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Abstract 

 
A study concerning the propagation of free non-axisymmetric waves in a homogeneous 

piezoelectric cylinder of transversely isotropic material with axial polarization is carried out 

on the basis of the linear theory of elasticity and linear electromechanical coupling. The 

solution of the three dimensional equations of motion and quasi-electrostatic equation is given 

in terms of seven mechanical and three electric potentials. The characteristic equations are 

obtained by the application of the mechanical and two types of electric boundary conditions at 

the surface of the piezoelectric cylinder. A novel method of displaying dispersion curves is 

described in the paper and the resulting dispersion curves are presented for propagating and 

evanescent waves for PZT-4 and PZT-7A piezoelectric ceramics for circumferential wave 

numbers m = 1, 2, and 3. It is observed that the dispersion curves are sensitive to the type of 

the imposed boundary conditions as well as to the measure of the electromechanical coupling 

of the material.  
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1 Introduction  
 

Ultrasonic non-destructive evaluation relies on a thorough understanding of the 

propagating and evanescent waves in the material under investigation. This study 

could be useful in such applications, for example, in the identification of defects of 

finite size across the circumference of a piezoelectric rod, since reflections of waves 

from such defects are generally non-axisymmetric in nature Rose, (1999). Also, 

results obtained in this paper can serve as a basis for design of piezoelectric 

transducers, for which standing wave modes resulting from reflections of travelling 

waves at cross-section boundaries of the cylinder play an important role. The broad 

development of the finite (FEM) and boundary element methods (BEM) also needs 

some reference results obtained from exact solutions. In this case the proposed 

investigation of the non-axisymmetric propagating and evanescent waves in a 

piezoelectric cylinder could help to create reliable test beds of FEM and BEM. 

 

The study of wave propagation in systems with cylindrical geometry has been 

undertaken by a number of investigators. While the systems considered so far have 

been both isotropic and anisotropic in nature, a relatively larger literature exists for 

isotropic materials. The first investigator of waves propagating in a solid isotropic 

cylinder was Pochhammer (1876). Other investigators of the subject can be found in 

standard texts such as Achenbach (1984), Graff (1991), and Rose (1999). For 

cylinders composed of anisotropic materials Chree (1890) investigated propagation of 

the axisymmetric waves. Much later Mirsky (1964) investigated a problem of non-

axisymmetric wave propagation in transversely isotropic circular solid and hollow 

cylinders. Other contributors to the subject were Armenakas and Reitz (1973), Frazer 

(1980), Nayfeh and Nagy (1995), Berliner and Solecki (1996), Niklasson and Datta 

(1998), and Honarvar, et. al. (2007), just to name a few. Numerical results for the 

dispersion of axisymmetric guided waves in a composite cylinder with a transversely 

isotropic core were presented by Xu and Datta (1991). 

 

For piezoelectric cylinders the analysis of vibrations of circular shells was performed 

by Paul (1966). Investigation of axisymmetric waves in layered piezoelectric rods 

with open circuit electric field conditions and their composites was carry out by 

Nayfeh et. al. (2000). The axisymmetric problem of the wave propagation in a 

piezoelectric transversely isotropic rod was analysed for rigid sliding and elastic 

simply supported mechanical boundary conditions and different types of electric field 

conditions by Wei and Su (2005). Several papers were devoted to development of 

numerical and finite element methods of investigation of piezoelectric cylinders. Siao 

et. al. (1994) solved the problem of wave propagation in a laminated piezoelectric 

cylinder via the FEM. Their paper contains tables and graphs of dispersion curves for 

real and imaginary values of wavenumbers. Unfortunately the data contains a misprint 

in a scale factor for the dimensionless wave number, making it quite difficult to 

compare their results with the results of the present paper. This misprint was further 

corrected by Bai et. al. (2004), who in their paper studied the electromechanical 

response of a laminated piezoelectric hollow cylinder by means of a semi-analytical 

FEM formulation. Shatalov and Loveday (2004), Bai et. al. (2006) also studied the 

phenomenon of end reflections of waves in a semi-infinite layered piezoelectric 

cylinder. 

