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Abstract 

In this paper a mathematical model describing the interaction of a lion population with that of the 
zebra and wildebeest populations is considered. The traditional method uses a model with known 
coefficients and a CAS numerical routine to determine a numerical solution that can be compared 
to historical data about the populations. The numerical values of the coefficients involved are 
usually "educated guesses" made by the team consisting of, for example, biologists, game 
rangers and experienced applied mathematicians. The coefficients are usually described in terms 
of quantities such as "carrying capacity", "birth rate" et cetera, and might mean little to the 
mathematician. In this paper an "inverse method" is considered, that is, a method easy enough 
for senior undergraduate and graduate mathematics majors to understand and apply as part of a 
"biomechanics" team in the field. This approach considers the model in question to have 
unknown coefficients. Using a CAS, numerical integration is applied using the historical data and 
then elementary statistical methods are used to determine the value of the coefficients. 

 
1 Introduction 
 
A deterministic mathematical model describing the interaction of one predator 
and two prey species is considered. Zebras and wildebeest, cooperating in 
nature, are considered as the prey and the lion, killing both zebras and 
wildebeests, is treated as the predator. The logistic mathematical model is 
formulated in terms of a non-linear dynamical system, described by three 
differential equations of first order, with each equation containing linear and 
quadratic terms. The model is linear with regard to unknown coefficients that 
must be derived from available statistical data. The method of parametric 
identification of the unknown coefficients is based on numerical time integration 
of both parts of the dynamical system, formulation of the goal function, subjected 
to minimization, which is the quadratic function of the parameters. Minimization of 
this function by means of the least squares method gives us a system of linear 
algebraic equations and solution of these equations gives us a set of unknown 
coefficients. The method is applicable to a broad spectrum of ecological systems 
described by a system of differential equations. To illustrate the application of this 
method, the problem of zebra, wildebeest and lion interacting is considered, and 
conclusions are formulated. 
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Explicit examples of how a model of mathematical biology is being developed, 
improved and tested are rare in scientific literature, probably because of many 
uncertainties, shortcomings in data, artificial assumptions and intuitive decisions 
in the development process. In the present paper a model with one predator and 
two prey based on the Lotka-Volterra model, in which logistic growth as well as 
mutualism are taken into consideration for the prey species, is discussed. This 
model fits the historical data from the Kruger National Park, which is located on 
the international border between the Republic of South Africa and Mozambique. 
The central grasslands of the Kruger National Park support huge herds of zebra 
(Equus burchelli) and wildebeest (Connochaetes taurinus), which are considered 
as prey and the lion (Panthera leo), which is their principal predator.  
 
The general task of modelling is to design a model as simply as possible while 
still allowing specific problems to be addressed. The proposed method for 
identifying the unknown coefficients of the mathematical model is original and 
applicable to a broad class of dynamical systems, which are linear with respect to 
the unknown coefficients. The method consists of time integration of the system 
equations with variable upper time limit, by means of which the problem is 
converted to the solution of an over-determined system of linear algebraic 
coefficients. When applying the least squares method to this system, one can 
estimate the unknown coefficients and check the closeness of the resulting 
system of ordinary differential equation and its solution to statistical data. If the 
solution is sufficiently close to the statistical data, one can use the model for 
predictive purposes. If the closeness between the solution and statistical data is 
not satisfactory, the mathematical model should be modified to achieve an 
acceptable correspondence. Although the described model used in this exercise 
is simple and conservative, it nevertheless suggests directives for possible 
managerial actions.  
 
2 The mathematical model with one predator 

and two prey species  
 
The model describing interaction of one predator and two prey species was 
analyzed by Bazykin [1]. The logistic growth and mutualism effects for prey were 
outside the scope of this model. These effects were considered by May [5], and 
applied to a specific situation by Fay and Greeff ([2] to [4]). In the present paper a 
regular method of the parametric identification as applied to the model discussed 
by Fay and Greeff is considered. 
 
The main assumptions are as follows: 
 

• The model is of the Lotka-Volterra type and is described by the 
system of equations: 
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( )10 11 12 13
dx x a a x a y a z
dt

= ⋅ − ⋅ − ⋅ + ⋅  

( )20 21 22 23
dy y a a x a y a z
dt

= ⋅ − + ⋅ + ⋅ + ⋅                                  (1) 

( )30 31 32 33
dz z a a x a y a z
dt

= ⋅ + ⋅ − ⋅ − ⋅ , 

 
where ,  x y and z represent the wildebeest, lion and zebra 
population densities respectively, and 10 11 33, , ,a a a…  are zero 
or unknown positive coefficients.  

 
• Independence of the coefficients in time, indicates the 

conservativeness of the model, that is, time independence of the 
variables.  

