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Abstract

This paper presents a new technique for the recognition of road
traffic signs. The technique is based on colour and shape anal-
ysis of a single image. It is aimed at the detection and clas-
sification of triangular traffic signs, such as warning and yield
signs. The technique is applied to a set of images obtained from
a camera mounted on a moving vehicle. Good detection and
classification performance is achieved.

1. Introduction

The ability to recognise road and traffic signs is becoming an
important research area in Intelligent Transport Systems (ITS)
and has a number of applications. In driver support systems,
such a system could focus a driver’s attention to road conditions
ahead, such as pedestrians that may be crossing the road or a
change in the allowed speed limit, allowing the driver to take
appropriate action on time. In intelligent autonomous vehicles,
the ability to recognise and interpret such signs could contribute
greatly to their control and safe navigation. For example, a sign
indicating that there is a stop ahead may lead the control system
to reduce the speed of the vehicle. In highway maintenance and
sign inventory applications, the ability to recognise and possibly
to evaluate the condition of the signs, can greatly reduce the
effort in maintaining current road infrastructure.

Traffic signs are designed to have specific saturated colours
that are easily distinguishable from their environment. In South
Africa and many other countries, typical control, prohibition
and warning signs contain red, black and/or white; typical com-
mand and reservation signs contain blue and/or white; and typ-
ical route markers and tourism signs contain green, blue or
brown with white and/or yellow lettering. They also have spe-
cific shapes; command and prohibition signs are circular, warn-
ing signs and yield signs are triangular, reservation, route mark-
ers and tourism signs are rectangular and stop signs are octag-
onal. They are placed near the road surface in a clearly visible
position, usually free from any occlusions. Figure 1 shows ex-
amples of commonly occuring traffic signs.
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Figure 1: Typical traffic signs, showing their unique colour and
shape (from left to right: stop, yield, pedestrians only, 100km/h
speed limit, no u-turn, pedestrian crossing ahead) (note that
images are available in colour).

The fact that traffic signs have unique colours and shapes
are often exploited in algorithms designed to recognise them.
These algorithms typically follow a two step process. In the

detection phase, the position and shape of the signs (if any) in
the image are determined. In the classification phase, the aim is
to assign class labels to the signs that were detected. Detection
and classification usually constitute recognition in the scientific
literature. A third applicability phase may be required to de-
termine whether a given sign in the visual field is applicable
in the current situation or, put differently, to recognise whether
a particular sign is relevant in the current context of the appli-
cation. This is particularly important in applications such as
driver support systems and intelligent autonomous vehicles. Al-
though robust detection and classification algorithms have been
developed, determining the applicability of a sign is a difficult
task that has not been adequately addressed in the literature and
presents an opportunity for future research.

Detection is usually performed on colour images, although
some studies have also been executed on grayscale images.
When colour images are used, segmentation through colour
thresholding, region detection and shape analysis are usually
performed. The choice of colour space is important during the
detection phase. When the RGB colour space is used [1, 2, 3],
thresholding is usually based on relations between the colour
components. Others work in the HSI or HSV colour space [4,
5, 6], where the relations between the components is somewhat
simplified. Other colour spaces, such as LUV [8] and CIECAM
[9] have also been used. Due to the varying colour conditions
that may occur, more extensive approaches have also been de-
veloped. Databases for colour pixel classification are used in
[10] and [11]. Fuzzy classification [12] and neural networks
[13] have also been tried. Border detection on grayscale images
[14] is another approach that have been taken.

Classification can be accomplished by a number of ap-
proaches. Template matching is used in [15] and [16]. Mul-
tilayer perceptrons [1, 17], radial basis function networks [18],
Laplace kernel classifiers [19] and genetic algorithms [4] have
also been studied.