 



Our approach parallels that of Mirsky (1964) and Berliner and Solecki (1996). It is 

also similar to that used by Winkel et. al. (1995) who analytically solved the problem 

of wave propagations in an infinite cylindrical piezoelectric core rod immersed into an 

infinite piezoelectric cladding material. Winkel et. al. (1995) focused on the pure 

guided waves with real solutions of the determining bi-cubic equation. It was found in 

the process of investigation that this approach is applicable to the general problem of 

propagating and evanescent waves with real and complex solutions. Unfortunately the 

paper of Winkel et. al. (1995) contains some misprints which do not make it possible 

to realize the algorithm numerically. In our approach the three dimensional equations 

of elastodynamics together with the quasi-electrostatic Gauss law are solved in terms 

of seven displacement and three electric potentials, each satisfying the Helmholtz 

equations. In contrast to Winkel et. al. (1995) we propose a simple approach to 

solution of the problem which has an additional advantage that in the limiting case of 

small electric and electromechanical constants our results automatically coincide with 

the classical results of Mirsky (1964) and Berliner and Solecki (1996) for a 

transversely isotropic cylinder. This circumstance gives one confidence in the 

correctness of the results obtained in this paper. Imposing the allowed mechanical and 

electric boundary conditions on the cylinder surface, the characteristic or dispersion 

equation is obtained in the form of a determinant of the fourth order. 

 

On the basis of the obtained results a numerical algorithm for displaying the 

dispersion curves is developed. The algorithm is based on calculation of the logarithm 

of modulus of the left hand side of the dispersion equation on a discrete mesh in the 

“wavenumber – frequency” - ( k ω− ) plane. If the left hand side value of the 

dispersion equation tends to zero the logarithm tends to minus infinity. This method 

produces sharp negative spikes on the surface plot and automatically provides a 

picture of configuration of the dispersion curves. Similar approach of simultaneous 

qualitative displaying of the dispersion equation solutions was used by Honarvar et. 

al. (2006) that produced a 3-D cross-section of the real part of left hand side of the 

equation. The main advantage of our approach is that the local minima of the 

logarithm of modulus of the left hand side of the dispersion equation’s matrix give 

proper approximations of the roots which can be further used as guess values of 

solutions of the dispersion equation. The same approach is used for simultaneous 

displaying of the “wavenumber - phase velocity” – (
ph

k V− ) distribution diagram. In 

the present paper we present the dispersion curves of solid cylinders made from two 

piezoelectric materials – PZT-4 and PZT-7A for open- and short-circuit electric 

boundary conditions and for different circumferential wavenumbers m = 1, 2, and 3. 

The phase velocities are represented for the abovementioned piezoelectric materials 

for m = 1. The curves demonstrate substantial influence of the electric boundary 

conditions and electromechanical coupling on behaviour of the dispersion curves and 

phase velocities. These results obtained from exact solution of the problem could 

serve as the reference data and help researchers to create reliable FEM techniques for 

analysis of vibration of piezoelectric bodies. 

 

2 Analytic Formulation and Solution 

 

In this section we establish the equations of motion and boundary conditions, and 

obtain solution of the problem within the framework of the following assumptions and 

approximations: linear elasticity, linear constitutional model of piezoelectricity, quasi-



static approximation of the electric field, axial polarization of the piezoelectric 

material, neglecting of thermal effects, absence of free charges in the material, and 

boundary and body forces. Axis Oz coincides with the axis of the cylinder, , ,r zθ - 

radius, polar angle and axial coordinate, and , ,u v w - radial, tangential and axial 

displacements correspondingly. 

 

Navier equations of motion and Gauss’ law in cylindrical coordinates are: 
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where 1 rr
σ σ= , 2 θθσ σ= , 3 zz

σ σ= , 4 z zθ θσ σ σ= = , 5 rz zr
σ σ σ= = , 6 r rθ θσ σ σ= =  are 

the stresses, 1,2,3D are the electric displacement components, and the double dot 

notation means second time derivative. 

