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Simple mathematical model of vibratory gyroscopegerfections is formulated, which includes anispitcdamping and
variation of mass-stiffness parameters and thefnmaics. The method of identification of parametdrthe mathematical model
from the experimental data is based on transforomaf the system of linear differential equatiorfsttee model into an
overdetermined system of linear algebraic equatiwite subsequent matching of the system parambterseans of the least
squares method. Example of practical calculatiohpayameters of a vibratory gyroscope is consideaad it is shown by direct
solution of equations of motion that the metho@gia good results.

Introduction

Creation of mathematical model of gyroscope’s irfgations is a crucial stage of development of fitsory. A
complete theory of instrument’s imperfection helpsubstantially improve the gyro accuracy by meainsorrections of
output data, which could be made on the basisisfttieory. This is especially important for gyroges of inertial class
that need a detailed and well developed theorypefrations and imperfections. Another problem cadssis correct
identification of the model’'s parameters from aes®pf laboratory tests. Last but not least isdbeelopment of methods
for fast and simple on-board identification of pasers and their changes without tedious and tiomswming tests. It
could be achieved by means of formulation of sinfpleaccurate enough theory of gyro imperfectioith worresponding
algorithms of their on-board identification. Theoposed paper represents a simple but detailed matieal model of
vibratory gyroscopes imperfections and methodssoparametric identification. This model includhe main factors that
influence the vibratory gyro accuracy such as: Qefmand deviation of its harmonics (anisotropiongéng) and variation
of mass-stiffness parameters and their harmonissdaopy of mass-stiffness parameters). Deviatbrihe Q-factor’
harmonics causes a substantial drift of the vibgagiattern in the direction of its minimum dampags. Hence, it is also
necessary to identify location of the minimum-maxim damping axes of the gyroscope, which could chathgir
orientation in time. Mass-stiffness harmonic impetions stipulate growth of quadrature signals land-periodic beats
of the vibrating pattern with regards to the maiassistiffness axes that could also change theintaiion in time and
hence, must be properly identified. It is shownhis paper that the abovementioned effects coulsiroply classified and
corresponding coefficients of the mathematical nhadeld be identified. These methods are formulaesdn algorithm,
main idea of which consists in time integrationttod in-phase and quadrature signals from both rimétion channels of
the vibratory gyroscope at different time instarttds process generates an overdetermined systelineafr algebraic
equations with regards to unknown coefficients ¢ tnathematical model of gyro imperfections. Thiea s$ystem is
solved by means of the least squares method arzb#féicients of the model are determined. Theesponding physical
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parameters of the gyroscope, such as damping (@rfafrequency splitting, angles of maximum-minimuamping and
mass-stiffness axes orientation, cross-couplingnpiit angular rate channels are estimated fromctedficients of the
model in the explicit form. The example is cons@kand the conclusion is formulated that the metmdd be realized
as an on-board correction algorithm.

M athematical M odel

Let us consider the following model of a vibratggroscope:
5+ 20(1+ Ap COSAPy )X + 230 Sin4gyy + w? (1+ A, COSA, X+ w?A, sindg,y =0

: (1)
§+20(1— A; cosag, )y + 2A0 sin4gyx+ w? (1- A, cosag, )y + w?A, sindg,x =0

where x = x(t), y = y(t) — output signals fronX— and Y-channels,d — damping factor,A;— coefficient of damping
anisotropy, #; — angle of location of the maximum damping axishwitgards to th&-channel axisa — natural circular
frequency of an operational mode (in our case leimferential wave numbem= 2 is considered)A,— coefficient of
mass-density anisotropyj, — angle of location of the maximum frequency axithwegards to th&-channel axis. It is

supposed that terms, proportionabbtand w2A2 are supposed to be small. We assume that demadulatix(t) and

y(t) output signals are realized with frequency « so that difference’ —a is also small. Writing all small terms in the
right hand sides of equations (1) we obtain thko¥ahg system:

