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ABSTRACT 

In symmetric distributed structures subjected to vibration and an inertial rotation, the vibrating 
patterns turn in the direction of revolution at a rate proportional to the inertial angular rate. 
This effect has numerous applications in navigational instruments, such as hemispherical 
rotational sensor. It is also important for astrophysics and seismology to understand the 
dynamics of pulsating stars and earthquake series. The coefficient of proportionality between 
the inertial and vibrating pattern rates depends on the geometry of structure, mode number, et 
cetera, and plays a crucial role in this study. In this paper we consider gyroscopic effects in 
hollow solid spheres filled with an inviscid fluid. The dynamics of the sphere are considered 
in terms of linear elasticity. Two limiting cases of the fluid motion are considered: in the first 
case, we suppose that the fluid is fully involved in the rotation; in the second, the fluid does 
not rotate relative to the inertial reference frame. It is also assumed that the angular rate is 
constant and much smaller than the lowest eigenvalue of the system. Hence centrifugal 
effects, proportional to the square of the angular rate, are considered to be negligible. The 
effects of structure prestress due to gravitational forces are also neglected. Two types of non-
axisymmetric modes of the system are considered, namely spheroidal and torsional. A 
numerical experimental observation is made that, for lower eigenvalues and lower 
circumferential wave numbers, the difference between the modulus of the rotational angular 
rates of the fluid-filled sphere and those of its vibrating patterns is small. However, this 
difference is large for higher modes and eigenvalues of the system. 

1. INTRODUCTION 

Let us consider a spherical body (S) with distributed parameters, either solid or fluid (Fig. 1). 
Suppose that the body is subjected to non-decaying vibrations on one of its natural modes as 
well as rotation with a small constant angular rate Ω  relative to axis Oz in inertial space. By 
“smallness” of the angular rate of rotation Ω  we mean that this rate is substantially smaller 
than the lowest eigenvalue of the system. Consequently, we will neglect centrifugal effects 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

and all other terms proportional to 2Ω . 
 
 

 
 Figure 1. Coordinate systems for spherical body (S) 

2. GYROSCOPIC EFFECTS IN DISTRIBUTED BODIES 

Assume that ( ), ,
T

u v w  is a vector of linear displacements of an arbitrary point P  belonging 

to the body (S). The absolute linear velocity of this point is  
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where r  is the distance from the centre O  to the point P  of the body ([1]). The kinetic 
energy of the system of concentric spherical bodies is approximately: 
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where N  is the number of concentric spherical bodies in the system ( 1,2, ,i N= … ) and 

1,i ia a−  are the inner and outer radii of the ith body. We express the displacements , ,i i iu v w  of 
the ith body of the system as follows: 
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( ) ( ) ( ) ( ) ( ) ( ), , , , cos cosi iw r t W r C t m S t mθ ϕ θ ϕ ϕ=  +    

 
where ( ),i iU U r θ= , ( ),i iV V r θ= , ( ),i iW W r θ=  are eigenfunctions of the system corresponding 

to the eigenvalue ω , which will be calculated later, and m N∈  is the circumferential wave 
number. 

After substituting Equation (3) into Equation (2) we obtain an expression for the kinetic 
energy of the system ( , , , )T T C S C S= ɺ ɺ . The system of equations for the mode under 
consideration is ([1]) 

 

2 22 0; 2 0C S C S C Sη ω η ω+ Ω + = − Ω + =ɺɺ ɺ ɺɺ ɺ      (4) 
 
where η  is the so-called “Bryan’s factor” ([2]) and is defined as follows: 
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Bryan’s factor may be interpreted as follows: First, combine the two equations of system (4) 
by considering X C iS= + , where 2 1i = −  ([1]), [3]). Now apply the transformation  

 

( ) ( ) exp( )X t Y t i tη= ⋅ Ω        (6)  

 

and neglect ( )2O Ω  terms. This yields the approximate relationship 2 0Y Yω+ =ɺɺ , which is the 

harmonic oscillator equation with two degrees of freedom. Hence, Equation (6) indicates that 
the vibrating pattern rotates with angular rate ηΩ  (in the rotating reference frameOxyz ). This 
rotation is in the direction of rotation of the system, if 0η > , and in the opposite direction, if 

0η < . 

3. EQUATIONS OF MOTION AND THEIR SOLUTIONS 

Using [4] and its notation, the equations of motion of a solid body in spherical coordinate 
system are  
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where stresses are given by 
 

( ) ( ) ( )2 ; 2 ; 2 ;rr rr rr rr rrθθ ϕϕ θθ θθ ϕϕ θθ ϕϕ θθ ϕϕ ϕϕσ λ ε ε ε µε σ λ ε ε ε µε σ λ ε ε ε µε= + + + = + + + = + + +

; ;r r r rθϕ θϕ ϕ ϕ θ θσ µε σ µε σ µε= = =     (8) 

 
and strains are given by 
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By means of a change of variables ( ) ( ), , , ,u v w → Φ Ψ Χ , the system of Equation (7) 

becomes: 
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[5] where a  is a non-zero constant with the dimension of length (for example, it could be the 
radius of the first sphere) and ( ), ,r θ ϕΦ = Φ , ( ), ,r θ ϕΧ = Χ  and ( ), ,r θ ϕΨ = Ψ  satisfy the 

Helmholtz equations: 
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2k ρωω µ=  with 2∇  the Laplace operator in spherical 

coordinates ([3]). The solutions to Equation (11) are: 
 
 

( ) ( )( ) ( )( ) ( ) ( ), 1 1 2 1, , , cos cosm
m n n n nr B j k r B y k r P mθ ϕ ω ω ω θ ϕ Φ = +   