The recognition of traffic signs presents a number of dif-
ficulties, both in terms of the image formation process and in
terms of the environment in which the sign is found. In the im-
age formation process, the size of the sign in the image depends
on its physical size and its distance from the camera and in gen-
eral could be arbitrarily rotated. There will be an aspect modi-
fication in the projection of the sign in the image if the optical
axis of the camera is not perpendicular to the sign (i.e. perspec-
tive distortion). There is also no standard colour associated with
the signs, as the colour will depend on various photometric ef-
fects. In addition, effects such as sensor noise and motion blur
may be present in the image. Difficulties in the environment
in which the sign is found can be divided into four groups, il-
lustrated in Figure 2. The physical condition of the sign may
make recognition difficult, such as the effect of deteriorating
paint quality over time (Fig. 2a), signs that are damaged (Fig.
2b), signs that are incorrectly placed, the presence of graffiti



Figure 2: Difficulties in the recognition of traffic signs: (a) de-
teriorating paint quality, (b) damaged sign, (c) graffiti, (d) gen-
eral deterioration, (e) partial occlusion by a static object, (g)
partial occlusion by a dynamic object, (g) reflections, (h) shad-
ows, (i) low-light conditions, (j) sign not applicable, (k) sign not
applicable, (1) too many signs.

(Fig. 2c) or just general deterioration of the sign (Fig. 2d). Par-
tial occlusions of the sign, both of a static (Fig. 2e) and dynamic
(Fig. 2f) nature, and lighting conditions such as reflections (Fig.
2g), shadows (Fig. 2h) and low-light conditions (Fig. 2i) may
also have a severe influence. Finally, there may be difficulty in
determining the applicability of a traffic sign. In Fig. 2j the yield
sign is only applicable to drivers using the side road, in Fig. 2k
the speed sign is applicable only to the vehicle with which it is
associated and in Fig. 21 there may be general confusion due to
the many signs present.

2. Method

In the work presented here, the interest is in recognising trian-
gular signs such as warning and yield signs. These signs have
ared triangular frame that usually surrounds a black iconic rep-
resentation of an object on a white background. The algorithm
discussed here can be applied to a single image, i.e. it is not de-
pendent on temporal consistencies between successive frames
in a video sequence. It is assumed that the traffic sign is not
occluded by objects in the environment in such a way as to seg-
ment its projection onto the image plane into different regions
or in such a way that the visible portion of the interior of the
sign is fundamentally altered. A further assumption is that the
sign is fully contained in the interior of the image, i.e. it does
not protrude beyond the boundaries of the image.

An overview of the steps in the algorithm is shown in Figure
3. An example of the output of some of these steps is shown in
Figure 4, using the source image shown in Fig. 4a. The steps
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Figure 3: Steps in the recognition of traffic signs.

are discussed in detail in the subsections that follow; here a brief
overview is given.

The image is converted from the RGB to the HSV colour
space, after which an initial threshold is applied to determine
red regions (possible traffic signs) (Fig. 4b - background shown
as white). These red regions are “grown” to include other pos-
sible regions that may qualify but which may not have qualified
during the initial thresholding step. Next, the interiors and exte-
riors (background) of possible signs are marked (Fig. 4c - back-
ground in white, interiors in yellow). This process is likely to
fail in the presence of occlusions, where the interior and exterior
regions are connected and thus not be easily separable. Edges
are then extracted from the image where the interiors touch the
possible signs (Fig. 4d). A component labelling algorithm is
then applied to determine different edge segments that are 8-
connected. Small edge segments that are likely to be noise is
discarded (Fig. 4e). Separate edge segments are tested to de-
termine whether they provide a good fit for a triangle (Fig. 4f).
If such a fit is established, the three vertices of the triangle are
noted. Using these vertices, interpolation based on barycentric
coordinates is applied to map the triangle in the original im-
age onto a new normalised triangle with fixed scale and rotation
(Fig. 4g). This normalisation also aims to reduce the effect of
perspective distortion. Classification is achieved by matching
this normalised triangle to a set of reference templates.

2.1. Colour Conversion

Most digital image formats store a digital image as a series
of two-dimensional arrays, specifying the red, green and blue
(RGB) channels. The first step is to convert each pixel of the
source image to its equivalent in the hue, saturation and value
(HSV) colour space. The HSV colour space provides a con-
venient interpretation of the meaning of colour. The reader is
referred to [22, p.623] for a description of the conversion pro-
cess.

