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Abstract 
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 Simple mathematical model of vibratory gyroscopes imperfections is formulated, which includes anisotropic damping and 
variation of mass-stiffness parameters and their harmonics. The method of identification of parameters of the mathematical model 
from the experimental data is based on transformation of the system of linear differential equations of the model into an 
overdetermined system of linear algebraic equations with subsequent matching of the system parameters by means of the least 
squares method. Example of practical calculations of parameters of a vibratory gyroscope is considered and it is shown by direct 
solution of equations of motion that the method gives a good results.  
  
Introduction 
 

Creation of mathematical model of gyroscope’s imperfections is a crucial stage of development of its theory. A 
complete theory of instrument’s imperfection helps to substantially improve the gyro accuracy by means of corrections of 
output data, which could be made on the basis of this theory. This is especially important for gyroscopes of inertial class 
that need a detailed and well developed theory of operations and imperfections. Another problem consists in correct 
identification of the model’s parameters from a series of laboratory tests. Last but not least is the development of methods 
for fast and simple on-board identification of parameters and their changes without tedious and time consuming tests. It 
could be achieved by means of formulation of simple but accurate enough theory of gyro imperfections with corresponding 
algorithms of their on-board identification. The proposed paper represents a simple but detailed mathematical model of 
vibratory gyroscopes imperfections and methods of its parametric identification. This model includes the main factors that 
influence the vibratory gyro accuracy such as: Q-factor and deviation of its harmonics (anisotropic damping) and variation 
of mass-stiffness parameters and their harmonics (anisotropy of mass-stiffness parameters). Deviation of the Q-factor’ 
harmonics causes a substantial drift of the vibrating pattern in the direction of its minimum damping axis. Hence, it is also 
necessary to identify location of the minimum-maximum damping axes of the gyroscope, which could change their 
orientation in time. Mass-stiffness harmonic imperfections stipulate growth of quadrature signals and long-periodic beats 
of the vibrating pattern with regards to the main mass-stiffness axes that could also change their orientation in time and 
hence, must be properly identified. It is shown in this paper that the abovementioned effects could be simply classified and 
corresponding coefficients of the mathematical model could be identified. These methods are formulated as an algorithm, 
main idea of which consists in time integration of the in-phase and quadrature signals from both information channels of 
the vibratory gyroscope at different time instants; this process generates an overdetermined system of linear algebraic 
equations with regards to unknown coefficients of the mathematical model of gyro imperfections. Then the system is 
solved by means of the least squares method and the coefficients of the model are determined. The corresponding physical 
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parameters of the gyroscope, such as damping (Q-factor), frequency splitting, angles of maximum-minimum damping and 
mass-stiffness axes orientation, cross-coupling of input angular rate channels are estimated from the coefficients of the 
model in the explicit form. The example is considered and the conclusion is formulated that the method could be realized 
as an on-board correction algorithm. 
 
Mathematical Model 
 

Let us consider the following model of a vibratory gyroscope: 
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where )(txx = , )(tyy = – output signals from X– and Y–channels, δ – damping factor, 1∆ – coefficient of damping 

anisotropy, 1ϕ – angle of location of the maximum damping axis with regards to the X–channel axis, ω – natural circular 

frequency of an operational mode (in our case the circumferential wave number 2=m  is considered), 2∆ – coefficient of 

mass-density anisotropy, 2ϕ – angle of location of the maximum frequency axis with regards to the X–channel axis. It is 

supposed that terms, proportional toδ and 2
2∆ω are supposed to be small. We assume that demodulation of )(tx  and 

)(ty output signals are realized with frequency ων ≈ so that difference ων −  is also small. Writing all small terms in the 

right hand sides of equations (1) we obtain the following system: 
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We search for solution of (2) in the form: 
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where dcba ,,,  – “slowly” changing parameters of time and phase )(0 νψψνψ =+= &t . Formulae (3) could be 

considered as change of variables ( ) ( )dcbayyxx ,,,,,, →&&  and in new parameters system (2) is rewritten as follows: 
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Expressions ( )ψψ 2cos,2sin,,, dcbaf  – are changing fast with the double phase ψ  and following to the method of 

averaging could be neglected in the first approximation. Residual slowly changing terms determine an evolutionary motion 
of the system.  The averaged system: 
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is linear with regards to six unknown parameters .,,,,, 343314131211 αααααα  

Identification of Parameters 
 

To define the unknown parameters from the output data of the transient regime first integrate all four equations (6) 
with regards to time t  to obtain: 
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∫ ∫ ∫ ∫====
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Integration helps us to filter out possible random errors of measurements and accumulate the information about the 

global evolution of the system. For the purposes of numerical integration one can use any quadrature formulae, for example 
trapezoidal or Simpson’s rules. 

