
GIS
technical

34 	 PositionIT - Nov/Dec 2008

A single tile from the gridded
MODIS products, spanning
a region of interest of

approximately 10° by 10°, is stored
as an image containing close to six
million pixels, with data in multiple
spectral bands for each pixel. Time
series analyses of sequences of such
images in order to perform automated
change detection is a topic of growing
importance.

Traditional storage formats store such
a series of images as a sequence of
individual files, with each file internally
storing the pixels in their spatial
order. To construct a time series of a
single pixel through time using such
traditional storage solutions would
require accessing hundreds of very
large files, resulting in significant
overheads which limit high-throughput
analyses.

Introduction and background

The management of sequences of very
large images can be divided into two
groups: database management systems
(DBMS) and data files. Using a DBMS,
images are imported into and stored
using the database internal format. The
DBMS usually has a relational database
model where data is perceived as a
structured table. This format is not
suitable for the storage of large and
complex multidimensional discrete
data such as image sequences. The
data model implies that pixels are
stored in tables or fixed size binary
large objects (BLOBs). BLOBs are
unstructured sequences of bytes and,
hence, not easily compatible with some
of a DBMS’s native types. User defined
procedures for data analysis suffer the
same fate [1]. Database and related
technologies must be combined in
order to serve the scientific world since

support for efficient multidimensional
data retrieval is limited [2, 3 and 4].

Techniques for raster data storage
and efficient access in databases have
been presented in the literature. Reiner
et al show that a tiling scheme is the
most effective strategy for handling
large image data in a database [5].
Data is split up into sub-images and
when a region of interest is requested,
only the relevant tiles are accessed,
resulting in significant I/O bandwith
savings. Baumann et al incorporate
tiling, spatial indexing and compression
strategies into their raster database
[2, 6]. Compression improves disk
I/O bandwidth efficiency, while spatial
indexing allows quick retrieval of the
identifier and location of a required
tile. The CONCERT architecture uses
arbitrary length sequences of fixed
page sizes to store image data (tiles)
[7]. These page ranges allow a single
linear address space to be accessed
directly. Data buffering is controlled
using memory mapping of disk pages.

Databases do not intrinsically support
large n-dimensional arrays, nor do
they support efficient mapping of them
to one-dimensional space. Hence,
flat file storage of large satellite
imagery is an attractive option for
data management and retrieval. The
overhead incurred by using a database
is avoided because the file metadata
becomes the “manager”. Several data
files can cumulatively store terabytes of
information which makes them popular
in the scientific community.

Data formats such as HDF51 and
NetCDF are platform independent,
self-describing and support the storage
of multidimensional arrays [8, 9].
They can be viewed as database
systems since they have a schema

for metadata and data manipulation
strategies. Previous comparisons
between HDF5 and NetCDF have looked
at their parallel implementations:
Li et al compare parallel NetCDF and
HDF5 in a series of tests, concluding
that parallel NetCDF achieves higher
parallel performance than HDF5 [10].
In contrast, other researchers show
that the two file formats are, in fact,
comparable in performance [11].

Several experiments have been
conducted in the domain of large
array storage and its optimised I/O.
Array chunking and its effects on
I/O performance within the context
of the HDF file format is reported
in Velamparapil [12]. Sarawagi
and Stonebraker [13] describe
methods for efficient organisation of
multidimensional arrays in POSTGRES.
These methods include partitioning
of arrays and array duplication for
different query patterns. Seamons
and Winslett [14] also implement
array chunking, interleaving of data
(clustering) and interleaving of different
data types on disk for efficient I/O
of arrays. An implementation of a
scientific data manager is presented in
Choudary et al [15]. This system uses
a database to store metadata – search
patterns, access history and file offsets
– and files to store the data.