2.2. Image Thresholding

The fact that triangular signs have a characteristic red frame can
be exploited to identify regions in the image that could possibly
contain such signs. The image is thresholded to identify regions



Figure 4: Output of the various steps in the recognition pro-
cess: (a) source image, (b) after thresholding, (c) after back-
ground/interior labelling, (d) after edge finding, (e) after la-
belling and filtering, (f) after shape fitting, (g) after normalised
images have been extracted, (h) after classification.

with red pixels. The output of this process is a mask that speci-
fies for every pixel whether it is adequately red or not.

The hue and saturation components are sufficient in identi-
fying red regions in warning signs. The mask is defined as

1, ifS(z,y) > Ts and
(H(ﬁ,y) <Ty OI'H(LE,y) >1 _TH)7
0, otherwise,

;Ll(x, y) =

M
where T’s is a threshold related to the saturation of the pixel,
and Ty is a threshold related to the hue of the pixel and .S and
H are the saturation and hue respectively at coordinate (x, y).

Since hue values close to 0 and 1 are indicative or red, there
are two conditions related to the hue value. The output of this
step is shown in Figure 4b (object pixels are shown in their orig-
inal colour, background pixels are white).

2.3. Region Growing

For a variety of reasons, such as a sign’s paint that fade over
time or the presence of reflections and shadows, the frame of
the sign may contain regions that are not a highly saturated red
colour. Such regions may not be detected under the mask de-
fined by (1).

Under the assumption that such regions will be close to the
regions identified by (1), and that they will be “somewhat” red,
the mask can be grown to include such regions. The new red
mask p2 is expressed by

1, ifui(z,y)=1or
(S(z,y) > ts and
(H(z,y) <tgorH(z,y) >1—tg)and
I(xo,0) € N(w,y) s.t. pa(wo,yo) = 1),
0, otherwise,

M2($, y) =

(€3

where ts and tz are new threshold values and N(z,y) is a
neighbourhood of (z,y). Note that proximity to a pixel that is
already classified as red is required, but the thresholding condi-
tions are relaxed such that ts < T's and tyr > T'y. The proce-
dure can be applied iteratively, replacing the previous mask by
the new mask, and can be stopped after convergence.

2.4. Background/Interior Labelling

At this stage, it is undecided whether a given non-object pixel
(corresponding to a O in the mask) is internal or external (back-
ground) to the object.

As was previously mentioned, the assumption is made that
the sign is fully contained in the interior of the image (we are not
making predictions about signs that protrude across the bound-
aries of the image). Under this assumption, all internal pixels
are completely surrounded by at least a single line of object pix-
els. No internal pixels are thus found in the boundary (the first
and last rows and columns) of the image.

We can exploit this assumption by noting where mask
boundary that have a value of 0 and correspondingly marking
them as background. Using these coordinates as seed values, we
recursively find 4-connected pixel neighbours, and each such
neighbour which also has a mask value of 0 is then also marked
as background. After the recursion process, all coordinates with
a mask that has a value of 0 and which has not been marked as
background are interior pixels. It is possible for remaining val-
ues not to be “true” interiors but rather to exist due to the bound-
aries of the objects surrounding them touching each other. How-
ever, such regions will be completely surrounded by the object
boundaries and thus cannot be distinguished from true interiors.

Mathematically, this can be expressed as

L if pe(w,y) = 1,
—1, if3(zo,yo) € B s.t. there exists
a 4-connected path P between (x,y) and
(zo,yo) s.t. p2(wi, yi) = OV(zi,y:) € P,
0, otherwise,
3)

where B is the set of pixel coordinates defining the boundary of
the image, P is a set of pixel coordinates defining a 4-connected
path between (20, y0) and (z,y)..

The output of this step is shown in Figure 4c, where yellow
is used to indicates an internal pixel and white a background
pixel. Object pixels are shown in their original colours.

M3($7 y) =

2.5. Edge Finding

The next step in the algorithm is to find the pixels corresponding
to the object-interior edges. An edge in this context is defined
as any interior pixel that is 4-connected to an object pixel, and
is given by

1, if pus(z,y) =0and
(us(z+1,y) =1lorpus(z—1,y)=1lor
pa(z,y +1) = Lorps(z,y —1) = 1),
0, otherwise.
)

The output of this step is shown in Figure 4d, where a black
indicates an edge and a white a non-edge.