 
• The model suggests a “linear response”, which means that 

predators consume prey at a rate proportional to their number, and 
to the number of available prey. The effects of relative “fullness” or 
“saturation” of predators are not taken into consideration. 

 
• Since the predator species is nomadic, the concepts of carrying 

capacity and intra-species competition is not applicable to this 
species. 

 
• The reproduction function of the predator is assumed to be 

homogeneous in time, and the effects of seasonal calving for prey 
are not considered. 

 
Logistic growth of the prey species is described by the terms ( )10 11x a a x⋅ − ⋅  and 

( )30 33z a a z⋅ − ⋅ , which in the absence of predators and mutualism gives the stable 

steady state values of the prey 10
0

11

ax
a

= and 30
0

33

az
a

= . Logistic growth of the prey in 

the absence of a predator but with mutualism taken into account, is described by 
the terms ( )10 11 13x a a x a z⋅ − ⋅ + ⋅ and ( )30 31 33z a a x a z⋅ + ⋅ − ⋅ . The steady-state solution 

is now given by 10 33 30 13
0

11 33 13 31

a a a a
x

a a a a
+

=
−

 and 30 11 10 31
0

11 33 13 31

a a a a
z

a a a a
+

=
−

.  By using standard 

eigenvalue methods, this solution is stable if 11 33 13 31 0a a a a− > .  Hence the steady-
state solution of the System (1) is the root of the following system of linear 
algebraic equations: 
 

11 12 13 10a x a y a z a⋅ + ⋅ − ⋅ =  
21 23 200a x y a z a⋅ + ⋅ + ⋅ =                                            (2) 

31 32 33 30a x a y a z a− ⋅ + ⋅ + ⋅ = . 



Buffelspoort TIME2008 Peer-reviewed Conference Proceedings, 22 – 26 September  2008 
 

- 104 - 
 

Note that 22 0a =  since intra-species competition is not applicable to the predator 
species. 
 
3 Solution of the problem 
 
Te following problem will be solved: assume that the ecological process of the 
predator-prey interaction is described by equations (1) and that statistical data on 
population numbers is available on the limiting time interval [ ]0 0, Nt t t T∈ = = , as 
given in table 1. 

Table 1 
0 0t =  1t  2t " Nt  

0x  1x  2x " Nx  
0y  1y  2y " Ny  
0z  1z  2z " Nz  

  
The problem is to identify the coefficients 10 11 33, , ,a a a…  of System (1) from the 
experimental data in table 1. Here it is assumed that 1N >> , that is, the data is 
rich enough to make this statistical inference.  
 
Our approach to the problem is based on transformation of System (1) to an 
over-determined system of linear algebraic equations, using the experimental 
data. First the equations in (1) are integrated with regards to time to obtain: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
10 11 12 13

0 0 0 0

0
t t t t

a x d a x d a x y d a x z d x t xτ τ τ τ τ τ τ τ τ τ⋅ − ⋅ − ⋅ ⋅ + ⋅ ⋅ = −∫ ∫ ∫ ∫  

( ) ( ) ( ) ( ) ( ) ( ) ( )20 21 23
0 0 0

0
t t t

a y d a x y d a y z d y t yτ τ τ τ τ τ τ τ− ⋅ + ⋅ ⋅ + ⋅ ⋅ = −∫ ∫ ∫   (3) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
30 31 32 33

0 0 0 0

0
t t t t

a z d a x z d a y z d a z d z t zτ τ τ τ τ τ τ τ τ τ⋅ + ⋅ ⋅ − ⋅ ⋅ − ⋅ = −∫ ∫ ∫ ∫ , 

 
where [0, ].tτ ∈  Now the problem of determination of coefficients 10 11 12 13, , ,a a a a  can 
be separated from the determination of coefficients 20 21 23, ,a a a  and 30 31 32 33, , ,a a a a . 
The algorithm of the coefficients’ identification is obtained for the first set only, 
since the other coefficients can be obtained correspondingly. Coefficients 

10 11 12 13, , ,a a a a  can be found from the first equation in System (3) and the statistical 
data in table 1. Table 1 is expanded as follows, using a Taylor expansion: 
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Table 2 
0 0t =  1t  2t "  Nt  

0x  1x  2x "  Nx  
0y  1y  2y "  Ny  
0z  1z  2z "  Nz  
2

0x  2
1x  2

2x  "  2
Nx  

0 0x y⋅  1 1x y⋅  2 2x y⋅ "  N Nx y⋅  
0 0x z⋅  1 1x z⋅  2 2x z⋅ "  N Nx z⋅  
0  1 1 0x x xΔ = −  2 2 0x x xΔ = − "  0N Nx x xΔ = −

