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ABSTRACT

In symmetric distributed structures subjected tation and an inertial rotation, the vibrating
patterns turn in the direction of revolution ataterproportional to the inertial angular rate.
This effect has numerous applications in navigatianstruments, such as hemispherical
rotational sensor. It is also important for astygbs and seismology to understand the
dynamics of pulsating stars and earthquake séftes coefficient of proportionality between
the inertial and vibrating pattern rates dependghergeometry of structure, mode number, et
cetera, and plays a crucial role in this studythis paper we consider gyroscopic effects in
hollow solid spheres filled with an inviscid flui@he dynamics of the sphere are considered
in terms of linear elasticity. Two limiting caseftbe fluid motion are considered: in the first
case, we suppose that the fluid is fully involvadhe rotation; in the second, the fluid does
not rotate relative to the inertial reference frantas also assumed that the angular rate is
constant and much smaller than the lowest eigeavaluthe system. Hence centrifugal
effects, proportional to the square of the angudde, are considered to be negligible. The
effects of structure prestress due to gravitatiéor@es are also neglected. Two types of non-
axisymmetric modes of the system are consideredjelya spheroidal and torsional. A
numerical experimental observation is made that, lmver eigenvalues and lower
circumferential wave numbers, the difference betwde modulus of the rotational angular
rates of the fluid-filled sphere and those of itbrating patterns is small. However, this
difference is large for higher modes and eigenvsabfdhe system.

1. INTRODUCTION

Let us consider a spherical body (vith distributed parameters, either solid ordl(Fig. 1).
Suppose that the body is subjected to non-decagiorgtions on one of its natural modes as
well as rotation with a small constant angular r@teelative to axisOzin inertial space. By
“smallness” of the angular rate of rotatiéh we mean that this rate is substantially smaller
than the lowest eigenvalue of the system. Consélyueve will neglect centrifugal effects
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and all other terms proportional *.

Figure 1. Coordinate systems for spherical b&)Jy (

2. GYROSCOPIC EFFECTSIN DISTRIBUTED BODIES

Assume thal(u, v, w)T is a vector of linear displacements of an arbjtgoint P belonging
to the body §). The absolute linear velocity of this point is

u-—-Qvcosfd
V =|v+Q[ucosf +(r +w) sind | (1)
W-Qvsing

where r is the distance from the cent@ to the pointP of the body ([1]). The kinetic
energy of the system of concentric spherical bodiepproximately:

?{(uf V2 W)+ 2Q[ (uy, — 4y, ) cos +(Vw —vivy) sirﬁ]} r? sirgdrdédg (2)

where N is the number of concentric spherical bodies i@ #ystem i(=1,2,... ,N) and

a_,,a are the inner and outer radii of tiebody. We express the displacements;,w of
thei™ body of the system as follows:

u(r.8.0.t)=U(r ,9)[C(t) co{mg) + S(t) coém¢):|
v (r.8,0.t) =V, (r.8)[ C(t) sin(mg) - S(t) cogmg) | (3)
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w (r,6,¢.t) =W (r.0)[ C(t) cofmp) + S(t) cofmp) ]

whereU, =U, (r,6), V, =V, (r,6), W =W (r,8) are eigenfunctions of the system corresponding
to the eigenvaluev, which will be calculated later, anghON is the circumferential wave
number.

After substituting Equation (3) into Equation (2¢ wbtain an expression for the kinetic
energy of the system =T(C,S,C,S). The system of equations for the mode under
consideration is ([1])

C+27QS+a’C=0; S-27QC+awfS=0 4)
wherer is the so-called “Bryan’s factor” ([2]) and is defd as follows:

N T8
{p, 0 [ (U, co+W sirg)Vr? sirﬁdrdﬂ}
=1 04,

N Ty
Z{p, ] j U 2 +\42+V\/iz)rzsin6?drd9}
0

i=1 8y

<1 (5)

Bryan’s factor may be interpreted as follows: Fisimbine the two equations of system (4)
by consideringX =C +iS, wherei? =-1 ([1]), [3]). Now apply the transformation

X (t) =Y(t) exprQt) (6)

and negleclO(Qz) terms. This yields the approximate relationskipa?Y =0, which is the

harmonic oscillator equation with two degrees ekfftom. Hence, Equation (6) indicates that
the vibrating pattern rotates with angular ra (in the rotating reference frardgyz). This
rotation is in the direction of rotation of the &ym®, if >0, and in the opposite direction, if
n<o.

