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Abstract

Modern theories of one-dimensional bar vibratiansount for lateral effects,
which are substantial in the case of relativelyckhbars. For example, in the
Rayleigh-Love and Rayleigh-Bishop models the ldtéigplacements are supposed to
be proportional to the product of longitudinal siraf the bar, its Poisson ratio and
the distance from the neutral line of the crossisec In the Mindlin-Herrmann
model the lateral displacements are independembrafitudinal stress and Poisson
ratio and proportional to the product of a new deemt function and the distance
from the neutral line of the bar. Hamilton’s vaiaaial principle is used for correct
formulation of the boundary conditions. In this eggrh a system of equations and
possible boundary conditions are obtained. In¢h&e the mathematical model of the
bar is described by a system of two partial diffiied equations of second order,
which could be transformed to a single partialetiéhtial equation of the fourth order.
It is shown how a new Lagrangian may be calculaeds to directly obtain the
fourth order equation of the model by applicatioh tbe Hamilton variational
principle. Another major advantage of the variaglompproach is in the natural
formulation of orthogonality conditions for eigenfttions. Two orthogonal
conditions are proven and used to derivation thee®s function in which the
general solution of the problem is formulated. Thain theoretical results of the
paper are as follows: formulation and proof of types of orthogonality conditions,
presentation of a new Lagrangian in terms of theveational strain and kinetic
energy as well as an energy of accelerations obéneand derivation of the general
solution in terms of the Green’s function.

| Mathematical model



Displacements according to Mindlin and Herrmidrare assumed as follows:
u=u(xt); v=v(xyt)=y@(xt);, w=w(xzt)=z@(xt) (1)

Where x is the axial distance along the bar,is the lateral distance from the neutral
linet is the time,u is the axial displacemeny is transverse contraction angw

are transverse or lateral displacements
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o, =(1 +2/,1)£XX+/1(£W+£ZZ):(A + 24U+ 24 ;
o, =(A+2u)e, +A(g, +€,)=2(A+u)y+Ad';

o,=(1 +2y)£zz+/l(£xx+£yy):2(/1+,u)¢/+/1u':ayy; (3)
Oy =UE, =W  O0,=UE,=0; 0, =L, =uzy
Where A and i are Lame’s constants defined BFL and
(1-27)(1+n)
u:% (E is the Young modulus of elasticity arpdis the Poisson ratio).
n
Kinetic energy:
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Substitute (1) into (4) leads to
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Where A:I dA is the area of the cross sectional of the kbgr;]l (y2 +zz)dA
(A (A)

denote the polar moment of inertia of the crossi@ecp is the mass density,is the

bar length and above and in what follows the argumm all function are omitted for
brevity.
Strain energy:

I
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Whereog,, ; are given by expressions (2) and (3).



Hence
j{ [/1+2,uu +4 U’ +4(/1+,u¢/]+/.ll )}dx (7)
Work of distributed forcef = f (xt):

|
W= [ fm dAdx or
0 (A) (8)
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Lagrangian:

|
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Applying the Hamiltonian principle to the Lagranfumctional (9) we obtain the
system of equations of motion in general form:

dfoL) daL) oL _
dt\ou,) dx\ou /) ou

(10)
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And the associated boundary conditions in generahf
- for fixed ends:
oL
u =0 and — =0 11
[ ]XZOJ [al,ll'l o -
- for free ends:
[¢] _, =0 and [i} =0 (12)
xol aU' x=0,
Equations (8) in the explicit form:
U—(A+2u)u"—2A¢' = f (Xt
g .( #) Y ( ) . (10a)
Pl P +a4(A+ ) Ap -l "+ 2AAU" = 0
Boundary conditions in the explicit form:
- for fixed ends:
[u]x:O,I = 0 and [w,]x:O,l = 0 (113)
- for free ends:
(@], =0 and [(A+2u)u+2Ag] =0 (12a)
The problem is entirely described by adding the followirtiginconditions
ou 0
Uy =9(x). 2 =h(x)4l,=0(x) 2 =¢(x) (13)

at t=0 at t=0



Il Freevibrations of Mindlin-Herrmann bar and natural frequencies
In order to obtain the Sturm-Liouville problem for the deteation of eigenvalues,
we consider the harmonic vibration of the bar, whichiespond to

f(xt)=04(xt)=¥(xt)e* andi(xt)=X(x)e“ (i2 =- )1 (14)
Substituting equations (14) into (10a) and (12a) leads tatypical Sturm Liouville
problem:

(A+2u) X"+ 2A¥' = - pl X

pl W' =2AIX" = 4A(A + p) W =~ pl W

Boundary conditionfd +24) X'+2A%| _ =0, and¥|_; = ( (16)

x=0,

(15)

Despite the fact that there is a lack of theoryil an the present moment to solve
analytically the eigenvalues problem (15)-(16), oaa use mathematical softwares to
find the solution.

I11 Orthogonality of the eigenfunctions
Let (X,,¥,) and( X, ¥,,) be two distinct couple of eigenfunctions corresfing
respectively to different eigenvalugs andw), , satisfying the system of differential
equation (15)

{(/1 +24) X1+ 2QW, = -w?pl X, a7
plWh =2AX, = 4A(A+p) W, = -w’pl W,
{(/1 +2u) Xp + 24W =-pl X, a8)
W =2AIX, —4A(A+ )W, = - ol W,

and the boundary conditions (16).