0 ( ) ( )11
1 0

t
I x dτ τ= ∫  ( ) ( )22

1 0

t
I x dτ τ= ∫ "  ( ) ( )1 0

NtNI x dτ τ= ∫
0 ( ) ( )11 2

2 0

t
I x dτ τ= −∫  ( ) ( )22 2

2 0

t
I x dτ τ= −∫ "  ( ) ( )2

2 0
NtNI x dτ τ= −∫

0 ( ) ( ) ( )11
3 0

t
I x y dτ τ τ= − ⋅∫  ( ) ( ) ( )22

3 0

t
I x y dτ τ τ= − ⋅∫ "  ( ) ( ) ( )3 0

NtNI x y dτ τ τ= − ⋅∫
0 ( ) ( ) ( )11

4 0

t
I x z dτ τ τ= ⋅∫  ( ) ( ) ( )22

4 0

t
I x z dτ τ τ= ⋅∫ "  ( ) ( ) ( )2

4 0

tNI x z dτ τ τ= ⋅∫
 
All notation is introduced in Table 2. Corresponding integrals are calculated 
approximately, using one of the available quadrature formulae. For example, if 
the trapezoidal rule is used, then: 
 

( ) ( ) ( )11 1
1 0 10

;
2

t tI x d x xτ τ= ≈ ⋅ +∫  

( ) ( ) ( ) ( ) ( )22 1 2 1
3 0 0 1 1 1 1 2 20

;
2 2

t t t tI x y d x y x y x y x yτ τ τ −⎡ ⎤= − ⋅ ≈ − ⋅ + + ⋅ +⎢ ⎥⎣ ⎦∫  et cetera. 

 
Now the first equation of System (3) can be rewritten as an over-determined 
system of N ( 4N >> ) linear algebraic equations as follows: 
 

( ) ( ) ( ) ( )1 1 1 1
10 1 11 2 12 3 13 4 1a I a I a I a I x⋅ + ⋅ + ⋅ + ⋅ = Δ , 

( ) ( ) ( ) ( )2 2 2 2
10 1 11 2 12 3 13 4 2a I a I a I a I x⋅ + ⋅ + ⋅ + ⋅ = Δ , 

"""""       (4) 
( ) ( ) ( ) ( )

10 1 11 2 12 3 13 4
N N N N

Na I a I a I a I x⋅ + ⋅ + ⋅ + ⋅ = Δ . 
 

Using the least squares method to solve this equation, the goal function is 
composed: 
 

( ) ( ) ( ) ( ) ( ) 2

10 11 12 13 10 1 11 2 12 3 13 4
1

1, , ,
2

N
k k k k

k
k

F a a a a a I a I a I a I x
=

⎡ ⎤= ⋅ + ⋅ + ⋅ + ⋅ − Δ⎣ ⎦∑  (5) 

 
and then minimized. As a result the following system of linear equations is 
obtained: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
10 1 11 1 2 12 1 3 13 1 4 1

1 1 1 1 110

0
N N N N N

k k k k k k k k
k

k k k k k

F a I a I I a I I a I I I x
a = = = = =

∂
= ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ − ⋅ Δ =

∂
∑ ∑ ∑ ∑ ∑ , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
10 1 2 11 2 12 2 3 13 2 4 2

1 1 1 1 111

0
N N N N N

k k k k k k k k
k

k k k k k

F a I I a I a I I a I I I x
a = = = = =

∂
= ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ − ⋅ Δ =

∂
∑ ∑ ∑ ∑ ∑ , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
10 1 3 11 2 3 12 3 13 3 4 3

1 1 1 1 112

0
N N N N N

k k k k k k k k
k

k k k k k

F a I I a I I a I a I I I x
a = = = = =

∂
= ⋅ ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ − ⋅ Δ =

∂
∑ ∑ ∑ ∑ ∑ , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
10 1 4 11 2 4 12 3 4 13 4 4

1 1 1 1 113

0
N N N N N

k k k k k k k k
k

k k k k k

F a I I a I I a I I a I I x
a = = = = =

∂
= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ − ⋅ Δ =

∂
∑ ∑ ∑ ∑ ∑  

(6) 
This equation has a unique solution: 
 

[ ] 1
10 11 12 13, , , Ta a a a M R−= ⋅     (7) 

 
where matrices M  and R  are given by: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2
1 1 2 1 3 1 4