Proposed time-sequential data
structure

Sequences of images stored in
discrete files on disk in their original
2D ordering are not efficient for
time series analysis due to the I/O
overhead incurred when constucting
a 1D profile through time. Hence, a
specialised per-pixel, time sequential
data model and data storage method
must be implemented for improved I/O

Efficient temporal access
of satellite image data

by Asheer Bachoo, Frans van den Bergh, and Albert Gazendam, CSIR

Recent improvements in sensor technology, together with increases in data acquisition frequency, have
resulted in a surge in satellite data volume.

1The HDF Group, http://hdf.ncsa.uiuc.edu/HDF5/

technicalGIS

PositionIT - Nov/Dec 2008	 35

efficiency. The time-series data will be
stored in a large single data file.

Fig. 1 illustrates the way data
will be structured in the proposed
time-sequential representation. Each
spatial pixel coordinate (x,y) is mapped
to a unique number i=yxC□x where C is
the number of columns in the original
two-dimensional image. The entire time
series at that coordinate is then stored
as a row in the new table, as shown in
Fig. 1, where the columns represent
the time dimension, and the row index
corresponds to the pixel identifier i.
Since the original two-dimensional
grid has effectively been
serialised, two-dimensional queries
(e.g. extracting a rectangular region on
a map) will now be decomposed into
a set of row queries in the new table.
Pixels that were horizontal neighbours
in the spatial representation are now
consecutive rows in the serialised
representation, which implies that
the contiguity of rows of pixels in the
spatial representation is preserved.
This allows operating system level
read-ahead and caching to be
exploited.

•	 There will be just the default root
group i.e. just the root node.

•	 Global variables, such as image
height and width and projection
information, will be stored in the
header.

•	 Each image band, captured
over time, is represented as a
two-dimensional array dataset
that is a child of the root node.
Hence, storing n bands will imply
the creation of an HDF5 file with n
datasets. Band data is separated so
that additional bands, if required,
can be added to the file at a later
stage. Arrays will be implemented
as extendible (unlimited size).
These arrays will be chunked.

Alternatively, all the bands at a single
pixel location for a single timestep can

be grouped as one element using an
HDF5 compound data type. This results
in a data structure having the same
structure described above except that it
will contain just a single dataset.

NetCDF

NetCDF encompasses multidimensional
data in regularly spaced grids. Only
NetCDF version 3 is considered in
this paper, since NetCDF version 4
is similar to HDF5. Some limitations
inherent to the NetCDF format are:
i) sizes larger than 4 GB are difficult
to handle; ii) only one dimension may
be unlimited in size and iii) limited
number of datatypes. The strength of
NetCDF lies in its contiguous layout
and its single header file, which means
there is little overhead in the data

t0 t1 ... tn

p
0

V0,t0
V0,t1

V0,tn

p
1

V1,t0
V1,t1

V1,tn

...

p
m

Vm,t0
Vm,t1

Vm,tn

Fig. 1: Storing time series data
seqentially per-pixel.

Data structures

A number of file formats are available
for multidimensional data storage.
We consider HDF5, NetCDF and a
native file system approach for the
implementation of the per-pixel data
structure representation.

HDF5

The HDF5 data model consists of two
primary types of objects: datasets
and groups. Datasets are arrays of
multiple dimensions where a cell is
a simple or compound HDF5 data
type. Groups facilitate the creation of
data dependencies. The HDF5 data
format supports unlimited file sizes
and an unlimited number of objects,
highly generalised data types, spatial
set operations, performance options
(e.g. chunking, compression and data
shuffling), parallel I/O and unlimited
dimension sizes. The following HDF5
structure is proposed:

Data structure type

Spatial subset Time sequential Original images

1×1 0,048 ± 0,066 33,524 ± 22,732

3×3 0,057 ± 0,070 31,174 ± 6,941

100×100 3,852 ± 0,595 131,070 ± 50,068

50×200 2,327 ± 0,369 188,956 ± 9,048

200×50 9,802 ± 2,637 149,638 ± 4,348

Table 1: Mean query time (seconds) using a time-sequential data structure
versus the original image format.