 

The coupled constitutive equations of the system in the Voigt notation are as follows: 
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where 1 rr
S S= , 2S Sθθ= , 3 zz

S S= , 4 z z
S S Sθ θ= = , 5 rz zr

S S S= = , 6 r r
S S Sθ θ= = are the 

strains, 1,2,3E  the electric field components, 11 66, ,E E
c c…  the elastic stiffnesses at 

constant electric field ( )( )66 11 120.5E E E
c c c= − , 15 33, ,e e…  the piezoelectric constants or 

electromechanical coupling factors, and 11 33,S Sε ε  are the clamped dielectric constants at 

constant strain. 

 

The strains and electric field in cylindrical coordinates are: 
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where ϕ  is an electric potential. 

 



We seek the solution of the problem (1) – (3) in terms of harmonic travelling waves 

(since the Hook law is obeyed) along z - axis in terms of several displacement and 

electric potentials first introduced by Mirsky (1964) and further used by Winkel et. al. 

(1995) as follows: 
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where ( ),r θΦ = Φ , N  is chosen in the process of solution of the problem (it will be 

shown that for complete solution 3N = ), 2 1i = − , ω  is the angular frequency, and k  

is the wavenumber (real for propagating and imaginary or complex for evanescent 

waves). 

 

After substitution Eqn. (4) in (3) and further in (2) and (1) the following system of 

equations is obtained: 
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where 
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2
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 is the two dimensional Laplace operator in polar 

coordinates. 

 

The first two equations of the system are satisfied if  
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It follows from this system that the second equation is separated and the first one must 

be compatible with third and fourth equations of system (5). For compatibility it is 

possible to introduce the following representation: 



 

( ) ( ) ( )1 1
2, ,2 1

j j N j N
j N Nη

− + − +
Φ = Φ = + +…  

( ) ( ) ( )2 1 2 1
2 2, ,3 1

l l N l N
l N Nµ

− + − +
Φ = Φ = + +…        (7) 

 

where coefficients ,η µ  are found so that the first equation (6), third, and fourth 

equations (5) become compatible. It can be done by assumption that all potentials 
j

Φ  

satisfy the Helmholtz equations  
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and hence, 2 2

j j jξ∇ Φ = − Φ  ( 1, 2, ,j N= … ).  

 

From the system of three equations the following bi-cubic determining equation is 

obtained: 

 

( ) ( ) ( )
3 2

2 2 2

1 2 3 0
j j j

b b bξ ξ ξ+ + + =     (9) 

 

where  

 

2 2

1 2
1

0

B k B
b

B

ρω− +
= ;   

( ) ( )
2

2 2 2 4

11 3 4

2

0

k B k B
b

B

ε ρω ρω− +
= , 

( ) ( )2 2 2 2 2

44 5 33

3

0

E
k k c k B

b
B

ρω ρω ε − − = ,  ( )2

0 11 15 11 44

E EB c e cε= + , 

( )2

1 15 11 11 44

E EB e c cε= + + , ( ) ( ) ( )
2

3 11 33 44 33 11 44 15 31 15 332E E E EB c c c c e e e eε ε= + + + + + + , 

( )( ) ( ) ( )
2

2 2

2 11 11 33 13 44 13 15 11 33 13 31 44 31 33 11 13 152 2 2E E E E E E E E E EB c c c c c e c e c e c e c c eε ε= − − + − + + − ,  

( ) ( ) ( )
2 2 2

4 13 33 13 33 15 31 44 33 33 15 31 44 11 11 33 11 33 44 31 332 2E E E E E E E EB c c e e e c c e e c c c e c e eε ε ε ε  = − − + + + + + + + −   
, 

2

5 33 33 33

E
B c eε= +                    (10) 

 

In the general case there are three roots to Eqn. (9) and hence, 3N =  because there 

are only three independent equations (8) and according to (7) 5 1 1ηΦ = Φ , 6 2 2ηΦ = Φ , 