Expressions (7) give us an overdetermined system of linear algebraic equations for measurement instants ,01 >= tt  

,12 ttt >=  … , ,1−>= NN ttt where [ ]Ntt ,0∈ – interval of measurements and 1+N – number of measurements, 

including initial values at 00 == tt . 

Unknown parameters could be determined from this system, using the least squares method. For application of this 
method we form the goal function, subjected to minimization: 
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 Minimum of function ),,,,,( 343314131211 ααααααFF = is achieved at parameters 343314131211 ,,,,, αααααα , 

satisfying the system of equations: 
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Explicit solution of system (10) is given by the formula: 
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Now it is possible to calculate unknown values: frequency of the resonator ( π
ω

2=f ), frequency splitting 

( 22
1 ∆⋅=∆ ωπf ), orientation of the mass-stiffness defect (angle 2ϕ ), damping factor (δ ), Q-factor ( δ

πfQ = ), 

damping factor defect ( 1∆=∆ δδ ), Q-factor defect ( δ
π 1∆=∆ fQ ) and orientation of the damping factor defect (angle 

1ϕ ). These parameters could be calculated from expressions (5) by the formulae: 
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Example 
 

Transient regime of decaying oscillations of a vibratory gyroscope is shown in Fig.1,2. In these figures the 
demodulated in-phase and quadrature components of two orthogonal output channels are shown. The demodulation is 

performed with circular frequency 115.61432 −⋅= sπν at time interval [ ]st 1800−∈  with rate of twenty measurements 

per second (time increment st 05.0=∆ ). Using the abovementioned algorithm (11) – (13) the following parameters of the 

vibratory gyroscope have been calculated: 
• Natural frequency of the mode: Hzf 140.6143≈ . 

• Frequency splitting: Hzf 018.0≈∆ . 



• Damping factor: 1015.0 −≈ sδ . 

• Q – factor: 610293.1 ⋅≈Q . 

• Damping anisotropy: 0022.0≈∆δ . 

• Q - factor anisotropy: 6101925.0 ⋅≈∆Q . 

• Angle of maximum damping axis (from X-channel axis): 0
1 39.21≈ϕ .  

• Angle of maximum frequency axis (from X-channel axis): 0
2 06.37−≈ϕ . 

 
Fig. 1. Test data from channel X (1–in-phase component, ai ; 2–quadrature component, bi) 

 

 
Fig. 2. Test data from channel Y (1–in-phase component, ci ; 2– quadrature component, di) 

 
To check the accuracy of approximations the numerical solutions of the system (6) have been calculated by an 

adaptive Runge-Kutta method with the same initial conditions as from the test data. Results of comparison of the test data 
and results of numerical integration of equations (6) are shown in Fig.3-6. 

 
Fig. 3. Runge-Kutta and test data of in-phase X-channel components  



(---- - Runge-Kutta integration;  - - - - test data) 

 
Fig. 4. Runge-Kutta and test data of quadrature X-channel components  

(---- - Runge-Kutta integration;  - - - - test data) 

 
Fig. 5. Runge-Kutta and test data of in-phase Y-channel components  

(---- - Runge-Kutta integration;  - - - - test data) 

 
Fig. 6. Runge-Kutta and test data of quadrature Y-channel components  

(---- - Runge-Kutta integration;  - - - - test data) 
 

 
Conclusions 

 
 The proposed algorithm of vibratory gyroscope parametric identification is formulated. It is shown that the predicted 
parameters give satisfactory accuracy of the experimental data interpolation. The developed methods could be used for fast 
characterization of the system on the stage of performing of balancing operations and periodical tests of the system.  