Partition type Throughput (MB/s)

S2 uncompressed 56,78 ± 0,88

S2 compressed 69,06 ± 2,49

S3 uncompressed 83,32 ± 0,96

S3 compressed 81,39 ± 0,30

Table 2: Raw sequential I/O throughput of
the various partitions

Data structure type

Partition type FS H5 H5_C NC

S2 uncompressed 25067 ± 6000 38249 ± 1855 15770 ± 585 14409 ± 1160

S2 compressed 18365 ± 1794 26283 ± 1013 14802 ± 461 14547 ± 1050

S3 uncompressed 20010 ± 1743 29808 ± 1082 13953 ± 741 12771 ± 819

S3 compressed 19767 ± 3050 24015 ± 484 13901 ± 360 11128 ± 1046

Table 3: Mean query time (microseconds per time series) for small queries

Data structure type

Partition type FS H5 H5_C NC

S2 uncompressed 1650,4 ± 47,6 405,0 ± 21,3 246,6 ± 25,8 239,1 ± 2,9

S2 compressed 1436,4 ± 177 324,0 ± 19,5 248,8 ± 24,4 221,4 ± 2,6

S3 uncompressed 1251,9 ± 9,9 387,2 ± 18,7 232,4 ± 23,4 225,1 ± 2,0

S3 compressed 1246,5 ± 11,9 291,5 ± 20,3 218,9 ± 23,9 200,3 ± 2,2

Table 4: Mean query time (microseconds per time series) for large queries.

technicalGIS

38 	 PositionIT - Nov/Dec 2008

management. Variable size arrays in
NetCDF are supported by introducing
record variables. In our case, a variable
is a sequence of time-series profiles
and the record is a single time series
signal. To allow the variable to grow
in the unlimited direction, the fixed
size records are interleaved along the
unlimited dimension. The NetCDF3
64-bit offset was enabled to allow for
file sizes greater than 4 GB. The file
is structured in the same way as the
HDF5 - n variables (array or datasets)
are created for the n bands that we
wish to store. A spatial block query, as
in HDF5, will be decomposed into a set
of row queries.

Filesystem data structures

A file system provides an ideal
mechanism to store time series data
in a per-pixel fashion: simply store
the entire time series associated with
a given (x,y) coordinate in a separate
file. An interface was developed to map
a pixel coordinate to its corresponding
pixel identifier, which is translated to a
filename; this method leaves the bulk
of the management of the data storage
to the operating system. Since the
data structure is expected to contain
on the order of millions of files (each
representing an entire time series at a
given location), a three-level directory
structure was created to avoid the
expected performance degradation
that a filesystem experiences when
too many files are created in a single
directory. Like with the compound
datatype HDF5 data structure, the
internal format of each pixel-file was a
band-interleaved representation.

This type of data structure has
several disadvantages: fixed size
operating system disk blocks result in
a significant amount of wasted disk
space (slack space), a file has to be
opened (and closed again) for every
location read, and the three-level
directory structure implies that at least
four filesystem metadata reads must
be performed to read each file. On
balance, the strengths of this approach
are its relative simplicity, good
portability and the ease with which new
data can be appended.

File setup

Default settings were used to configure
the various file formats. These
parameters are described in more detail
in the HDF5 and NetCDF reference

manuals. The native file system
contains binary data in multiple flat
files and does not have any adjustable
parameters. The data structures are all
implemented on top of the zettabyte
file system (ZFS), and were accessed
over a Gigabit Ethernet network using
the NFS version 3 protocol.

Experimental results

Experiments were conducted on
the CSIR’s C4 cluster. A set of
314 MOD09A1 data product images
were used in these experiments.
Bands 0, 7 and 12 were imported into
the data structures, corresponding
to surface reflectance (16 bits per
sample), date flags (16 bits per
sample) and quality flags (32 bits
per sample) respectively, all at
500 m resolution. Five spatial access
patterns, with respect to the 2D image
representation, were considered for
experimental analysis, resulting in block
sizes of 1×1, 3×3, 100×100, 50×200,
and 200×50 pixels. Given a single
spatial extent as described above, the
entire time series is retrieved from a
data structure (314 time steps) for the
given block of (x,y) coordinates. To
avoid the effects of file caching, each
location in a given data structure is
only read once in each experiment.
This is achieved by partitioning the
data structure into 64 non-overlapping
regions (corresponding to blocks of
300×300 pixels in image coordinates);
queries within each of these blocks are
also guaranteed to be non-overlapping.
Each test run thus produces 64 timing
results for each of the five block sizes
specified above.