3. EQUATIONS OF MOTION AND THEIR SOLUTIONS

Using [4] and its notation, the equations of mot@na solid body in spherical coordinate
system are

oo, 100, 1 do,, +2(7rr — 04 —0,, +COt8 T, :p@
or r 08 rsind 0¢ r ot?
90, L1 00y, L1 00y, N 30, + cotH(J% —UM) _ 5_2\, -
o r 068 rsind 0¢ r ot?

a0, +}609¢+ 1 60¢¢+30r¢+2c0t6’09¢ :pazw
or r 88 rsind 0¢ r ot?
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where stresses are given by

g, = A (Err + Eoo +E¢¢) + 2#5” i Og = A (Err +£HH +E¢¢) + 21”‘999 ; J¢¢ =A (é‘” +E€9 +£¢¢)+ 2,U£¢¢ ;
SHEy, Oy =HE,, O =HEg (8)
and strains are given by
ow 1(du 1 1 ov
g, = Epp = ( w); £y =—| COLOU+———+W |; 9)
o’ 08 r sind 0¢

_1 1 ou ov _ov 1 1 ow ] _0u ow
Egp = +t—-cotv|; &,=—+=-| ———-V|, =+ —-U
sm6'6¢ 06 or r{sindadg or r\dé

By means of a change of variablfs,v,w) - (®,W,X), the system of Equation (7)
becomes:

W= {OCD [c')z(rX)_'_r,Oa)2 X}}em; (10)

ar or? U
y=)19 qHa(rx) I L) P R S q>+a(rx) _10% | o
r oo or asing d¢ r sind 0¢ or aodd

[5] where a is a non-zero constant with the dimension of ler{Gr example, it could be the
radius of the first sphere) ari=®(r,6,4), X =X(r,8,¢) and¥ =W (r,6,¢) satisfy the
Helmholtz equations:

D@ +k* (@)@ =0, O°X+k; (@)X =0, DW+k(w)¥=0 (11)

where kl( ) wz(/Hz#), k2 =P / with 0 the Laplace operator in spherical

coordinates ([3]). The solutions to Equation (1) a

Gl (r,0,¢,a)):[Bljn(kl(a))r)+Bzyn(kl(a))r)} P" (cost) cogmg)
X (106,02 sjn(kz(w)r)mm(kz(w)r)]Pm(cose) cofrg) @2
W (r.0.¢,w)= [stn(kz(a))r)+Beyn(kz(a))r)] P"(cos8) si{mg)

where B, B,,...,B, are arbitrary constants (if the body contains a¢aetreO, the constants
B,=B,=B,=0).

The motion of a compressible inviscid fluid is regpented by the following wave
equation:

D?p+kZ(w) p=0 (13)
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with ksz(a)):E(%(f), where E!") is the bulk modulus of the fluid ang'") the mass

density of the fluid. The solution to this equatien
P (1,6,8,1) :{[B7jn (ks(@)r)+Byy, (ks(a))r)] P"(cosé) co:{m¢)} e (14)

with p= pm,n(r,0,¢,t) the pressure in the fluid. Particle displacementhe fluid in the
radial direction is:

()

o

= O (15)

4. BOUNDARY CONDITIONSAND EIGENFUNCTIONS

Boundary conditions of the system define the eigimas w. It is possible to distinguish
betweenspheroidal and torsional modes. For thespheroidal mode we assume tha¥ =0
([4]) and the stress components of the solid are:

o, 22 ale] ﬂ;r{%ﬂk;(w)x}
mfﬁi{(aﬂ-gj {ax x (rkzz(w)—ljx}} (16)
r o@ |\ or r o2 ar 2 r

2 2
o =22 ][00 o) [ ox ox (o) 1),
rsind ¢ r ar® or 2 r

For thetorsional mode we suppose thab = X =0 and corresponding stress
components are:

o, = u 0 (GLIJ ‘Pj anda,, = - M0 (G‘P ‘P) a7
asingd ¢ r aog\or r

Let us model a thick solid sphere filled with irsig fluid. In this case, let
a,=0,a =a,a,=b. Considering the spheroidal mode (because thstaismode does not
interact with an inviscid fluid), one can obtair tholutions:

P=p,.(r.6.0.1) [Ajn ky(w }Pm(cosﬁ) cogmp) e
o=, (1,6,4,0)=] Aj,(k(w)r)+ Ay, (k(w)r)]R"(cosd) cogmp) (18)
X =X (1,6.8.0) =[ A, (K (@)r) + Ay, (ky(@)r) ] P (cost) cogmg)
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The following boundary conditions express the badalpetween the radial components
of stress and pressure between the solid anddhiddhe equality of their radial
displacements at = a. Furthermore, they mention the absence of streddbg outer surface
of the solid spherer(=b):