Multiply the first equation of the system (17) bélﬁ and the second byq:Tm also
Py Py

multiply the first equation of the system (18) by)j—l” and the second by q:ln .
0

p P
Afterward add all the equations and integrate éseilting equation ovex from 0 to
I . Applying the technique of integration by partéoms, using boundary conditions

(16) associated to the systems (17) and (18) aigdby (a)m2 —a)nz) .Finally we
obtain the first orthogonality of these eigenfuons:

[L(AX, X, +1,W, W Jax=0, m#n (19)
With respect to the generalized weight constanttions A and| . The
corresponding square norm (Cross section norm) is:

(X, ) ilp = [ (A%, 1w, ?)dx (20)




To seek the second orthogonality, we follow thevijanes technique for the first

orthogonality but by replacing? and «f respectively by% andé into the system
(17) and (18), thus we obtain (21)

[{4A(2+ 1) W W, +1, 100+ A1+ 20) X X0+ AA(XW, + XW, Ydx= 0m# n
which is the second orthogonality with respecthef generalized constant weight
functions, 4A(A + ), A(A + 2u),1 4 and 2A A and the associated square norm is (22)

2
[0x0,). (%, )
At

Remark: It is possible to obtain the same or/and othed kif orthogonalities, by
using any combination of two of the four boundamsyditions (11a)-(12a)

:I;{4A(/] +,u)l-|-’i+|p'u(qyn)2+A(/]+ 2'(1)()(;‘)2_'_ MAX:]LPH}dX

IV Solution of the problem: Green function

Assume that the solution of the inhomogeneous sysfethe initial boundary
problem (10a), (12a)-(13) can be written as a Feugeries expansion with respect of

the eigenfunction syste{r(txn W )} ::1,

u(xt) =3 X, (X)®, (1) andg(xt) =3 W, ()@, () 23)

where the unknown time functiorB (t) need to be determined.
Substituting expressions (23) into the Lagrangetional (9) gives
L——ZCD pJ{AX +1,W }dx+2¢n¢mpj{AX Xy +1,W W }dx—

520480+ ) W () A+ 2) () AW Jo-
o (24)
> o0 j AA(A+p)W W+ 0w+ A(A+ 2u) XX b+

n<m

_ gcbnq)m 2A(X W, +X W) +§A¢’nﬂ f (x,t)X, dx

Using orthogonality conditions (19), (21) and ndommula (20), (22) in (24) gives

o G L (AR |

_¢,2

+ @ Al f (it )Xndx} (25)
n=1 Au

From the variational prlnC|pIe the Lagrangian (Bhsequently (25) satisfy the
following system of Euler-Lagrange differential edjons

g[at}ri(atj_ oL _
ot{od, ) ox\od,) 0P,
E(OL}ri(aLj_ oL _
ot 0d, )] ox\ P, ) 0P,
hence, we obtain the following ordinary differehgguation with respect of time
¢, (t)+Qi, (t)=f (t), for n=1,2... (27)

,forn=1,2... (26)




2

24 and f, (t) =

Al(x

H(xn,wn),(xn,wn)'

Where Q2 = [ f(xt)X,dx

p[(X,w
The general solution of (27) is on the form

P, (t) =, (0)cosQ,t }—— (O) stt)F If t)sinR, (-7 Wir (28)

To determine convenlently constamlﬁ(O) and @ (0) we need the initial conditions
(13) which should also be expanded into Fourigesewith respect to eigenfunctions

system
u(x,0)=g(x)=> @, (0)X, ) (x,0)=h &)= b, (0X, &),

n=1 n=1
o - (29)
@wx) =¢(x,0)=> @, (0¥, (x).¢ x)=¢ (x,0)=> &, (OW, &

=1 n=1

Using the properties of the previous expansiomagtnality condition (19) and the
norm formula (20), we can expresgs (0) and ®_(0), as Fourier coefficients:

1 |
®,(0)= AX, ()G (X) + 1 W, (x)e(x))olx
I(%,.w,) o .[o( ) -
. 1 |
¢n(0>=m [ (AX,00h0)+1,W, ()8 (6))dx

Substituting (30) into (28) and get the solutiorired initial problem, afterward we
substitute equation (28) in the expression (23)ht@in the solution of the problem
for the longitudinal vibrations of the Mindlin-Henann isotropic bar
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We can introduce the Green'’s function in orderinapdify the representation of the
solution

(t)= [ o) 2B ED gy [ o) 2005 D

+j;Ah<sM£tue+jolp¢easz«etww—jojof Kt ke t-7 drde

wixt) = [, Ag(e) 2 E g4 [ 1 gre) T2 gy
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Where

G (x &)= Z[ (Xzi (‘35)'”QtJG (x.£t)= Z[x (Xz‘:’( (fp)s;thJ

n=
Alp

n (Xn'qJn) n (Xn’qJn)
are the Green’s functions.

n
Alp

Gy (x1)= Z[‘P J)X, (£)sinQ, t} G, (x.e0)= Z[LIJ (W, (€)sinQ, tj

Alp