7 3 3ηΦ = Φ , 8 1 1µΦ = Φ , 9 2 2µΦ = Φ , and 10 3 3µΦ = Φ  where 
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Hence expressions (4) are as follows: 
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For the fourth equation 2 2

4 4 4 0ξ∇ Φ + Φ = it follows from the second expression (6) 

that 
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Solutions of the Helmholtz equations (8) and second Eqn.(6) are as follows: 
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where ( ) ( )m mW r J rξ ξ=  is the Bessel function if ξ  is real or complex, 

( ) ( )m m
W r I rξ ξ=  is the Bessel function of the second kind if ξ  id pure imaginary, 

m  is the integer circumferential wave number, and the A  (real or complex) are 

amplitudes.  

 

Mechanical boundary conditions correspond to the assumption of absence of external 

forces on the cylindrical boundary: 
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There are two types of electric boundary conditions: 
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where the first expression corresponds to the open-circuit condition and the second 

expression – to the close-circuit condition. 

 

After substitution (14) into (12), (3), and (2) we obtain two systems of four linear 

homogeneous algebraic equations in the unknown amplitudes 1, ,4A
…

.  Each of these 

systems of equations has a non-trivial solution if and only if its main determinant 

equals zero: 
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Where ( ),i j i ja a k ω=  are given in the Appendix. Eqn.(17) forms the dispersion 

equation.  

 

Remark on limiting case of small electro-mechanical coupling coefficients. If electro-

mechanical coupling coefficients 15 31 33 0e e e= = =  the determining Eqn. (9) is 

converted into  
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Hence in (18) the electric and mechanical parts are separated and the determining 

equation ( ) ( )
2

2 2

4 5 0
j j

b bξ ξ+ + =  describes the wave dynamics in the passive 

transversely isotropic medium. This equation coincides with the corresponding 

equation found by Berliner and Solecki (1996) and hence, all the results of the present 

paper are converted into the well known results of Mirsky (1964), and Berliner and 

Solecki (1996) in the limiting case of small electro-mechanical coupling coefficients. 

Additional dispersion lines, corresponding to ( )2 2

11 33 0
j

kξ ε ε− = could be considered 

as artefacts in this case.  

Furthermore if we suppose that 15 31 0e e= =  in the first expression (11) we obtain that 
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which also coincides with the result of Berliner and Solecki (1996). Hence, the results 

obtained contain the classical results of investigation of a passive transversely 

isotropic material as a particular limiting case. 

 

3 Numerical Results and Discussion 
 

In this section we present the dispersion curves for non-axisymmetric waves with 

circumferential wavenumbers 1, 2,3m =  resulting from the characteristic equation 

(17). Two piezoelectric materials are chosen, PZT-4 and PZT-7A, to illustrate the 

influence of electro-mechanical coupling coefficients on the configuration of the 



dispersion curves. The relevant material parameters for PZT-4 and PZT-7A are given 

in the Table.  

 

Geometric and 

Material Constants 

PZT-4 PZT-7A SI Units 

Radius ( )a  1 1 m 

ρ  37.5 10⋅  37.6 10⋅  3/kg m−  

11

E
c  1013.9 10⋅  1014.8 10⋅  2/N m

−  

12

E
c  107.78 10⋅  107.62 10⋅  2/N m

−  

13

E
c  107.43 10⋅  107.42 10⋅  2/N m

−  

33

E
c  1011.5 10⋅  1013.1 10⋅  2/N m

−  

44

E
c  102.56 10⋅  102.53 10⋅  2/N m

−  

15e  12.7 9.2 2/C m
−  

31e  -5.2 -2.1 2/C m
−  

33e  15.1 9.5 2/C m
−  

11

Sε  0730 ε⋅  0460 ε⋅  2 2 1
C m N

− −  

33

Sε  0635 ε⋅  0235 ε⋅  2 2 1
C m N

− −  

 

Table. Material constants and geometric parameters for PZT-4 and PZT-7A 

( )12 2 2 1

0 8.85 10 C m Nε − − −= ⋅  

 