/J/4(.’L‘7 y) =

2.6. Labelling and Filtering

A connected component labelling algorithm is applied to the
mask to determine which edges are 8-connected. A two-pass
algorithm is applied. In the first pass, an initial labelling of



Figure 5: Connection points (indicated in red) used for line fit-
ting.

the edges in single scan lines is performed. Labelling conflicts
between successive scan lines are noted. On completion of the
first pass, the union find algorithm [20, pp. 441-440] is applied
to resolve labelling conflicts. A second pass is performed to
re-label each of the original edge labels.

The labelling algorithm produces a new mask ps. A posi-
tive value of ¢ = ps(z, y) indicates that the coordinate (z, y) is
associated with the i’th edge object.

The area of each edge object is calculated as

L _ 1, ifps(xy) =1,
Ai = Z a;, where a; = { 0, otherwise, ®)
s

where the sum is taken over all image coordinates (z,y). Edge
objects with a large enough areas are retained, that is edge ob-
jects for which A; > T4, where T4 is a threshold specifying
the minimum area. The step is likely to filter out edge objects
that are present due to noise. In addition, edge objects that cor-
respond to small areas for which a classification would in any
case not be possible are filtered out.

The output of this step is shown in Figure 4e, where differ-
ent colours are used to represent the different edge objects that
are retained.

2.7. Shape Fitting

The previous step will retain all edge objects that have a large
enough area to merit further consideration. In this step, the
objective is to determine whether these edge objects provide a
good fit to a triangle. The approach taken is to fit various lines
through edge pixels. An algorithm such as RANSAC could be
applied for this purpose, but a deterministic approach is sought
for robust detection.

This is achieved by means of “connection points” (illus-
trated in Figure 5). Given the bounding box of the edge object,
the connection points are defined as the most top-left, top-right,
right-top, right-bottom, bottom-right, bottom-left, left-bottom
and left-top pixel coordinates in the bounding box that form
part of the edge object. Connection points with the same coor-
dinates are noted as a single point. There are thus a maximum
of 8 unique connection points. Let N be the number of such
unique points.

A line segment is fitted through successive pairs of succes-
sive connection points (modulo V), using their coordinates as
beginning and end points for the line segment. For each such
line segment, the closest distance d from each edge object co-
ordinate to the line segment is calculated. All edge object co-

ordinates within a distance d < D are noted. Let the number
of such points be S; (i varies from 1 to IN). This represents a
score associated with the line segment i. For each line segment,
a linear least squares approximation is performed to determine
the equation of a line that fits through the S; points.

The N lines are now sorted according to the score S; asso-
ciated with each line, in descending order. Some of these lines
may be associated with the same side of a triangle and thus need
to be filtered out. To achieve this, a new list of lines is created.
Working in descending order of score, a line is added to the
new list if it has a non-overlapping angle with any of the lines
already in the list. Two lines are overlapping if their angular
difference is less than a threshold 7p. The three top scoring,
non-overlapping lines are used for triangle estimation. If there
are less than three such lines, the detection process is stopped.

The sum of the scores associated with these three lines is
noted (filtering out coordinates that contribute more than once
in each of the individual scores). Let the sum of these scores
be S. For a good fit, it is required that S > ks A;, for some
0 < ks < 1. If such a good fit exists, the intersection
points of the three lines are determined. Let these points be
P, = (zi,v:),4 = 1,2,3. A final test is performed to de-
termine whether these intersection points are within a certain
distance from the bounding box of the edge segment and within
the bounds of the image. If this is the case, it is assumed that a
triangle is successfully detected.

A distinction is made between the “yield” (pointing to the
bottom) and “warning” (pointing to the top) configuration of
the triangle. Let yp,qn represent the minimum of the three tri-
angle y-coordinates and ¥maq. the maximum. The yield config-
uration is assumed if two of the y-coordinates of the triangle
are less than Y™04uma and the warning configuration is as-
sumed otherwise. The coordinates P; defining the triangle are
reordered. In the case of the yield configuration the order is
top-left, top-right, bottom-centre and in the case of the warning
configuration the order is top-centre, bottom-left, bottom-right.

The output of this step is shown in Figure 4f, where the
detected triangle sides are indicated in red.

