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A single tile from the gridded 
MODIS products, spanning 
a region of interest of 

approximately 10° by 10°, is stored 
as an image containing close to six 
million pixels, with data in multiple 
spectral bands for each pixel. Time 
series analyses of sequences of such 
images in order to perform automated 
change detection is a topic of growing 
importance. 

Traditional storage formats store such 
a series of images as a sequence of 
individual files, with each file internally 
storing the pixels in their spatial 
order. To construct a time series of a 
single pixel through time using such 
traditional storage solutions would 
require accessing hundreds of very 
large files, resulting in significant 
overheads which limit high-throughput 
analyses. 

Introduction and background

The management of sequences of very 
large images can be divided into two 
groups: database management systems 
(DBMS) and data files. Using a DBMS, 
images are imported into and stored 
using the database internal format. The 
DBMS usually has a relational database 
model where data is perceived as a 
structured table. This format is not 
suitable for the storage of large and 
complex multidimensional discrete 
data such as image sequences. The 
data model implies that pixels are 
stored in tables or fixed size binary 
large objects (BLOBs). BLOBs are 
unstructured sequences of bytes and, 
hence, not easily compatible with some 
of a DBMS’s native types. User defined 
procedures for data analysis suffer the 
same fate [1]. Database and related 
technologies must be combined in 
order to serve the scientific world since 

support for efficient multidimensional 
data retrieval is limited [2, 3 and 4]. 

Techniques for raster data storage 
and efficient access in databases have 
been presented in the literature. Reiner 
et al show that a tiling scheme is the 
most effective strategy for handling 
large image data in a database [5]. 
Data is split up into sub-images and 
when a region of interest is requested, 
only the relevant tiles are accessed, 
resulting in significant I/O bandwith 
savings. Baumann et al incorporate 
tiling, spatial indexing and compression 
strategies into their raster database 
[2, 6]. Compression improves disk 
I/O bandwidth efficiency, while spatial 
indexing allows quick retrieval of the 
identifier and location of a required 
tile. The CONCERT architecture uses 
arbitrary length sequences of fixed 
page sizes to store image data (tiles) 
[7]. These page ranges allow a single 
linear address space to be accessed 
directly. Data buffering is controlled 
using memory mapping of disk pages.

Databases do not intrinsically support 
large n-dimensional arrays, nor do 
they support efficient mapping of them 
to one-dimensional space. Hence, 
flat file storage of large satellite 
imagery is an attractive option for 
data management and retrieval. The 
overhead incurred by using a database 
is avoided because the file metadata 
becomes the “manager”. Several data 
files can cumulatively store terabytes of 
information which makes them popular 
in the scientific community. 

Data formats such as HDF51 and 
NetCDF are platform independent, 
self-describing and support the storage 
of multidimensional arrays [8, 9]. 
They can be viewed as database 
systems since they have a schema 

for metadata and data manipulation 
strategies. Previous comparisons 
between HDF5 and NetCDF have looked 
at their parallel implementations: 
Li et al compare parallel NetCDF and 
HDF5 in a series of tests, concluding 
that parallel NetCDF achieves higher 
parallel performance than HDF5 [10]. 
In contrast, other researchers show 
that the two file formats are, in fact, 
comparable in performance [11].

Several experiments have been 
conducted in the domain of large 
array storage and its optimised I/O. 
Array chunking and its effects on 
I/O performance within the context 
of the HDF file format is reported 
in Velamparapil [12]. Sarawagi 
and Stonebraker [13] describe 
methods for efficient organisation of 
multidimensional arrays in POSTGRES. 
These methods include partitioning 
of arrays and array duplication for 
different query patterns. Seamons 
and Winslett [14] also implement 
array chunking, interleaving of data 
(clustering) and interleaving of different 
data types on disk for efficient I/O 
of arrays. An implementation of a 
scientific data manager is presented in 
Choudary et al [15]. This system uses 
a database to store metadata – search 
patterns, access history and file offsets 
– and files to store the data.