In order to obtain the dispersion curves we made use of a method similar to the novel 

method described by Honarvar et al. (2008) where the dispersion curves are not 

produced as a result of solving of the dispersion equation by a traditional iterative 

find-root algorithm but are obtained by a zero-level cut in the velocity-frequency 

plane. In our approach, we modify this approach calculating the logarithm of modulus 

of determinant (17) on the mesh ( ) 1 2, , 1, , ; 1, ,
i j

k i N j Nω = =… … . In those points 

where the real and imaginary parts of determinant (17) are close to zero substantial 

negative spikes occurwhich are displayed on a surface plot and give a picture of the 

configuration of the dispersion curves. The main advantage of this approach is that the 

local minima of the [ ]1 2N N× - matrix of the logarithm are the proper guess values of 

the dispersion equation’s roots. Hence all roots of Eqn. (17) could be found for values 

of wavenumbers ( )ik   on the real axis and on or near the imaginary axis as a function 

of frequency ( )j
ω . Another advantage of this method is that it is much faster than the 

traditional root finding methods and as fast as the method of Honarvar et al. (2008). 

The main disadvantage of this approach is that the roots of characteristic arguments 

( ( )0, 1, , 4k kξ = = … ) are also displayed on the surface plots as obvious artefacts. An 

elaborate discussion of these artefacts is given in Yenwong-Fai (2008). These 

artefacts could be simply detected and eliminated from the dispersion plots by 

program tools. Our algorithm, as it has been implemented, does not search for 

branches of the dispersion relation well away from the real and imaginary axes for k. 

It would be relatively straightforward in principle to locate these additional branches. 



Dispersion curves of bending waves ( )1m =  in the cylinder made from PZT-4 with 

the short-circuit lateral (cylindrical) surface are depicted in Fig. 1 in dimensionless 

coordinates ( ) ( )s

k a
a V

ω 
⋅ ÷ Ω = ⋅ 

, where 44

E

s

c
V ρ= , and  a is the outer radius of 

the cylinder. The picture of the dispersion curves is obtained by a method described 

above for real (propagating waves) and pure imaginary values of the wavenumber in 

the limits ( ) ( ) [ ]Re , Im 0, 8k a k a⋅ ⋅ ∈ , 
( ) [ ]0,14

s
a V

ωΩ = ∈
⋅

 with resolution 500 

(250 - for real and 250 – for imaginary ( )k a⋅ ) ×  250 (
( )s
a V

ω
⋅

) pixels. The same 

resolution is used for Fig. 2 – 17. 

 
Fig. 1. PZT-4 cylinder with short-circuit lateral surface (m = 1) 

 

The first dispersion curve of the propagating waves (real values of the wavenumber) 

tends to an asymptote of the surface wave propagation. It is joined to the second curve 

which tends to the asymptote of the shear waves through the domain of the evanescent 

waves. This picture does not correspond to the results obtained in Siao et al. (1994, 

Fig. 2, 3), where the second branch tends to an asymptote corresponding to a wave 

propagating with phase velocity which is approximately three times higher than the 

shear velocity. On the other hand our result is in full correspondence with the 

corresponding branch of Bai et al. (2004, Fig. 2), where the problem of wave 

propagation in a hollow piezoelectric cylinder was solved by a finite element method. 

Another mismatch between the results of the present paper and Siao et al. (1994, Fig. 

2, 3) is in behaviour of the evanescent waves: our solution displays much steeper 

change of the dispersion curves. A similar steep behaviour of the dispersion curves is 

demonstrated by Bai et al. (2004, Fig. 2). 

 

Dispersion curves of bending waves ( )1m =  in the cylinder made from PZT-4 with 

the open-circuit lateral surface are demonstrated in Fig. 2. It is obvious that the 

electric boundary conditions substantially influence both propagating and evanescent 



waves. For example, in the case of the open-circuit lateral surface the dispersion 

curves are even steeper than the corresponding curves in the case of the short-circuit 

lateral surface. 