Comparison of spatial and
time-sequential representations

A performance baseline was established
by performing the time series queries
on the traditional image-based format.
This approach involves opening each
of the 314 files for every time step
of every query. To facilitate later
comparisons, the same queries were
executed on an HDF5 time-sequential
data structure. The results presented
in Table 1 clearly show the advantage
of the time-sequential representation.
Note that even in the worst-case,
the time-sequential representation is
faster than the traditional image-based
structure by a factor of 15.

Comparison of time-sequential data
structures

Having established the benefit of a
time-sequential representation over an
image-based representation, we now
investigate the relative performance of
four time-sequential formats. Four data
structures are created and stored on a
RAID2 storage system.

A stripe of two and three disks denoted
S2 and S3 are implemented using
the ZFS. ZFS offers on-the-fly data
compression, so partitions with and
without the compression were included.
A second replication of each partition
was created to measure the impact
of a data structure's physical location
on the disks. The four data structures
are: an HDF5 implementation using
separate datasets for each image band
(H5); HDF5 using a compound data
type for storing band data (H5_C); the
NetCDF format (NC) and the native
filesystem data structure (FS).

From empirical tests, the HD5 chunk
size is set to 1×314. Effectively, a
total of 32 data structure/partition
combinations were created : 4 data
structure types × 2 RAID striping
options × 2 compression options × 2
replications. When reading NetCDF and
HDF5 data structures, file handles were
kept open during all the queries i.e.,
the data structures were only opened
once. The mean throughput of each of
the partition types is listed in Table 2.

To reduce the volume of data, the
spatial queries were grouped in small
(1×1, 3×3) and large (100×100,
50×200, 200×50) queries. Within each
of these groups, the queries times
of the components were averaged
and normalised to represent the time
required to retrieve a single time
series. The results of the small queries
experiment are presented in Table 3.

Despite all the arguments against the
FS data structure implementation, it
performed better than the H5 data
structure on these small queries. Note
that the NC data structure offered
the best performance, regardless
of the partition type. Even on the
fastest partition type, effective NC I/O
throughput is only 0,215 MB/s, or
0,264% of the available sequential
I/O throughput, which highlights
the inefficiency of such small read
requests.

2 Redundant Array of Independent Disks. A RAID system uses two or more disks simultaneously to improve I/O performance.

technicalGIS

PositionIT - Nov/Dec 2008	 39

The results for the large queries are
presented in Table 4. On the larger
reads, the overheads of the FS data
structure (opening a file for every
pixel read) becomes the dominating
factor, causing it to finish last in this
experiment. The NC data structure
still produced the best overall results,
although the difference between
the NC and H5_C data structures is
comparatively small. Effective I/O
throughput with the NC data structure
on the compressed S3 partition rises to
11,97 MB/s, or 14,7% of the available
sequential I/O throughput.

Conclusion

The NC data structure provides the
highest achievable throughput for both
small and large queries. The H5_C
format provides similar performance
but is ranked second. The RAID
options had a predictable result: S3
performed better than S2 on both
the raw throughput tests as well as
the data structure query tests, which
indicates that network bandwidth is
not yet a limiting factor. Owing to the
high compressibility of the quality
flag band data, the compressed
partitions performed better than their
uncompressed counterparts, providing
additional proof that network bandwidth
is still adequate. Future work will focus
on improved compression strategies,
since compression appears to improve
performance without additional
investment in hardware.

Acknowledgement

This paper was presented at the
Free and Open Source Software for
Geospatial Conference 2008 (FOSS4G
2008) and is published here with the
permission of the authors.

