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Abstract 
Students of mathematical physics, engineering, natural and biological sciences sometimes need to 
use special functions that are not found in ordinary mathematical software. In this paper a simple 
universal numerical algorithm is developed to compute the Legendre function values of the first kind 
using the Legendre differential equation. The computed function values are compared to built-in 
values in Mathcad14 and Derive6. Error analysis is performed to test the accuracy of the algorithm. 
Graphical residuals are found to be of order 10-12. Finally, some physical application is presented. 

 
1 Introduction and motivation 

 
Abramowitz and Stegun’s Handbook of Mathematical Functions [1] is one of the 
most cited references in mathematics. According to Ludovic and Bruno [2] the 
formulas in this book on special functions were computed, written and proof-read 
by hand. 
  
The method of separation of variables for the solution of partial differential 
equations often leads to ordinary differential equations (ODEs) with variable 
coefficients. The solutions are obtained in the form of infinite series or in terms of 
special functions. The Legendre and Bessel equations are some of the ordinary 
differential equations derived from the wave equation. These equations and their 
solutions play an important role in applied mathematics, electric field, heat 
conduction, fluid flow et cetera (see for example, Lebedev [9], Tikhonov and 
Samarskii [3]).  
 
The main objective of this paper is to develop a simple numerical method using the 
Legendre differential equation: 

 
2

2
2(1 ) 2 ( 1) 0d y dyx x n n y

dx dx
− − + + =  (0.1) 

which could be re-written as: 
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with given initial values to compute numerical values of the Legendre polynomials. 
The computed function values will be compared carefully against built-in values in 
Mathcad14 and Derive6 software. As an application in physics, the concept of 
sound scattering by a sphere will be presented. 
 
2 The algorithm 

 
At present there are a wide variety of computer packages that include differential 
equation solvers. In general these packages contain all of the input/output and 
integration algorithms and the user, only has to specify the equation to solve. In 
this paper the Mathcad14 and the Derive6 package will be used as a differential 
equation solver with their respective functions which are called are Rkadapt [4] and 
RK [5] and [6]. The two functions are the Runga-Kutta methods of order four. 
 
The first step in solving a second order initial value problem is to recast the second 
order equation into two simultaneous first order differential equations. From (0.2), 
let 

2 2

2 ( 1) .
1 1

dy z
dx
dz x n nz y
dx x x

=

+
= −

− −

 

 
 
(2.1)

 
The derivatives dy

dx and dz
dx are written as functions of x, y and z. Using Mathcad the 

two equations in (2.1) are put into a “D” format by defining ( , )D x y as a 2 x 1 column 
vector, with dy

dx as the first element and dz
dx as the second element [5]. Next the initial 

conditions for both y and dy
dx are set and are also written as a 2x1 column vector. 
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Figure 1:  Mathcad syntax for )(10 xP  
 
The next step is to solve the System (2.1) by invoking the Runga-Kutta solver by 
using the Rkadapt function. The output is a three-column matrix in which the first 
column contains the independent variable x, the second column contains the 
solutions for the dependent variable y and the third column represents the second 
dependent variable dz

dx . Each successive row is a solution for that respective time-
step. 
 
The command needed to start the integration has the form: Rkadapt(ye,x1,x2,N,D)4, 
where ye is a vector of initial values and x1  and x2 are the end points of the 
integration interval. N is the number of points (in addition to the initial value) which 
need to be calculated and D is a vector that defines how the first order derivatives 
are evaluated. An example will best describe how to use this function. 

 
The example of a Legendre polynomial of degree ten, )(10 xP will be computed with 
initial values )0,1( and the corresponding Mathcad syntax is shown below in Figure 
1 above, where z is represented by ye1 and y is represented by ye0. The subscript, 
“e”, signifies that the function is an even function. The Derive syntax is shown in 
Figure 2. 

 

Figure 2:  Derive syntax for )(10 xP  
 

n 10:=

ye
1

0
⎛
⎜
⎝

⎞
⎟
⎠

:=

De x ye, ( )

ye 1

2x

1 x2
−

ye 1 n n 1+( )⋅
ye 0

1 x2
−( )

⋅−

⎡⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥⎦

:=

Ye Rkadapt ye 0, 0.999, 1000, De, ( ):=
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Figure 3:  Graph of Legendre Polynomial )(10 xP using Mathcad 

 
The graphical solution is shown in Figure 3 and the corresponding function 
values are shown in Table 1.  
 

Table 1:  Numerical Legendre polynomial values for )(10 xP  

 
 

The values shown here are only in the interval from 0=x  to 014985.0=x , taking 
the step size of 000999.0=h , that is, a very small interval. The corresponding 
polynomial values can also be computed in Derive6 using the Runge-Kutta method 
of order four. The function to call the algorithm is ),,,,( 0 nhvvrRK  (see [5] and [6]), 

which approximates the solution of the first order differential equations (2.1). The 
symbol r represents a vector of expressions on the right hand side of (2.1), v is a 
three column vector of the unknowns x, y and z, h is the desired step size and n is 
the desired number of steps. 
 
Visual inspection of table 1 shows the two numerical solutions are more or less the 
same except some slight differences at randomly placed step sizes and the 
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difference is seen in the eighth decimal digit. In section 3 the accuracy of the 
algorithm is investigated. 
 