1 1 1 1

2
1 2 2 2 3 2 4

1 1 1 1

2
1 3 2 3 3 3 4

1 1 1 1

2
1 4 2 4 3 4 4

1 1 1 1

N N N N
k k k k k k k

k k k k
N N N N

k k k k k k k

k k k k
N N N N

k k k k k k k

k k k k
N N N N

k k k k k k k

k k k k

I I I I I I I

I I I I I I I
M

I I I I I I I

I I I I I I I

= = = =

= = = =

= = = =

= = = =

⎡ ⎤
⋅ ⋅ ⋅⎢ ⎥

⎢ ⎥
⎢ ⎥

⋅ ⋅ ⋅⎢ ⎥
⎢=
⎢

⋅ ⋅ ⋅⎢
⎢
⎢

⋅ ⋅ ⋅⎢
⎣ ⎦

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

( )

( )

( )

( )

1
1

2
1

3
1

4
1

,

N
k

k
k
N

k
k

k
N

k
k

k
N

k
k

k

I x

I x
R

I x

I x

=

=

=

=

⎡ ⎤
⋅ Δ⎢ ⎥

⎢ ⎥
⎢ ⎥

⋅ Δ⎢ ⎥
⎥ ⎢ ⎥=
⎥ ⎢ ⎥

⋅ Δ⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥

⋅ Δ⎥ ⎢ ⎥
⎣ ⎦

∑

∑

∑

∑

 (8) 

 
Equation (7) solves the problem of the parametric identification of the first 
equation in System (1). Coefficients of the second and third equations of the 
system can be identified in a similar way. 
 
4 Example 
 
In Table 3 population census numbers for sixteen successive years are given, 
with wildebeest population numbers in the second row, lion numbers in the third 
row and zebra numbers in the fourth row. (Note that population numbers are 
measured in thousands). 

Table 4 

 
 

XYZT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1
2

12.01 10.15 7.67 6.01 5.46 5.66 6.31 7.22 8.18 8.94 9.15 8.59 7.5 6.55 6.11 6.17

0.31 0.54 0.68 0.58 0.4 0.27 0.2 0.17 0.18 0.22 0.32 0.45 0.52 0.49 0.4 0.31
10.02 9.63 7.82 6.33 5.8 6 6.67 7.63 8.7 9.61 9.98 9.49 8.37 7.34 6.82 6.82

=
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All the unknown coefficients in the equations of System (1) are estimated 
according to the above-mentioned algorithm and the following results are 
obtained:  
 

10

11

12

13

0.4257
0.0342
0.8397
0.0136

a
a
a
a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

 
20

21

23

1.5927
0.1139
0.0937

a
a
a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

30

31

32

33

0.3563
0.0185
0.7824
0.0280

a
a
a
a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

.          

 
These estimated coefficients are used to solve the system of three ordinary 
differential equations in (1) using the initial conditions given in the first column of 
table 3. Results of the proposed solutions are compared with the statistical data 
as shown in Figures 1 – 3. 

 
Figure 1: Comparison of interpolated population numbers of wildebeest 
according to System (1) and statistical data (both given in thousands) 

 

 
Figure 2: Comparison of interpolated population numbers of lion according 

to  System (1) and statistical data (both given in thousands) 
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Figure 3: Comparison of interpolated population numbers of zebra accor-

ding to System (1) and statistical data (both given in thousands) 
 

Predicted population dynamics of wildebeest, lion and zebra for the next forty-five 
years are shown in Figures 4 -6. Predicted stable steady-state values of the 
populations over a period of 60 years are: 0 7.336x = , 0 0.339y = , 0 8.076z =  
(measured in thousands).  

 
Figure 4: Predicted population dynamics of wildebeest over 60 years, ac-
cording to System (1) shown with statistical data used in the algorithm 

 

 
Figure 5: Predicted population dynamics of lion over 60 years, according to 

System (1) shown with statistical data used in the algorithm 
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Figure 6: Predicted population dynamics of zebra over 60 years, according 

to System (1), shown with statistical data used in the algorithm 
 
5 Discussion and conclusion 
 
A mathematical model to describe the interaction between one predator and two 
prey species is formulated in this paper, taking logistic growth and mutualism 
effects of the prey species into consideration. The algorithm of parametric 
identification of this model is discussed and illustrated by example. It is shown 
that the algorithm gives good interpolation of the statistical data for the period of 
fifteen years of observation. Predictions on the dynamics of the predator-preys 
interaction are made for the period for the next forty-five years on the basis of the 
parametrically identified model. These predictions guarantee convergence of 
predator and prey numbers to the stable steady-state. Despite good 
correspondence of the interpolated and statistical data, the convergence of data 
to their steady-state is slow, yet the oscillatory behaviour of the populations 
corresponds to the field data. The accuracy of the mathematical model could 
further be improved by including the effect of the predator’s “fullness” (see [3] & 
[4]), and the effect of seasonal calving of wildebeest and zebra. 
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