Proposed time-sequential data 
structure

Sequences of images stored in 
discrete files on disk in their original 
2D ordering are not efficient for 
time series analysis due to the I/O 
overhead incurred when constucting 
a 1D profile through time. Hence, a 
specialised per-pixel, time sequential 
data model and data storage method 
must be implemented for improved I/O 

Efficient temporal access  
of satellite image data

by Asheer Bachoo, Frans van den Bergh, and Albert Gazendam, CSIR

Recent improvements in sensor technology, together with increases in data acquisition frequency, have 
resulted in a surge in satellite data volume.

1The HDF Group, http://hdf.ncsa.uiuc.edu/HDF5/



technicalGIS

PositionIT - Nov/Dec 2008	 35 

efficiency. The time-series data will be 
stored in a large single data file. 

Fig. 1 illustrates the way data 
will be structured in the proposed 
time-sequential representation. Each 
spatial pixel coordinate (x,y) is mapped 
to a unique number i=yxC□x where C is 
the number of columns in the original 
two-dimensional image. The entire time 
series at that coordinate is then stored 
as a row in the new table, as shown in 
Fig. 1, where the columns represent 
the time dimension, and the row index 
corresponds to the pixel identifier i. 
Since the original two-dimensional 
grid has effectively been 
serialised, two-dimensional queries 
(e.g. extracting a rectangular region on 
a map) will now be decomposed into 
a set of row queries in the new table. 
Pixels that were horizontal neighbours 
in the spatial representation are now 
consecutive rows in the serialised 
representation, which implies that 
the contiguity of rows of pixels in the 
spatial representation is preserved. 
This allows operating system level 
read-ahead and caching to be 
exploited.

•	 There will be just the default root 
group i.e. just the root node. 

•	 Global variables, such as image 
height and width and projection 
information, will be stored in the 
header. 

•	 Each image band, captured 
over time, is represented as a 
two-dimensional array dataset 
that is a child of the root node. 
Hence, storing n bands will imply 
the creation of an HDF5 file with n 
datasets. Band data is separated so 
that additional bands, if required, 
can be added to the file at a later 
stage. Arrays will be implemented 
as extendible (unlimited size). 
These arrays will be chunked. 

Alternatively, all the bands at a single 
pixel location for a single timestep can 

be grouped as one element using an 
HDF5 compound data type. This results 
in a data structure having the same 
structure described above except that it 
will contain just a single dataset.

NetCDF

NetCDF encompasses multidimensional 
data in regularly spaced grids. Only 
NetCDF version 3 is considered in 
this paper, since NetCDF version 4 
is similar to HDF5. Some limitations 
inherent to the NetCDF format are: 
i) sizes larger than 4 GB are difficult 
to handle; ii) only one dimension may 
be unlimited in size and iii) limited 
number of datatypes. The strength of 
NetCDF lies in its contiguous layout 
and its single header file, which means 
there is little overhead in the data 
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Fig. 1: Storing time series data  
seqentially per-pixel.

Data structures

A number of file formats are available 
for multidimensional data storage. 
We consider HDF5, NetCDF and a 
native file system approach for the 
implementation of the per-pixel data 
structure representation.

HDF5

The HDF5 data model consists of two 
primary types of objects: datasets 
and groups. Datasets are arrays of 
multiple dimensions where a cell is 
a simple or compound HDF5 data 
type. Groups facilitate the creation of 
data dependencies. The HDF5 data 
format supports unlimited file sizes 
and an unlimited number of objects, 
highly generalised data types, spatial 
set operations, performance options 
(e.g. chunking, compression and data 
shuffling), parallel I/O and unlimited 
dimension sizes. The following HDF5 
structure is proposed: 

Data structure type

Spatial subset Time sequential Original images 

1×1 0,048 ± 0,066 33,524  ± 22,732

3×3 0,057 ± 0,070  31,174  ±  6,941 

100×100 3,852 ± 0,595 131,070 ± 50,068 

50×200 2,327 ± 0,369 188,956 ±  9,048 

200×50 9,802 ± 2,637 149,638 ±  4,348

Table 1: Mean query time (seconds) using a time-sequential data structure 
versus the original image format.

