The Rheocasting of Al-Cu alloy A201 with different silver content

E.P Masuku ¹, H. Möller ¹, G. Govender ¹, L. Ivanchev ¹

1. Council for Scientific and Industrial Research

PRESENTATION OUTLINE

Introduction

Experimental Procedure

Results and discussion

Conclusions

- Semi-solid metal (SSM) forming is considered an established technology for the automotive industry.
- Very little attention has been given to applications in the aerospace industry.
- Aluminium alloy A201 possesses the highest mechanical strength of all the aluminium casting alloys.

AA specification (wt%) of Al-Cu alloy A201

	Cu	Fe	Si	Mn	Mg	Ti	Ag
Min	4.0	-	-	0.2	0.15	0.15	0.40
Max	5.2	0.15	0.1	0.5	0.55	0.35	1.0

In Al-Cu alloys, the main strengthening precipitate is CuAl₂ (θ').

- Iron and Silicon should be kept at minimum allowable percentages as they have an adverse effect on the mechanical properties of the alloy.
- Addition of silver with high Cu:Mg ratio changes the precipitation process, causing a form of CuAl_2 (Ω) to precipitate as thin plates on the {111} matrix planes rather than the {100} planes.
- Although the alloy is expensive, the benefits in terms of high specific strength make it suitable for aerospace and military applications.

Objective

To establish the influence of silver on the microstrutural and mechanical properties of a rheo-processed A201. In addiction, alloy A206 was investigated as it has the same AA specification, but with 0%Ag.

Alloys A (no silver – alloy A206) and C (1.12% Ag) were produced in-house, and alloy B (0.63% Ag) was supplied by an external supplier.

Chemical composition (wt%) of Al-Cu alloys

Alloy	Cu	Fe	Si	Mn	Mg	Ti	Ag
Nominal	4.60	< 0.15	<0.1	0.35	0.25	0.25	0.7
A	4.54	0.15	0.10	0.46	0.47	0.17	0.0
В	4.70	0.07	0.07	0.28	0.27	0.24	0.63
С	4.90	0.10	0.04	0.29	0.31	0.21	1.12

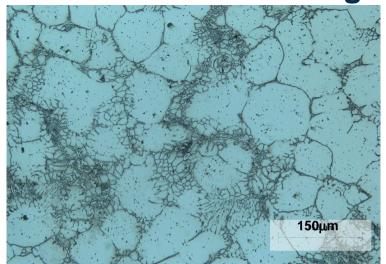
• An electric resistance furnace was used to melt to a pouring temperature of 670°C.

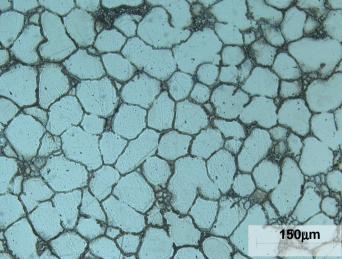
 Chemical analysis was done using the CSIR thermal ARL Quantris Optical Emission Spectrometer (OES)

 Stainless steel cups were used for processing in the CSIR rheocasting machine.

- Casting parameters: rheo-processing time: 90s; casting temperature: 630°C; die temperature: 260°C, and injection velocity: 0.4 m/s.
- The cast bars were heat treated to the T6 condition which consisted of a solution treatment at 513°C/2h + 527°C /17h, quenching in water and artificial ageing at 153°C/20h.
- To ensure good integrity of the cast samples, x-ray imaging was used.

- The heat treated cast bars were machined to the final tensile test specimen dimensions and were subjected to a standard tensile test procedure using the Instron tensile testing machine.
- Vickers hardness measurements were done using a 20 kg load.
- The samples for scanning electron microscopy and optical microscopy (using 0.5% solution of HF as an etchant) were prepared.