2.8. Image Normalisation

A normalised image with dimensions L x L pixels is now cre-
ated. A useful choice, if multiresolution techniques is to be
applied, is to let L be of the form 2". In the case of the yield
configuration, the coordinates defining the normalised triangle
is given by p1 = (0, 0), p2 = (0, L-1) and p3 = (£51, L-1) and
in the case of the warning configuration, these coordinates are
p1 = (0, %), p2 = (L-1, 0) and p3 = (L-1, L-1). A mapping
is required that will map the triangle defined by the coordinates
P; in the original image to a triangle defined by the coordinates
p; in the normalised image.

To achieve this, barycentric coordinates are used. A point
p = (z,y) within the bounds of the triangle defined by the p;
coordinates is expressed as p = wip1 + wap2 + wsps, where
w; are weights such that w1 + w2 + w3 = 1. [w1, we, w3] are
the barycentric coordinates. For a warning configuration, the
coordinates are given by

—1
wl—ﬁy"_l (6)
-1 1 1
- - 7
=T At T e —nY e ™
w3:17w17w2, (8)



and for the yield configuration, the coordinates are given by

w3=ﬁy ©)

1 1
T Y a0
w1=1—w2—’w3. (]])

The barycentric coordinates are calculated for each pixel in the
normalised image that lies within the triangle. A corresponding
point P in the original image is then calculated as P = w1 Py +
w2 P> + w3 P3. Using this coordinate, bilinear interpolation is
applied to determine a red, green and blue value for the pixel in
the normalised image.

2.9. Classification

A grayscale version of the normalised image is calculated. The
classification approaches taken for warning and yield signs are
slightly different. For warning signs a binary image is created
from the grayscale image through thresholding. Due to the pos-
sible variety of lighting conditions, a single threshold value will
not be sufficient in all cases. To address this, a dynamic thresh-
olding algorithm as described in [22, pp. 599-600] is imple-
mented. The histogram of the grayscale values is calculated.
The objective is to find a threshold value that will clearly dis-
tinguish between dark and light regions in the image, which is
akin to finding a “good” separation between the two peaks in
the histogram. The median grayscale value is chosen as the ini-
tial threshold. Two means are calculated: the mean of pixels
darker than the threshold and the mean of pixels lighter than the
threshold. The average of the two means is taken as the next
threshold value. Threshold values are iteratively calculated un-
til convergence is achieved.

Let b(x,y) represent the resulting binary image with di-
mensions L X L. The geometric mean of the binary image is
calculated as

L-1L-1 L-1L-1

(mevmy) = 3 (3 3 (1=bla )z, 3 3~ (1=ba))

=0 y=0 =0 y=0

12)
where the values 0 and 1 in the binary image represent black
and white respectively and NN; is the number of black pixels.

The binary image is compared to a set of reference tem-
plates. This is achieved by aligning the binary image with each
reference template by their mean coordinates and calculating
the number of pixel differences ¢, in the intersection of the bi-
nary image with the i*" reference image. Let dirn, be the mini-
mum over all §; and [ the index associated with the minimum.
The sign is classified as belonging to class I if dpin < Ts,
where T is a threshold specifying the maximum allowed dif-
ference between the image and the template. If the minimum
distance is larger than the threshold, no classification is made.

For yield signs the approach taken is different. Since the

Transport in South Africa [21]. From these sheets, the templates
for 87 warning signs (which is further subdivided into road lay-
out signs, direction of movement signs and symbolic signs) and
two yield signs were created.

The colour threshold parameters used were T's = 0.75, Tx
=0.05,%t5 =0.5 and tg =0.1. The area threshold was set at T'4
= 50 pixels. The neighbourhood operation in Equation 2 was
taken to mean 8-connected pixels. For line fitting, D = 2 pixels,
Ty = 5 degrees and ks = 0.9 was used. Images were normalised
to L = 256 pixels in the vertical and horizontal dimensions. No
threshold was applied during classification, that is 75 = oo.