References

[1] 	 S Abiteboul, R Agrawal, B Bernstein,
M Carey, S Ceri, B Croft, D DeWitt,
M Franklin, HG Molina, DG Awlick,
J Gray, L Haas, A Halevy, J Hellerstein,
Y Ioannidis, M Kersten, M Pazzani, M
Lesk, D Maier, J Naughton, H Schek, T
Sellis, A Silberschatz, M Stonebraker,
R Snodgrass, J Ullman, G Weikum,
J Widom and S Zdonik: 'The Lowell
database research self-assessment',
Communications of the ACM, vol. 48,
no. 5, pp. 111–118. 2005.

[2] 	 P Baumann, E Diedrich, C Glock,
M Lautenschlager and F Toussaint:
'Large-scale multidimensional coverage
databases', in 26th GITA Annual
Conference, 2003.

[3] 	 J Skiffington and K McKelvey: 'Raster
in the database', in GEOconnexion
International Magazine, pp. 22–23,
2007.

[4] 	 J Gray, DT Liu M Nieto-Santisteban,
A Szalay, DJ DeWitt and G Heber:
Scientific data management in the
coming decade, SIGMOD Record, vol.
34, no. 3, pp. 34–41, 2005.

[5] 	 B Reiner, K Hahn, G Hofling, and P
Baumann: 'Hierarchical storage support
and management for large-scale
multidimensional array database
management systems', in Database
and Expert Systems Applications: 13th
International Conference, pp. 689–700,
2002.

 [6]	 P Baumann, P Furtado, R Ritsch
and N Widmann: 'The RasDaMan
approach to multidimensional database
management', in Proceedings of the
SAC’97, pp. 166–173, 1997.

[7]	 L Relly, H-J Schek, O Henricsson, and
S Nebiker: 'Physical database design
for raster images in CONCERT', in
Advances in spatial databases, vol.
1262, pp. 259–279, Springer Berlin/
Heidelberg, 1997.

[8]	 R Rew and G Davis, 'The Unidata
netCDF: Software for scientific
data access', in Sixth International

Conference on Interactive Information
and Processing Systems for
Meteorology, Oceanography and
Hydrology, pp. 33–40, 1990.

[9] 	 CJ Tan, JAR Blais and DA Provins:
'Large imagery data structuring using
hierarchical data format for parallel
computing and visualization', in High
Performance Computing Systems
and Applications, Kluwer Academic
Publishers, 2000.

[10]	J Li, W-K Liao, A Choudary, R Ross, R
Thakur, R Latham, A Siegel, B Gallagher
and M Zingale: 'Parallel netCDF: A high-
performance scientific I/O interface', in
Supercomputing 2003.

[11]	CM Chilan, M Yang, A Cheng, and L
Arber: Parallel I/O performance study
with HDF5, a scientific data package,
The HDF Group. 2006. Viewed February
2008, http://hdf.ncsa.uiuc.edu/HDF5/.

[12]	G Velamparapil 'Data management
techniques to handle large data arrays
in HDF', Master’s thesis, Graduate
College of the University of Illinois,
1998.

[13]	S Sarawagi and M Stonebraker:
'Efficient organization of large
multidimensional arrays', in ICDE:
10th International Conference on
Data Engineering, IEEE Computer
Society Technical Committee on Data
Engineering, 1994.

[14]	KE Seamons and M Winslett: 'An
efficient abstract interface for
multidimensional array I/O', in
Supercomputing 1994, pp. 650–659,
1994.

[15]	A Choudary, M Kandemir, J No, G
Memik, X Shen, W Liao, H Nagesh,
S More, V Taylor, R Thakur and R
Stevens: 'Data management for
large-scale scientific computations in
high performance distributed systems',
Cluster Computing, vol. 1, pp. 45–60,
2000.

Contact Asheer Bachoo,
Meraka Institute, CSIR,
Tel 012 841-3787, abachoo@csir.co.za 