X+V2x= —25(1+ N cos4¢1)>'<—25A1 sin4¢1y+(v2 -a? +a)2A2 cosdg,) x—w2A2 sindg,y

y+v2y = —25(1—A1 cos4¢1)y— 201\, sindgix+ (i/2 -+ w2A2 cosdg,) y—w2A2 sindg,x. 2
We search for solution of (2) in the form:
X =acosy +bsiny; y =ccosyy +dsiny; @)
3
X:v(—asin¢/+bcos¢/); y:v(—csinz//+dcos¢/),
where a,b,c,d — “slowly” changing parameters of time and phage=vt+{/q (¢ =v). Formulae (3) could be
considered as change of variab(exsi(, 2 y) N (a, b, c, d) and in new parameters system (2) is rewritterobevs:
a=apatappb+agsctad+fy (sin 2y, COSZ[/I),
b=—ay,a+ay.b-ag.c+ay5d + f,(sin 2, cos2y), Y
4
C=aiza+ab+azsC+azd+ 1, (sin 2y, COSZ[/I),
d = —aq4a+ay3b—az,c+azsd + f4(sin2y, cos2y),
where
LW _ w? _ w? -v?
011-‘57(1+A1 cosdgy)  ay, —E(Ao +Ayc0848,) Do =———,
w
®)

2 2
13 = _JgAl Sin4¢1, a14=2)—A2 Sin4¢2, Q33 = _5% (1_A1 COS4¢1), a3y =C;)—(AO _Az COS4¢2 )
14 vV v

Expressions f,p ¢ g (sin 21//,00321//) — are changing fast with the double phageand following to the method of
averaging could be neglected in the first approioma Residual slowly changing terms determine \avlgionary motion
of the system. The averaged system:

a= a11a+a12b+a13c+a14d, b = —a12a+a’11b—a’14c+a’13d,

(6)

¢c= 0’13a+a14b+a33c+a34d, d = _al4a+al3b_a34c+a33d



is linear with regards to six unknown parameteis, @15, a13, 014, 033, X34.
I dentification of Parameters

To define the unknown parameters from the outpte déthe transient regime first integrate all f@guations (6)
with regards to timé to obtain:

a1l o (t) +apalp () +aal () +apal g () =85 (1)

—apol g () +apglp(t) —agal (V) + a3l g () =Dp(t)

@)
13l () + a4l (t) + @33l o (t) + a3l g (1) = A ()
—a14l o (t) +a13lp (t) @34l c (1) + @33l g (t) =Dy (1)
t t t t
la@®) =[a(@)dr; 1, =[b(r)dr; 1.t =[c(r)dr; 14(t)=[d(r)dr; (8)
0 0 0 0

Aa()=alt)-a(); Ap(t) =b(t)-b@); Ac(t)=c(t)-c@); Aqy(t)=d(t)-d(0)

Integration helps us to filter out possible randemors of measurements and accumulate the infasmatbout the
global evolution of the system. For the purposesusherical integration one can use any quadraturaudlae, for example
trapezoidal or Simpson’s rules.

Expressions (7) give us an overdetermined systelim@dr algebraic equations for measurement instastt; > 0,
t=t, >ty, ..., t=ty >ty-1, where tD[O,tN]— interval of measurements and +1— number of measurements,
including initial values at =ty = 0.

Unknown parameters could be determined from thisesy, using the least squares method. For applicafi this
method we form the goal function, subjected to mination:

F =F(a11,012,013,014,033,034) = 9)

N . , . , 2 . , . . o
=%Z{ (alll O vapl() +arg P +ai, § ‘A%)) +(‘ﬂ12|a(1') vayl () —a) O +agl ‘A(tl))) +
i=1

) . ) . S \2 ) . . . A\
+(013| D val) +azs ) +az § ‘A(é)) +(‘ﬂ14|a(1') vagl) —ag) {) +agy ‘A(é)) }
where:

10 =10, 10 =150, 18 =160),1§ =190, 8D =851, 8 =8p4), 20 =8c ), 4D =a4(t).

Minimum of function F = F(a’ll,a’lz,0’13,0’14,0’33,0’34) is achieved at parametelﬂll,alz,al3,0’14,0’33,0’34,
satisfying the system of equations:
OF oF _OoF _OF _ OF _ oF

= = = = = =0 (10)
0ayy Oayp Oayg 0ayy Oazz 043y
Explicit solution of system (10) is given by therfala:
— - — - _1 — -
ayy | |[M11 M1z Mgz Mgy Mis Mg Ry
aip M2z Ma3 Mpgs Mg Mog Ry
aq3 M M M M R3
_ 33 Mas Mas Mas | | 1)
a4 (Symm Mys Mys Myg Ry
as3 Mss Msg Rs
1034] | Mes] [ Rs.




where

N . . N o o N/ . o
M11=2(|g>2+|g>2); M, =0; M13=z(|g>|g>+|g>|g>); Ml4=z(|g>|g,'>-|g>|g>);
i=1 i=1 i=1