( ) ( )( ) ( )( ) ( ) ( ), 3 2 4 2, , , cos cosm
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( ) ( )( ) ( )( ) ( ) ( ), 5 2 6 2, , , cos sinm
m n n n nr B j k r B y k r P mθ ϕ ω ω ω θ ϕ Ψ = +   

 
where 1 2 6, , ,B B B…  are arbitrary constants (if the body contains the centre O, the constants 

2 4 6 0B B B= = = ). 
The motion of a compressible inviscid fluid is represented by the following wave 

equation: 
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with ( ) ( )
( )

2
3

f

f
Ek ω

ρ
= , where ( )fE  is the bulk modulus of the fluid and ( )fρ  the mass 

density of the fluid. The solution to this equation is: 
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with ( ), , , ,m np p r tθ ϕ=  the pressure in the fluid. Particle displacement of the fluid in the 

radial direction is: 
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      (15) 

4. BOUNDARY CONDITIONS AND EIGENFUNCTIONS 

Boundary conditions of the system define the eigenvalues ω . It is possible to distinguish 
between spheroidal and torsional modes. For the spheroidal mode we assume that 0Ψ ≡  
([4]) and the stress components of the solid are: 
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For the torsional mode we suppose that 0Φ ≡ Χ ≡  and corresponding stress 

components are: 

 

  and 
sinr ra r r a r rθ ϕ
µ µσ σ

θ ϕ θ
∂ ∂Ψ Ψ ∂ ∂Ψ Ψ   = − = − −   ∂ ∂ ∂ ∂   

    (17) 

 
Let us model a thick solid sphere filled with inviscid fluid. In this case, let 

0 1 20, ,a a a a b= = = . Considering the spheroidal mode (because the torsional mode does not 

interact with an inviscid fluid), one can obtain the solutions: 
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The following boundary conditions express the balance between the radial components 
of stress and pressure between the solid and fluid and the equality of their radial 
displacements at r a= . Furthermore, they mention the absence of stresses at the outer surface 
of the solid sphere (r b= ): 
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By substituting Equation (18) into Equation (10) and simplifying, we obtain the 

following eigenfunctions (where superscript (f) indicates the quantities for the fluid): 
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4.1 Example 

Let us consider the spheroidal vibrations of a thick spherical shell (with inner radius 

0.4a m= , outer radius 0.5b m= ), made from brass ( 100E MPa= , 38500kg
m

ρ =  and 

0.34ν = ), and filled with water ( ( ) 2.2fE MPa= , ( )
31000f kg

m
ρ = )) that is involved in 

rotation with a constant angular rate.  
Suppressing the mode number subscripts m,n, the Bryan’s factor for this structure is 

given by: 

 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

2 2

0 0

2 2 2 2 2 2 2 2

0 0

2 cos sin cos sin sin

sin

a b
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f f f f
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U W V r dr U W V r dr d

U V W r dr U V W r dr d

π

π

ρ θ θ ρ θ θ θ θ
η

ρ ρ θ θ

   + + +  
   =

 
+ + + + + 

 

∫ ∫ ∫

∫ ∫ ∫

 

 
Calculations of eigenvalues and the corresponding Bryan’s factors are given in Table 1, 

where iω  indicates the eigenvalues and iη the Bryan’s factor: 

Table 1. Eigenvalues and corresponding Bryan’s factors 

 
n m 

1ω  (Hz) 

1η  

2ω  (Hz) 

2η  
3ω  (Hz) 

3η  
4ω  (Hz) 

4η  
5ω  (Hz) 

5η  

2 2 1791.171 
-0.9107 

1972.378 
-0.7738 

2093.701 
-0.7952 

2989.117 
0.4319 

4302.243 
-0.0848 

3 2 2664.052 
-0.4775 

2915.703 
-0.547 

3605.416 
-0.5559 

4101.496 
0.2860 

5065.809 
-0.0648 

3 3 2664.052 
-0.7162 

2915.703 
-0.8204 

3605.416 
-0.8339 

4101.496 
0.4290 

5065.809 
-0.0973 

4 2 3332.472 
-0.3366 

3981.479 
-0.4397 

5071.341 
0.1735 

5193.817 
0.1635 

5807.461 
-0.0521 

4 3 3332.472 
-0.5048 

3981.479 
-0.6596 

5071.341 
0.2602 

5193.817 
0.2453 

5807.461 
-0.0781 

4 4 3332.472 
-0.6731 

3981.479 
-0.8795 

5071.341 
0.3470 

5193.817 
0.3270 

5807.461 
-0.1041 

 

5. CONCLUSIONS 

1. Gyroscopic effects in rotating symmetric distributed bodies were considered and the 
dependence of the rate of rotation of the vibrating pattern on inertial angular rate of the 
system was determined. This dependence is described by the so-called “Bryan’s factor” 
which is calculated in spherical coordinates. 

2. Solutions to the dynamic equations of elastic solid and fluid bodies composed of 
concentric spherical layers were obtained and boundary conditions were formulated for 
calculating eigenvalues and eigenfunctions for the system. 
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3. The results of the general theory were applied to an example of a rotating elastic, thick 
spherical shell filled with an inviscid compressible fluid. Eigenvalues and Bryan’s 
factors were calculated and tabulated for various vibration modes. It was observed that 
negative Bryan’s factors predominate in the table. However, no discernible pattern for 
the sign of the Bryan’s factor is obvious from the table. Furthermore, for lower 
eigenvalues and lower circumferential wave numbers, the difference between the 
modulus of the rotational angular rates of the fluid-filled sphere and those of its 
vibrating patterns is small ( 1η ≈ ). However, this difference is large for higher modes 

and eigenvalues of the system ( 0η ≈ ). 
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