0’® a 0%(rX)
r=a: - — + rk2 X =-
{,u or? k(@ 6 { or? }}r:a p|r:a

X} i} f)wz } )
{— (S22 o

k? (@ cp}zyar{ “(r )+rk2( )x}}cbzo (20)

AR

{ aqn CD

{ > or?
(T

By substituting Equation (18) into Equation (10)dasimplifying, we obtain the
following eigenfunctions (where superscrifitibdicates the quantities for the fluid):

U(r8) = H{ A (kr)+ Ay, (k) +
AL(N+2) o (el ) =Ko (ko ) T+ A (n+2)y, (k5) =k gy, {k g) |

m n-m+1_.
{ (n+1) cotd (" ( coP) + Py P ( cog)}

V(0) = T () A (k) AL (k) Kt k)]
+A[(n+1) yn(kzr)—kzryn+1(k2r)]} P"(cos)

W(e.6) = A5 00) ki) £ ] Py, (k) -ky )
A0 ) e 200y, ) (o)

U(‘)(r,e):%Ajn(k3r)E{—(n+1) cotg By (co) + "= L co@)}

(21)

v (r,g)=- Aj,(ky)P"(cost)

rsin@

w((r,6) = {A{? jn (ksr) - ksjm(k;)}} R"(cosf)
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4.1 Example

Let us consider the spheroidal vibrations of a Khgpherical shell (with inner radius
a=0.4m, outer radiusb=0.5m), made from brassH=100MPa, ,0=8500k%3 and

v =0.34), and filled with water E'") =2.2MPa, p!" =1oook%|3 )) that is involved in

rotation with a constant angular rate.
Suppressing the mode number subscripts the Bryan’s factor for this structure is
given by:

| a b
Z{IDP(f)(U(f)cosﬁ+W(f) sirﬁ)v(f)rzdr+j,0(u cof +W sia)Verr} si@de}
0L 0 a

I7: ma
J.|:J.10(f)(u(f)2 +V(f)2 +W(f)2)r2dr +j3p(u 2+V 2+W Z)r ﬁr:|3|n6d0
0 a

0

Calculations of eigenvalues and the correspondiygiBs factors are given in Table 1,
where « indicates the eigenvalues andhe Bryan’s factor:

Table 1. Eigenvalues and corresponding Bryan'ofact

g H) | wH) | w(HY @, (H2) w (H2)
h 4L dE M 1T
1791.171| 1972.378 | 2093.701| 2989.117 4302.243
-0.9107 -0.7738 -0.7952 0.4319 -0.0848
2664.052| 2915.703 | 3605.416| 4101.496 5065.809
-0.4775 -0.547 -0.5559 0.2860 -0.0648
2664.052| 2915.703 | 3605.416| 4101.496 5065.809
-0.7162 -0.8204 -0.8339 0.4290 -0.0973
3332.472| 3981.479| 5071.341| 5193.817 5807.461
-0.3366 -0.4397 0.1735 0.1635 -0.0521
3332.472| 3981.479| 5071.341| 5193.817 5807.461
-0.5048 -0.6596 0.2602 0.2453 -0.0781
3332.472| 3981.479| 5071.341| 5193.817 5807.461
-0.6731 -0.8795 0.3470 0.3270 -0.1041

5. CONCLUSIONS

1. Gyroscopic effects in rotating symmetric distribliteodies were considered and the
dependence of the rate of rotation of the vibrapagern on inertial angular rate of the
system was determined. This dependence is desdripdte so-called “Bryan’s factor”
which is calculated in spherical coordinates.

2. Solutions to the dynamic equations of elastic s@i fluid bodies composed of
concentric spherical layers were obtained and bawyndonditions were formulated for
calculating eigenvalues and eigenfunctions forsystem.
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The results of the general theory were appliedtexample of a rotating elastic, thick
spherical shell filled with an inviscid compressibiluid. Eigenvalues and Bryan's
factors were calculated and tabulated for varidbsation modes. It was observed that
negative Bryan's factors predominate in the tablewever, no discernible pattern for
the sign of the Bryan's factor is obvious from thable. Furthermore, for lower
eigenvalues and lower circumferential wave numbéhns, difference between the
modulus of the rotational angular rates of thedtfiled sphere and those of its

vibrating patterns is smal|/1] =1). However, this difference is large for higher rasd
and eigenvalues of the systefm| € 0).
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