Mi5=M1g=0; Mo =M11; Mpz=-Myy; Mps=Myz;

M5 =My =0 Mas=Z(I§J’2+lé')2+lé')2+lé')2); Mgy =0; Mgs=Mjs;

i=1
Mazg=M1s;  Mys=Mgz3; Mys=-M1y; Myg=My3; (12)
N (i '2). . .
M55=Z(|g)2+|c(1l)’ Msg =0, Mgg=Mss;
i=1
N o o N o N o o o
R1=Z(I§)A(;)+IS)A(Q,)); R2=z(|g>a<;>—|g>a<g>); R3=Z(IS)A(C')+Ié')A(é)+Ié')A($)+I§,')A(t',));
i=1 i=1 i=1

N[ v N N N N[ .« , N N[ ;i\ o
R, = z(| DAD -1 0D +1 OAD - g)A(é)); Rs = Z(I OaD +1 A0 ); Rg = z(| 00 - Q)A(C',)).
i=1 i=1

=
Now it is possible to calculate unknown values:gérency of the resonatorf(= %ﬂ), frequency splitting

(Af :%ﬂmz), orientation of the mass-stiffness defect (anglg), damping factor §), Q-factor (Q=n‘4),

damping factor defectXd = d\;), Q-factor defect AQ = n‘A%) and orientation of the damping factor defect (@ang

@1). These parameters could be calculated from egjores (5) by the formulae:

1 1 V((O'lz ~a34)” +40’124)
f=—\v(v+aq,+a34); Af =— ;
277‘/ (V+aip+aza) 27'[\/

V+ap,+0z,
a1, —Q . 2a
cosdg, = 12 _~34 ; sindg, = 14 ;
2 2 2 2
x/(012‘0'34) +aaiy (a12=034)° +4a14
v(a, +a V+ai,+a
s=-_ V@utds) Q=-VTd12* 0. (13)
ZVV(V+H12+U345 a11+033
\/ — Oa)2 + 402 o+ \/ —Oa)2 + 402
A5z’ (a11-0a33)” +4aiz AQ_(V Q12 +a3a)\(a11—033)° +4ais
1 - 2 1
2\v(v+aqp +az,) (a11+0a33)
A3 —a . =20
cos4@, = 33 11 ; sindg, = 13

2 2 2 2
\/(311‘5’33) +4aq3 \/(all_HSS) +4aq3

Example

Transient regime of decaying oscillations of a &tbry gyroscope is shown in Fig.1,2. In these figuthe
demodulated in-phase and quadrature componentswaithogonal output channels are shown. The detatidn is

performed with circular frequency = 26143155 L at time intervalt D[O—lSds with rate of twenty measurements
per second (time incremefit = 005s). Using the abovementioned algorithm (11) — (1®) following parameters of the

vibratory gyroscope have been calculated:
* Natural frequency of the modé:= 6143140Hz.

*  Frequency splittinghf = 0.018Hz.



«  Damping factord = 0.015s72.

«  Q-factorQ=129310°.

«  Damping anisotropyAd = 0.0022.

e Q - factor anisotropyAQ = 0.1925710°.

«  Angle of maximum damping axis (froktchannel axis)$; = 21390,

«  Angle of maximum frequency axis (frokichannel axis)p, = -3706°.
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Fig. 1. Test data from chann¢(1-in-phase componers, ; 2—-quadrature componert)
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Fig. 2. Test data from channé(1-in-phase componert, ; 2— quadrature componetat)

To check the accuracy of approximations the nuraksolutions of the system (6) have been calculdtgdn
adaptive Runge-Kutta method with the same inittadditions as from the test data. Results of corsparbf the test data
and results of numerical integration of equatid@)safe shown in Fig.3-6.
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Fig. 3. Runge-Kutta and test data of in-ph#sghannel components



(---- - Runge-Kutta integration; - - - - test data
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Fig. 4. Runge-Kutta and test data of quadraXiohannel components
(---- - Runge-Kutta integration; - - - - test data
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Fig. 5. Runge-Kutta and test data of in-ph#s#hannel components
(---- - Runge-Kutta integration; - - - - test data
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Fig. 6. Runge-Kutta and test data of quadraWichannel components
(---- - Runge-Kutta integration; - - - - test data
Conclusions

The proposed algorithm of vibratory gyroscope peataic identification is formulated. It is showratithe predicted
parameters give satisfactory accuracy of the exparial data interpolation. The developed method#ddoe used for fast
characterization of the system on the stage obpmihg of balancing operations and periodical te$the system.