 

 
 

 Fig. 2. PZT-4 cylinder with open-circuit lateral surface (m = 1) 

 

In Fig. 3 a conceptual case of reduced electro-mechanical coupling coefficients 

( )15 31 33 33 4
0, 0.001

PZT
e e e e

−
= = =  is shown.  

 
 

Fig. 3. PZT-4 cylinder with reduced electro-mechanical coupling 

( )( )15 31 33 33 4
1, 0, 0.001

PZT
m e e e e

−
= = = =  



 

In Fig. 4 and 5 the dispersion curves of PZT-7A material are presented for the open- 

and short-circuit lateral surfaces respectively. In comparison with PZT-4 this material 

has lower values of the electro-mechanical coupling coefficients but practically the 

same elastic coefficients and mass density.  

 
 

Fig. 4. PZT-7A cylinder with short-circuit lateral surface (m = 1) 

 

 
Fig. 5. PZT-7A cylinder with open-circuit lateral surface (m = 1) 

 

It follows from Fig. 1 - 5 that the first fundamental mode of the bending waves is not 

sensitive to the nature of the electric boundary conditions on the lateral cylindrical 

surface. Furthermore it is practically not sensitive to the measure of electro-



mechanical coupling of the material. The higher order modes are more sensitive to the 

nature of the electric boundary condition as well as to the measure of the electro-

mechanical cross-coupling. Fig. 3 - 5 shows that dispersion curves differ quite 

substantially from the curves in Fig. 1 and 2. This difference is explained mainly by 

the factor that the electro-mechanical coupling coefficients of PZT-7A are less than 

the corresponding factors of PZT-4. It is reflected in undulating behaviour of the 

propagating higher modes as well as the values of the cut-off frequencies. The PZT-4 

cylinder with short-circuit lateral surface demonstrates a negative slope of the fourth 

branch in a quite broad range of wavenumbers (Fig. 1).  Substantial dependence of 

dispersion curves on electric boundary conditions is obvious from the behaviour of 

the curves for the evanescent waves. 

 

The phase velocities of the propagating waves for bending waves ( )1m =  and short- 

and open-circuit lateral surface of the cylinders obtained from Fig. 1 - 2 and Fig. 4 - 5 

are demonstrated in Fig. 6 – 9 for PZT-4 and PZT-7A. 

 
Fig. 6. Phase velocity in PZT-4 cylinder with short-circuit lateral surface (m = 1) 



 
 

 Fig. 7. Phase velocity in PZT4 cylinder with open-circuit lateral surface (m = 1) 

 

 
 

Fig. 8. Phase velocity in PZT7A cylinder with short-circuit lateral surface (m = 1) 

 

 

 



 
Fig. 9. Phase velocity in PZT7A cylinder with open-circuit lateral surface (m = 1) 

  

Dispersion curves of non-axisymmetric waves with the circumferential wavenumber  

2m =  in the cylinders made from PZT-4 and PZT-7A with the open- and close-

circuit lateral surface are depicted in Fig. 10 - 13. Again as for the case 1m =  the 

substantial difference in the dispersion curves behaviour is explained by different 

types of the electric boundary conditions as well as by the difference in the electro-

mechanic coupling coefficients. 

 
 

Fig. 10. PZT4 cylinder with short-circuit lateral surface (m = 2) 

 

 

 



 

 
  

Fig. 11. PZT4 cylinder with open-circuit lateral surface (m = 2) 

 

 

 
Fig. 12. PZT7A cylinder  with short-circuit lateral surface (m = 2) 

   

 



 
 

Fig. 13. PZT7A cylinder with open-circuit lateral surface (m = 2) 

 

Dispersion curves of non-axisymmetric waves with the circumferential wavenumber  

3m =  in the cylinder made from PZT-4 and PZT-7A with the open- and close-circuit 

lateral surface are depicted in Fig. 14-17.   

