4(c)). Normalized displacement at
point A.
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A4 0.696 0.079 0.016 0.015 –† –† –† –†

LA1 1.034 1.011 0.785 0.761 –† –† –† –†

AQ6 1.034 1.011 0.785 0.761 0.999 0.937 0.597 0.567

NAQ6 1.034 1.011 0.785 0.761 0.999 0.936 0.596 0.566

SQ4 1.034 1.011 0.785 0.761 0.999 0.937 0.597 0.567

HA1/FA1 1.037 1.043 1.043 1.043 1.006 1.007 1.007 1.007

RHAQ6 1.037 1.043 1.043 1.043 1.006 1.008 1.008 1.008

A4R 0.868 0.080 0.016 0.015 –† –† –† –†

A4R∗ 0.849 0.077 0.015 0.015 –† –† –† –†

A4Rσ 1.014 1.011 1.010 1.010 0.952 0.939 0.936 0.936

A4Rσ∗ 1.004 1.009 1.009 1.009 1.000 1.000 1.000 1.000

Exact -738.280 -524.980 -515.720 -515.630 121.880 130.880 131.250 131.250

† Not possible to compute σrA due to singularity at r = 0.

∗ Element without element strain correction.

Table 4
Normalised results for uniformly loaded circular plate with varying Poisson’s ratio,
modelled using a 1 × 4 regular mesh. See Figure 5(a), t = 1, e = 0.
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A4 0.694 0.079 0.016 0.015 –† –† –† –†

LA1 1.027 1.006 0.777 0.753 –† –† –† –†

AQ6 1.030 1.008 0.781 0.756 1.005 0.933 0.585 0.555

NAQ6 1.030 1.008 0.781 0.757 0.980 0.879 1.344 1.329

SQ4 1.030 1.008 0.781 0.756 1.011 0.948 0.599 0.568

HA1 1.030 1.040 1.040 1.043 0.988 0.930 0.924 0.924

FA1 1.030 1.040 1.040 1.040 0.997 0.938 0.933 0.933

RHAQ6 1.030 1.041 1.041 1.041 0.994 0.998 0.998 0.998

A4R 0.865 0.080 0.016 0.015 –† –† –† –†

A4R∗ 0.849 0.077 0.015 0.015 –† –† –† –†

A4Rσ 1.009 1.008 1.007 1.007 0.971 0.956 0.953 0.953

A4Rσ∗ 1.004 1.009 1.009 1.009 1.003 1.003 1.003 1.003

Exact -738.280 -524.980 -515.720 -515.630 121.880 130.880 131.250 131.250

† Not possible to compute σrA due to singularity at r = 0.

∗ Element without element strain correction.

Table 5
Normalised results for uniformly loaded circular plate with varying Poisson’s ratios,
modelled using a 1 × 4 slightly distorted mesh. See Figure 5(a), t = 1, e = 0.025.
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Computed quantity uzAt
3 for 1 × 4 regular mesh uzAt

3 for 1 × 4 distorted mesh

Element aspect ratio 2.5 100 500 2.5 100 500

A4 0.696 2.22×10−3 8.89×−5 0.694 8.87×10−4 3.84×10−5

LA1 1.034 1.025 1.025 1.027 0.549 0.546

AQ6 1.034 1.025 1.025 1.030 0.493 0.491

NAQ6 1.034 1.025 1.025 1.030 0.493 0.491

SQ4 1.034 1.025 1.025 1.030 0.493 0.491

HA1 1.037 1.028 1.028 1.030 0.559 0.556

FA1 1.037 1.028 1.028 1.030 0.559 0.556

RHAQ6 1.037 1.028 1.028 1.030 0.738 0.738

A4R 0.868 0.421 0.190 0.865 5.37×10−3 7.05×10−5

A4R∗ 0.849 0.839 0.838 0.849 0.515 1.42×10−3

A4Rσ 1.014 0.472 0.212 1.009 0.015 6.13×10−3

A4Rσ∗ 1.004 0.994 0.995 1.004 0.941 0.897

Exact -738.28

∗ Element without element strain correction.

Table 6
Normalised uzAt

3 values for various element aspect ratios (= 2.5/t) with ν = 0.25,
see Figures 5(a). Distorted mesh with e = 0.025.
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A4 0.635 0.088 0.017 0.019 –† –† –† –†

LA1 0.909 0.903 0.590 0.563 –† –† –† –†

AQ6 0.907 0.906 0.593 0.566 1.389 1.132 0.370 0.328

NAQ6 0.912 0.906 0.592 0.565 1.154 0.800 3.254 3.590

SQ4 0.906 0.904 0.593 0.566 1.341 1.164 0.469 0.430

HA1 0.918 0.976 0.979 0.979 1.226 1.043 1.030 1.030

FA1 0.915 0.971 0.974 0.974 1.352 1.167 1.154 1.153

RHAQ6 0.928 0.977 0.979 0.979 0.974 1.029 1.032 1.032

A4R 0.773 0.113 0.018 0.016 –† –† –† –†

A4R∗ 0.880 0.091 0.015 0.015 –† –† –† –†

A4Rσ 0.864 0.911 0.911 0.911 1.487 1.398 1.388 1.388

A4Rσ∗ 0.998 1.005 1.005 1.005 1.053 1.039 1.039 1.039

Exact -738.280 -524.980 -515.720 -515.630 121.880 130.880 131.250 131.250

† Not possible to compute σrA due to singularity at r = 0.

∗ Element without element strain correction.

Table 7
Normalised results for a uniformly loaded circular plate with varying Poisson’s ratio,
modelled using a 1 × 4 highly distorted mesh. See Figure 5(b), t = 1.
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A4 1.024 1.027 0.896 0.424 0.068 0.997 0.992 0.876 0.419 0.067

FSF 1.061 1.076 1.085 1.085 1.085 0.994 0.990 0.984 0.984 0.984

DSF 1.059 1.074 1.085 1.086 1.086 0.995 0.992 0.988 0.988 0.988

A4R 1.056 1.063 0.910 0.427 0.068 0.996 0.990 0.873 0.418 0.067

A4R∗ 0.999 0.995 0.883 0.421 0.068 0.998 0.993 0.878 0.420 0.069

A4Rσ 1.052 1.065 1.072 1.072 1.072 0.997 0.994 0.990 0.990 0.990

A4Rσ∗ 0.994 0.991 0.987 0.986 0.986 0.999 0.997 0.994 0.994 0.994

Exact 4.081 3.127 2.523 2.494 2.491 4.081 3.127 2.523 2.494 2.491

∗ Element without element strain correction.

Table 8
Normalised displacements for a thin sphere under internal pressure, see Figure 6.
Exact solution in 10−2.
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