The algorithm was tested on images extracted from a num-
ber of video sequences. The images were captured at a reso-
lution of 640 x 480 pixels in RGB format and with 8 bits per
channel. Video sequences 1 to 5 were captured under good
daylight conditions, with the focus on a specific traffic sign(s)
and with the sign occupying a relatively large area of the image
(from 26 to 235 pixels in the horizontal dimension). Video se-
quences 6 to 8 were captured from a moving vehicle, with the
camera pointed forward in the direction of the vehicle move-
ment, so that different signs are present in the video. These
videos present a greater challenge, since the signs are relatively
small (from 20 to 60 pixels in the horizontal dimension) and the
camera is not always focussed on them.

The results obtained by applying the algorithm are shown
in Table 1. Classification was attempted only on signs where
a true positive detection was made. To describe the results of
the detection and classification processes in a meaningful way,
the positive predictive value (PPV) was defined as PPV =
% and the sensitivity as SN = W%. Note
that a classification is attempted for each detection (15 = 00).
the PPV and sensitivity values may be improved by rejecting
detections for which there is a low confidence in correct classi-
fication.

As may be expected, the PPV and sensitivity are signifi-
cantly better for video sequences 1 to 5 than for sequences 6
to 8. An analysis of the images for which errors occurs reveals
that false negatives are mainly the result of the signs having a
darkish red colour that is not detected through the thresholding
process. Noise on the object-interior boundary also result in de-
tection failures. False positives are mainly the result of areas in
the background (such as ground or buildings) that masquerade
as reddish areas that surround a triangular interior. Classifica-
tion errors are typically the result of a weak triangular fit that
rotates the normalised image.

Table 1: Summary of the results obtained using the algorithm
described in this paper (legend: PR - (horizontal) pixel range,
#S - number of signs, TPD - true positive detections, FPD - false
positive detections, FND - false negative detections, C - correct
classifications, PPV - positive predictive value, SN - sensitivity).

proper yield sign consists only of light pixels, a dynamic thresh- [ No | PR | #S [TPD [FPD [FND [ C [ PPV | SN |
olding technique would fail, thus necessitating a different tech- 1 53-137 | 640 | 635 4 51635 ] 994 [ 99.2
nique. The Euclidean distance between the grayscale image and 2| 26-124 | 484 484 2 01| 483 | 994 | 99.8
the template image is calculated and the class associated with 3 | 192-235 | 244 244 4 0| 244 | 984 | 100
the minimum distance is assigned. Since there are only two 4 | 61-107 | 354 | 354 13 01354 | 965 | 100
types of yield signs, this approach works well. 5 | 107-204 | 198 198 9 0| 198 | 95.7 | 100
6 20-60 95 68 1 27 59 | 855 | 62.1
3. Results and Discussion 7| 2055 | 115 | 104 2 11| 94 | 88.7 | 81.7
8 21-57 102 93 0 9 84 | 903 | 824

To create the template images, reference sheets of the offi-
cial traffic sign designs were obtained from the Department of



4. Conclusions and Future Work

The paper presents a new algorithm for the detection and clas-
sification of triangular traffic signs such as warning and yield
signs, using colour and shape cues. The algorithm offers robust
recognition capabilities under normal daylight conditions in the
absence of occlusions.

The algorithm can be extended to other classes of traffic
signs, such as control, command and prohibition signs. The
approach for these signs could be similar to the approach pre-
sented in this algorithm, except that additional colours are used
in the threshold process and that other types of shapes (ellipses,
octagons, etc.) need to be fitted. In the case of command and
prohibition signs, an additional difficulty that needs to be ad-
dressed during the normalisation step is to produce a normalised
image that is rotation invariant. A more difficult challenge is the
recognition and interpretation of sign boards, where there is no
standard template and each such sign needs to be interpreted
individually for its content.

An important problem to address is the presence of occlu-
sions. The approach presented here is applicable only in the
case where occlusions do not intersect the object such that its
interior and exterior are connected. One way to solve this prob-
lem is to search directly for object-interior boundaries. This
could be accomplished by a metric that specifies the extent to
which two adjacent pixels are red and white respectively (or
other colours for the other classes of signs). These “fuzzy”
edges could be thresholded and the algorithm could proceed
with labelling and filtering, shape fitting, etc.

The work also needs to be extended to track a traffic sign
across multiple frames in a video sequence.
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