 

 
Fig. 14. PZT-4 cylinder with short-circuit lateral surface (m = 3) 

 

  

 



 
 

 Fig. 15. PZT-4 cylinder with open-circuit lateral surface (m = 3) 

 

 

 
  

Fig. 16. PZT-7A cylinder with short-circuit lateral surface (m = 3) 

 

 



 
 

Fig. 17. PZT-7A cylinder with open-circuit lateral surface (m = 3) 

 

The dispersion curves of higher circumferential wavenumbers ( )2, 3m =  are sensitive 

to the nature of the electric boundary condition as well as to the measure of the 

electro-mechanical cross-coupling for both propagating and evanescent waves. These 

dispersions curves obtained from the exact solution of the problem could be used as 

references data for developing of reliable finite elements for approximate solution of 

the problems of wave propagation in piezoelectric structures. 

 

4 Summary 
 

The characteristic equation of non-axisymmetric propagating and evanescent waves 

of a piezoelectric cylinder of transversely isotropic material was developed. The 

results were numerically illustrated for sample PZT-4 and PZT-7A cylinders for the 

first three circumferential wavenumbers ( )1, 2, 3m = . Phase velocities of the 

propagating waves were drawn for the bending mode ( )1m = . It was shown that the 

dispersion curves are sensitive both the electric boundary conditions and the measure 

of electro-mechanical coupling. This effect was revealed the more strongly in the 

higher order modes. 

 

 

Appendix 
 

Coefficients of the main determinant (17) for the case ( )Re 0
j

ξ ≠ , ( )1, ,4j = … : 

 

( ) ( ) ( ) ( )21 66 66
11 1 1 1 13 1 31 11 1 12

2 2
1

E E
E E

m m

c c
a J a ik c e c m m J a

a a

ξ
ξ η µ ξ ξ+

 
= + + − + − 

 
, 



( ) ( ) ( )21 1 44 1 15 1 1 1 1

E

m m

m
a ik c e J a J a

a
η µ ξ ξ ξ+

  = − + + −    
, 

( ) ( )66
31 1 1 1 1

2 1
E

m m

c m m
a J a J a

a a
ξ ξ ξ+

− 
= −  

, 

( ) ( ) ( ) ( )22 66 66
12 1 2 2 13 2 31 11 2 22

2 2
1

E E
E E

m m

c c
a J a ik c e c m m J a

a a

ξ
ξ η µ ξ ξ+

 
= + + − + − 

 
, 

( ) ( ) ( )22 2 44 2 15 2 1 2 2

E

m m

m
a ik c e J a J a

a
η µ ξ ξ ξ+

  = − + + −    
, 

( ) ( )66
32 2 1 2 2

2 1
E

m m

c m m
a J a J a

a a
ξ ξ ξ+

− 
= −  

, 

( ) ( ) ( ) ( )23 66 66
13 1 3 3 13 3 31 11 3 32

2 2
1

E E
E E

m m

c c
a J a ik c e c m m J a

a a

ξ
ξ η µ ξ ξ+

 
= + + − + − 

 
, 

( ) ( ) ( )23 3 44 3 15 3 1 3 3

E

m m

m
a ik c e J a J a

a
η µ ξ ξ ξ+

  = − + + −    
, 

( ) ( )66
33 3 1 3 3

2 1
E

m m

c m m
a J a J a

a a
ξ ξ ξ+

− 
= −  

, 

( ) ( )66
14 4 1 4 4

2 1
E

m m

mc m
a J a J a

a a
ξ ξ ξ+

− 
= − −  

,  ( )44
24 4

E

m

imkc
a J a

a
ξ= , 

( )
( )

( )
2

66 4
34 4 1 4 42

12

2

E

m m

m mc
a J a J a

a a

ξ
ξ ξ ξ+

 − 
= − − −  

   
. 

 

For the electric boundary condition 1 0
r a

D
=

= , ( ( )Re 0
j

ξ ≠ ): 

 

( ) ( ) ( )41 1 15 1 11 1 1 1 1

S

m m

m
a ik e J a J a

a
η µ ε ξ ξ ξ+

  = − + − −    
, 

( ) ( ) ( )42 2 15 2 11 2 1 2 2

S

m m

m
a ik e J a J a

a
η µ ε ξ ξ ξ+

  = − + − −    
, 

( ) ( ) ( )43 3 15 3 11 3 1 3 3 S

m m

m
a ik e J a J a

a
η µ ε ξ ξ ξ+

  = − + − −    
, 

( )15
44 4m

imke
a J a

a
ξ= . 