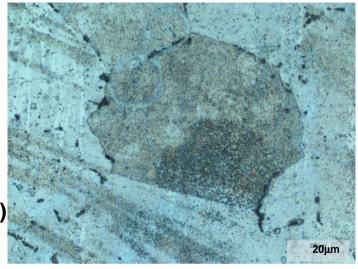

RESULTS

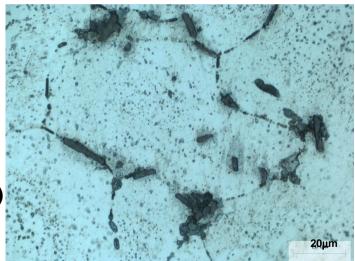
Light Microscopy

A(0.0%Ag) As-Cast

C(1.12%Ag) As-Cast

B(0.63%Ag) As-Cast



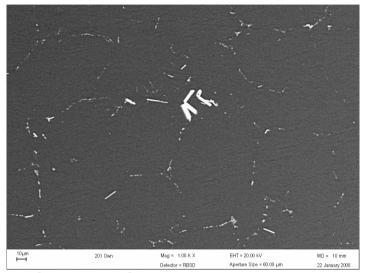


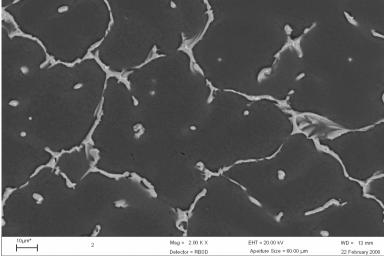
RESULTS

Light Microscopy

B(0.63%Ag) T6

Solution treatment during T6 resulted in dissolution of the Cu-containing phases. However, a small amount of these phases remained after the solution treatment in alloy B and especially in alloy C.


C(1.12%Ag) T6

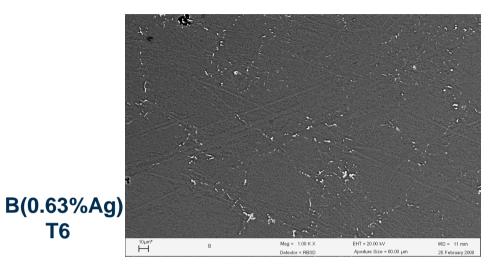


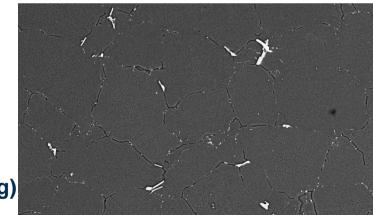
RESULTS SEM

10 Jum* 3 Mag = 1.50 KX EHT = 20.00 kV WD = 11 mm 22 February 2008

A(0.0%Ag) As-Cast

C(1.12%Ag) As-Cast


B(0.63%Ag) As-Cast

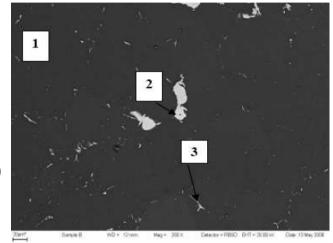


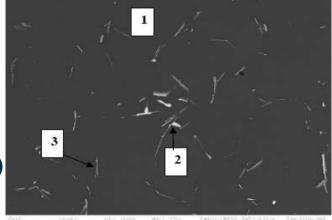
RESULTS SEM

The figures show that the volume fraction of the Cu-containing phases increases as the %Ag is increased.

C(1.12%Ag) **T6**

T6




EHT = 20.00 kV

RESULTS SEM

B(0.63%Ag) T6

Alloy B in T6							
Points	%Cu	%Mg	%Ag	%Fe			
1	5.2	0.24	1.8				
2	55.0	ı	ı	•			
3	35.2	•	1	12.4			
Alloy C in T6							
Points	%Cu	%Mg	%	%Fe			
			Ag				
1	4.7	0.20	2.7	1			
2	54.4	-	-	-			
3	33.0	-	-	12.4			

C(1.12%Ag) T6

CuAl₂

RESULTS

Mechanical Properties

Mechanical properties for the three different Ag-containing alloys (T6)

Alloy	HV20	YS R _{0.2} (MPa)	UTS R _m (MPa)	Elongation A (%)
A	105	330	379	8
В	155	399	445	4
С	146	365	422	7

CONCLUSIONS

- Addition of silver results in better mechanical properties, however, addition of silver also caused the precipitation of Cu-rich phases in the as-cast material.
- The solution treatment employed did not dissolve all of these phases, especially in the high Ag-containing alloy C. This resulted in a lower supersaturation of copper during artificial aging and a decrease in strength in the T6 condition.
- A different solution treatment might be needed for A201 alloys with silver contents close to 1.0 %Ag.

THANK YOU!!