Partition type Throughput (MB/s)

S2 uncompressed 56,78 ± 0,88

S2 compressed 69,06 ± 2,49

S3 uncompressed 83,32 ± 0,96

S3 compressed 81,39 ± 0,30

Table 2: Raw sequential I/O throughput of 
the various partitions 

Data structure type

Partition type FS H5 H5_C NC

S2 uncompressed 25067 ± 6000 38249 ± 1855 15770 ± 585 14409 ± 1160 

S2 compressed 18365 ± 1794 26283 ± 1013 14802 ± 461 14547 ± 1050

S3 uncompressed 20010 ± 1743 29808 ± 1082 13953 ± 741 12771 ± 819

S3 compressed 19767 ± 3050 24015 ± 484 13901 ± 360 11128 ± 1046

Table 3: Mean query time (microseconds per time series) for small queries 

Data structure type

Partition type FS H5 H5_C NC

S2 uncompressed 1650,4 ± 47,6 405,0 ± 21,3 246,6 ± 25,8 239,1 ± 2,9 

S2 compressed 1436,4 ± 177 324,0 ± 19,5 248,8 ± 24,4 221,4 ± 2,6 

S3 uncompressed 1251,9 ± 9,9 387,2 ± 18,7 232,4 ± 23,4 225,1 ± 2,0

S3 compressed 1246,5 ± 11,9 291,5 ± 20,3 218,9 ± 23,9 200,3 ± 2,2

Table 4: Mean query time (microseconds per time series) for large queries.
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management. Variable size arrays in 
NetCDF are supported by introducing 
record variables. In our case, a variable 
is a sequence of time-series profiles 
and the record is a single time series 
signal. To allow the variable to grow 
in the unlimited direction, the fixed 
size records are interleaved along the 
unlimited dimension. The NetCDF3 
64-bit offset was enabled to allow for 
file sizes greater than 4 GB. The file 
is structured in the same way as the 
HDF5 - n variables (array or datasets) 
are created for the n bands that we 
wish to store. A spatial block query, as 
in HDF5, will be decomposed into a set 
of row queries.

Filesystem data structures

A file system provides an ideal 
mechanism to store time series data 
in a per-pixel fashion: simply store 
the entire time series associated with 
a given (x,y) coordinate in a separate 
file. An interface was developed to map 
a pixel coordinate to its corresponding 
pixel identifier, which is translated to a 
filename; this method leaves the bulk 
of the management of the data storage 
to the operating system. Since the 
data structure is expected to contain 
on the order of millions of files (each 
representing an entire time series at a 
given location), a three-level directory 
structure was created to avoid the 
expected performance degradation 
that a filesystem experiences when 
too many files are created in a single 
directory. Like with the compound 
datatype HDF5 data structure, the 
internal format of each pixel-file was a 
band-interleaved representation. 

This type of data structure has 
several disadvantages: fixed size 
operating system disk blocks result in 
a significant amount of wasted disk 
space (slack space), a file has to be 
opened (and closed again) for every 
location read, and the three-level 
directory structure implies that at least 
four filesystem metadata reads must 
be performed to read each file. On 
balance, the strengths of this approach 
are its relative simplicity, good 
portability and the ease with which new 
data can be appended.

File setup

Default settings were used to configure 
the various file formats. These 
parameters are described in more detail 
in the HDF5 and NetCDF reference 

manuals. The native file system 
contains binary data in multiple flat 
files and does not have any adjustable 
parameters. The data structures are all 
implemented on top of the zettabyte 
file system (ZFS), and were accessed 
over a Gigabit Ethernet network using 
the NFS version 3 protocol.

Experimental results

Experiments were conducted on 
the CSIR’s C4 cluster. A set of 
314 MOD09A1 data product images 
were used in these experiments. 
Bands 0, 7 and 12 were imported into 
the data structures, corresponding 
to surface reflectance (16 bits per 
sample), date flags (16 bits per 
sample) and quality flags (32 bits 
per sample) respectively, all at 
500 m resolution. Five spatial access 
patterns, with respect to the 2D image 
representation, were considered for 
experimental analysis, resulting in block 
sizes of 1×1, 3×3, 100×100, 50×200, 
and 200×50 pixels. Given a single 
spatial extent as described above, the 
entire time series is retrieved from a 
data structure (314 time steps) for the 
given block of (x,y) coordinates. To 
avoid the effects of file caching, each 
location in a given data structure is 
only read once in each experiment. 
This is achieved by partitioning the 
data structure into 64 non-overlapping 
regions (corresponding to blocks of 
300×300 pixels in image coordinates); 
queries within each of these blocks are 
also guaranteed to be non-overlapping. 
Each test run thus produces 64 timing 
results for each of the five block sizes 
specified above.