 

For the electric boundary condition 0
r a

φ
=

= , ( ( )Re 0
j

ξ ≠ ): 

 

( )41 1 1ma J aµ ξ= , ( )42 2 2ma J aµ ξ= , ( )43 3 3ma J aµ ξ= , 44 0a = . 

 

Coefficients of the main determinant (17) for the case ( )Re 0
j

ξ = , ( )1, ,4j = … : 

 

( ) ( ) ( ) ( )21 66 66
11 1 1 1 13 1 31 11 1 12

2 2
1

E E
E E

m m

c c
a I a ik c e c m m I a

a a

ξ
ξ η µ ξ ξ+

 
= − + + + + − 

 
, 



( ) ( ) ( )21 1 44 1 15 1 1 1 1

E

m m

m
a ik c e I a I a

a
η µ ξ ξ ξ+

  = + + +    
, 

( ) ( )66
31 1 1 1 1

2 1
E

m m

c m m
a I a I a

a a
ξ ξ ξ+

− 
= − +  

, 

( ) ( ) ( ) ( )22 66 66
12 1 2 2 13 2 31 11 2 22

2 2
1

E E
E E

m m

c c
a I a ik c e c m m I a

a a

ξ
ξ η µ ξ ξ+

 
= − + + + + − 

 
, 

( ) ( ) ( )22 2 44 2 15 2 1 2 2

E

m m

m
a ik c e I a I a

a
η µ ξ ξ ξ+

  = + + +    
, 

( ) ( )66
32 2 1 2 2

2 1
E

m m

c m m
a I a I a

a a
ξ ξ ξ+

− 
= − +  

, 

( ) ( ) ( ) ( )23 66 66
13 1 3 3 13 3 31 11 3 32

2 2
1

E E
E E

m m

c c
a I a ik c e c m m I a

a a

ξ
ξ η µ ξ ξ+

 
= − + + + + − 

 
, 

( ) ( ) ( )23 3 44 3 15 3 1 3 3

E

m m

m
a ik c e I a I a

a
η µ ξ ξ ξ+

  = + + +    
, 

( ) ( )66
33 3 1 3 3

2 1
E

m m

c m m
a I a I a

a a
ξ ξ ξ+

− 
= − +  

, 

( ) ( )66
14 4 1 4 4

2 1
E

m m

mc m
a I a I a

a a
ξ ξ ξ+

− 
= +  

,  ( )44
24 4

E

m

imkc
a I a

a
ξ= , 

( )
( )

( )
2

466
34 4 1 4 42

12

2

E

m m

m mc
a I a I a

a a

ξ
ξ ξ ξ+

  −
 = −  + 

    

. 

 

For the electric boundary condition 1 0
r a

D
=

= , ( ( )Re 0
j

ξ = ): 

 

( ) ( ) ( )41 1 15 1 11 1 1 1 1

S

m m

m
a ik e I a I a

a
η µ ε ξ ξ ξ+

  = + − +    
, 

( ) ( ) ( )42 2 15 2 11 2 1 2 2

S

m m

m
a ik e I a I a

a
η µ ε ξ ξ ξ+

  = + − +    
, 

( ) ( ) ( )43 3 15 3 11 3 1 3 3

S

m m

m
a ik e I a I a

a
η µ ε ξ ξ ξ+

  = + − +    
, 

( )15
44 4m

imke
a I a

a
ξ= . 

 

For the electric boundary condition 0
r a

φ
=

= , ( ( )Re 0
j

ξ = ): 

 

( )41 1 1m
a I aµ ξ= , ( )42 2 2m

a I aµ ξ= , ( )43 3 3m
a I aµ ξ= , 44 0a = . 
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