3 Accuracy of the Algorithm 
Joubert and Greeff [7] developed a method for checking the accuracy of the 
numerical solutions of higher order ordinary differential equations. According to 
their method the Legendre differential equation (0.1) is differentiated once to 
obtain the third order differential equation 
 

 
3 2

2
3 2(1 ) 4 [ ( 1) 2] 0d y d y dyx x n n

dx dx dx
− − + + − = . (3.1) 

 
Equation (3.1) is transformed into a 3 x 3 system of first order equations, which 
are  

 

1

1
2

2
1

2 12 2 2

4 [2 ( 1)] .
1 1

dy y
dx
dy y
dx

d y x n ny y
dx x x

=

=

− +
= +

− −

 (3.2) 

 
The next step is to solve the System (3.2) together with the given initial values to 
obtain its numerical solution. To check for the accuracy of the algorithm, the 
graphical solutions of Systems (2.1) and (3.2) are visually compared. The syntax 
for Systems (2.1) and (3.2) are shown together in Figure 4.  
 

 
Figure 4: Mathcad syntax for Systems (2.1) and (3.2) for )(10 xP  

 
The graphical solutions of the two systems are depicted in Figure 5. 
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Figure 5: Graphs of the solutions to Systems (2.1) and (3.2) for )(10 xP  

Visually the two graphical numerical solutions coincide. To support the visual 
check one can construct the graph of the absolute estimated error between the 
two numerical solutions of Systems (2.1) and (3.2). The graph of absolute 
estimated error is shown in Figure 6 and it can be seen that the absolute 
estimated error is less than 1010− . Hence the Joubert-Greeff test [7] for accuracy 
indicates that the solution is accurate to at least 8 significant figures over the 
interval [0,0.999]. 
 

 
Figure 6: Graph of absolute estimated error for )(10 xP  

 
4 Application to acoustics 
 
In this section the scattering of sound by a solid sphere is considered. Consider a 
distance point sound source, which generates a continuous sound wave. At 
points, which are far away from this source and over suitably restricted regions, 
these waves may be said to approximate plane waves [8] see Figure 7. 
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A plane sound wave, propagating in the direction of the x-axis, that is, in the 
direction of 180θ = D , is incident, on a perfectly rigid and stationary sphere of 
radius R. The centre of the sphere is at the origin of the rectangular coordinates. 
See Figure 7 for the scattered pressure wave. 
 
According to Jacobson and Juhl10 the numerical formula for the scattered sound 
pressure is defined as: 
 

 
0

( , )( , , ) (2 1) ( , ) ( , cos )
( , )

N
m

m

dj m kRp r N m i h m kR Leg m
dh m kR

θ θ−

=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑ i i i i  (4.1) 

 
Formula (4.1) can be programmed in Mathcad, where ( , )dj m kR  represents the 
derivative of the numerical spherical Bessel functions of the first kind with 
fractional order and ( , )dh m kR  are the derivatives of the spherical Hankel 
functions and N represents the number of terms that can be summed. The sound 
pressure is a complex quantity and it is therefore practical to convert it to a 
quantity that can be easily graphed. This interesting quantity is sound   intensity, 
 

 
Figure 7: Geometrical diagram for sound scattering from a rigid sphere 

 
which according to Tikhonov and Samarskii [3] and Jacobson and Juhl [10] can 
be defined as the square of sound pressure. Thus, to compute sound intensity 
one needs to multiply sound pressure by its complex conjugate. Therefore sound 
intensity is defined as  
 

( , , ) ( , , ) ( , , )I r N p r N p r Nθ θ θ= × .                          (4.2) 
 
The sound intensity is dependent on the direction angle θ  and the distance r 
from the sphere. The polar diagram for the numerical intensity of the sound 
scattered from a sphere is shown in Figure 8. 
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As can be seen the sound intensity is drawn using the decimal logarithmic scale 
and this is due to the very small numbers or very large numbers that are 
encountered in the study of sound. The very small or large numbers are easily 
reduced to manipulative numbers by introducing the decimal logarithm scale. 
 
When observing the polar graph one notices that in front of the scatterer there is 
a big lobe, which shows that the intensity of the scattered sound is high on the 
frontal position. Behind the sphere the lobe is small, confirming that the sound 
intensity is lower on the leeside. 
 
This phenomenon can be observed in built-up areas where high walls are 
constructed to bar the noise of the passing traffic, which is a disturbance to 
residents. 
 
From this section, which involved application to acoustics, it can be observed that 
Legendre polynomials play an important role in the study of acoustics, since they 
determine the directivity properties of the scattered sound wave. 
 

 
Figure 8: Polar graph for numerical log-scaled intensity 

 
 
5 Concluding remarks 
  
In this paper a numerical method algorithm has been developed to compute 
Legendre function values of the first kind. The solution values were computed 
using a Legendre differential equation, which was transformed into a system of 
two first order differential equations. The computed values were compared using 
Mathcad and Derive software, and it was found that the values matched well with 
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an error of approximately 1210− . The Joubert-Greeff test for the numerical 
solutions of ODEs [7] was also employed and it also confirmed that the algorithm 
developed is good for computing Legendre polynomial values at default machine 
accuracy. 
 
As an application in physics, the numerical values were applied in the example of 
sound scattering by a sphere. The quantities that were examined are sound 
pressure and intensity of the scattered sound wave and it was found that the 
scattered sound depends on the Legendre polynomials for directivity. The 
associated Legendre functions are defined in terms of the Legendre functions of 
the first kind as follows: 

 [ ]22( ) (1 ) ( )
m

m
m

n nm

dP x x P x
dx

= − . (5.1) 

 
Hence, the numerical algorithm developed in this paper could be further 
extended to compute the associated Legendre function values. 
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