Comparison of spatial and 
time-sequential representations

A performance baseline was established 
by performing the time series queries 
on the traditional image-based format. 
This approach involves opening each 
of the 314 files for every time step 
of every query. To facilitate later 
comparisons, the same queries were 
executed on an HDF5 time-sequential 
data structure. The results presented 
in Table 1 clearly show the advantage 
of the time-sequential representation. 
Note that even in the worst-case, 
the time-sequential representation is 
faster than the traditional image-based 
structure by a factor of 15. 

Comparison of time-sequential data 
structures

Having established the benefit of a 
time-sequential representation over an 
image-based representation, we now 
investigate the relative performance of 
four time-sequential formats. Four data 
structures are created and stored on a 
RAID2 storage system. 

A stripe of two and three disks denoted 
S2 and S3 are implemented using 
the ZFS. ZFS offers on-the-fly data 
compression, so partitions with and 
without the compression were included. 
A second replication of each partition 
was created to measure the impact 
of a data structure's physical location 
on the disks. The four data structures 
are: an HDF5 implementation using 
separate datasets for each image band 
(H5); HDF5 using a compound data 
type for storing band data (H5_C); the 
NetCDF format (NC) and the native 
filesystem data structure (FS). 

From empirical tests, the HD5 chunk 
size is set to 1×314. Effectively, a 
total of 32 data structure/partition 
combinations were created : 4 data 
structure types × 2 RAID striping 
options × 2 compression options × 2 
replications. When reading NetCDF and 
HDF5 data structures, file handles were 
kept open during all the queries i.e., 
the data structures were only opened 
once. The mean throughput of each of 
the partition types is listed in Table 2. 

To reduce the volume of data, the 
spatial queries were grouped in small 
(1×1, 3×3) and large (100×100, 
50×200, 200×50) queries. Within each 
of these groups, the queries times 
of the components were averaged 
and normalised to represent the time 
required to retrieve a single time 
series. The results of the small queries 
experiment are presented in Table 3. 

Despite all the arguments against the 
FS data structure implementation, it 
performed better than the H5 data 
structure on these small queries. Note 
that the NC data structure offered 
the best performance, regardless 
of the partition type. Even on the 
fastest partition type, effective NC I/O 
throughput is only 0,215 MB/s, or 
0,264% of the available sequential 
I/O throughput, which highlights 
the inefficiency of such small read 
requests.

2 Redundant Array of Independent Disks. A RAID system uses two or more disks simultaneously to improve I/O performance.
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The results for the large queries are 
presented in Table 4. On the larger 
reads, the overheads of the FS data 
structure (opening a file for every 
pixel read) becomes the dominating 
factor, causing it to finish last in this 
experiment. The NC data structure 
still produced the best overall results, 
although the difference between 
the NC and H5_C data structures is 
comparatively small. Effective I/O 
throughput with the NC data structure 
on the compressed S3 partition rises to 
11,97 MB/s, or 14,7% of the available 
sequential I/O throughput.

Conclusion

The NC data structure provides the 
highest achievable throughput for both 
small and large queries. The H5_C 
format provides similar performance 
but is ranked second. The RAID 
options had a predictable result: S3 
performed better than S2 on both 
the raw throughput tests as well as 
the data structure query tests, which 
indicates that network bandwidth is 
not yet a limiting factor. Owing to the 
high compressibility of the quality 
flag band data, the compressed 
partitions performed better than their 
uncompressed counterparts, providing 
additional proof that network bandwidth 
is still adequate. Future work will focus 
on improved compression strategies, 
since compression appears to improve 
performance without additional 
investment in hardware.

Acknowledgement

This paper was presented at the 
Free and Open Source Software for 
Geospatial Conference 2008 (FOSS4G 
2008) and is published here with the 
permission of the authors.

References

[1] 	 S Abiteboul, R Agrawal, B Bernstein, 
M Carey, S Ceri, B Croft, D DeWitt, 
M Franklin, HG Molina, DG Awlick, 
J Gray, L Haas, A Halevy, J Hellerstein, 
Y Ioannidis, M Kersten, M Pazzani, M 
Lesk, D Maier, J Naughton, H Schek, T 
Sellis, A Silberschatz, M Stonebraker, 
R Snodgrass, J Ullman, G Weikum, 
J Widom and S Zdonik:  'The Lowell 
database research self-assessment', 
Communications of the ACM, vol. 48, 
no. 5, pp. 111–118. 2005.

[2] 	 P Baumann, E Diedrich, C Glock, 
M Lautenschlager and F Toussaint: 
'Large-scale multidimensional coverage 
databases', in 26th GITA Annual 
Conference, 2003.

[3] 	 J Skiffington and K McKelvey: 'Raster 
in the database', in GEOconnexion 
International Magazine, pp. 22–23, 
2007.

[4] 	 J Gray, DT Liu M Nieto-Santisteban, 
A Szalay, DJ DeWitt and G Heber: 
Scientific data management in the 
coming decade, SIGMOD Record, vol. 
34, no. 3, pp. 34–41, 2005.

[5] 	 B Reiner, K Hahn, G Hofling, and P 
Baumann: 'Hierarchical storage support 
and management for large-scale 
multidimensional array database 
management systems', in Database 
and Expert Systems Applications: 13th 
International Conference, pp. 689–700, 
2002.

 [6]	 P Baumann, P Furtado, R Ritsch 
and N Widmann: 'The RasDaMan 
approach to multidimensional database 
management', in Proceedings of the 
SAC’97, pp. 166–173, 1997. 

[7]	 L Relly, H-J Schek, O Henricsson, and 
S Nebiker: 'Physical database design 
for raster images in CONCERT', in 
Advances in spatial databases, vol. 
1262, pp. 259–279, Springer Berlin/ 
Heidelberg, 1997.

[8]	 R Rew and G Davis, 'The Unidata 
netCDF: Software for scientific 
data access', in Sixth International 

Conference on Interactive Information 
and Processing Systems for 
Meteorology, Oceanography and 
Hydrology, pp. 33–40, 1990.

[9] 	 CJ Tan, JAR Blais and DA Provins: 
'Large imagery data structuring using 
hierarchical data format for parallel 
computing and visualization', in High 
Performance Computing Systems 
and Applications, Kluwer Academic 
Publishers, 2000.

[10]	J Li, W-K Liao, A Choudary, R Ross, R 
Thakur, R Latham, A Siegel, B Gallagher 
and M Zingale: 'Parallel netCDF: A high-
performance scientific I/O interface', in 
Supercomputing 2003.

[11]	CM Chilan, M Yang, A Cheng, and L 
Arber: Parallel I/O performance study 
with HDF5, a scientific data package, 
The HDF Group. 2006. Viewed February 
2008, http://hdf.ncsa.uiuc.edu/HDF5/. 

[12]	G Velamparapil 'Data management 
techniques to handle large data arrays 
in HDF', Master’s thesis, Graduate 
College of the University of Illinois, 
1998.

[13]	S Sarawagi and M Stonebraker: 
'Efficient organization of large 
multidimensional arrays', in ICDE: 
10th International Conference on 
Data Engineering, IEEE Computer 
Society Technical Committee on Data 
Engineering, 1994.

[14]	KE Seamons and M Winslett: 'An 
efficient abstract interface for 
multidimensional array I/O', in 
Supercomputing 1994, pp. 650–659, 
1994. 

[15]	A Choudary, M Kandemir, J No, G 
Memik, X Shen, W Liao, H Nagesh, 
S More, V Taylor, R Thakur and R 
Stevens: 'Data management for 
large-scale scientific computations in 
high performance distributed systems', 
Cluster Computing, vol. 1, pp. 45–60, 
2000.

Contact Asheer Bachoo,  
Meraka Institute, CSIR,  
Tel 012 841-3787, abachoo@csir.co.za   


