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ABSTRACT 
 
Piezoelectric transducers are commonly used to excite waves in elastic waveguides such as pipes, rock bolts and rails.  
While it is possible to simulate the operation of these transducers attached to the waveguide, in the time domain, using 
conventional finite element methods available in commercial software, these models tend to be very large.  An 
alternative method is to use specially formulated waveguide finite elements (sometimes called Semi-Analytical Finite 
Elements).  Models using these elements require only a two-dimensional finite element mesh of the cross-section of the 
waveguide.  The waveguide finite element model was combined with a conventional 3-D finite element model of the 
piezoelectric transducer to compute the frequency response of the waveguide.  However, it is difficult to experimentally 
verify such a frequency domain model.  Experiments are usually conducted by exciting a transducer, attached to the 
waveguide, with a short time signal such as a tone-burst and measuring the response at a position along the waveguide 
before reflections from the ends of the waveguide are encountered.  The measured signals are a combination of all the 
modes that are excited in the waveguide and separating the individual modes of wave propagation is difficult if there are 
numerous modes present. Instead of converting the measured signals to the frequency domain we transform the modeled 
frequency responses to time domain signals in order to verify the models against experiment.  The frequency response 
was computed at many frequency points and multiplied by the frequency spectrum of the excitation signal, before an 
inverse Fourier transform was used to transform from the frequency domain to the time domain.  The time response of a 
rail, excited by a rectangular piezoelectric ceramic patch, was computed and found to compare favorably with 
measurements performed using a laser vibrometer.  By using this approach it is possible to determine which modes of 
propagation dominate the response and to predict the signals that would be obtained at large distances, which cannot be 
measured in the lab, and would be computationally infeasible using conventional finite element modeling. 
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1. INTRODUCTION 
 
Piezoelectric transducers are commonly used to excite waves in elastic waveguides such as pipes, rock bolts and rails.  
The operation of these transducers can be simulated in the time domain using conventional finite element methods 
available in commercial software.  These models have to extend a few wavelengths along the waveguide and can result 
in very large numerical problems.  This is especially true if the dispersion of the waves over large distances is to be 
investigated.  An alternative method of analyzing waves that propagate in waveguides, which are infinite in one 
dimension, is to use specially formulated waveguide finite elements.  These elements are not available in commercial 
software packages but have been implemented by a few research groups [1-6].  These models require only a two-
dimensional finite element mesh of the cross-section of the waveguide.  The propagating and evanescent waves 
supported by the waveguide can be computed from these models and the response to harmonic point forces can be 
computed [7].  This harmonic forced response was used to combine waveguide element models with conventional 3-D 
finite element models of a piezoelectric transducer [8].  These models provide the frequency response of the waveguide 
as a superposition of the frequency response of each wave of propagation and are useful for designing a transducer or 
transducer array that will effectively excite a particular wave at a specified frequency and wavenumber.  This is 
particularly important if resonant transducers are to be used for long range guided wave inspection or monitoring.   
However, it is difficult to experimentally verify such a frequency domain model.  Experiments are usually conducted by 
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exciting a transducer, attached to the waveguide, with a short time signal such as a tone-burst and measuring the 
response at a position along the waveguide before reflections from the ends of the waveguide are encountered.  The 
measured responses contain multiple waves if they are excited.  The problem of separating the waves can be approached 
by taking many time domain measurements along a section of the waveguide and then performing a two-dimensional 
FFT to separate the modes with different wavenumbers.  This has been demonstrated for a low frequency excitation that 
excites only two propagating waves [9] but becomes more difficult at higher frequencies where multiple waves with 
similar wavenumbers can exist.  Instead of converting the measured signals to the frequency domain it is possible to 
transform the modeled frequency responses to time domain signals to verify the models against experiment.  This can be 
achieved by computing the frequency response at many frequency points, multiplying this by the frequency spectrum of 
the excitation signal, and performing an inverse Fourier transform.  This method is used in this paper to obtain time 
signals that can be directly compared to measured time signals.  Waves traveling in a rail, excited by a rectangular 
piezoelectric ceramic patch are predicted numerically and compared to responses measured using a laser vibrometer.   
 
The objective of this work is to develop the method for computing time responses and to use this method to verify the 
numerical model of a piezoelectric transducer attached to an infinite waveguide by direct comparison to experimental 
measurements.       
 

2. NUMERICAL MODEL DEVELOPMENT 
 
A general numerical modeling method for analyzing the excitation of complex waves in waveguides of complex (but 
constant) cross-section by arbitrary piezoelectric transducers has been developed [8].  The method makes use of 
specially developed waveguide finite elements, which require only a two-dimensional mesh of the cross-section of the 
waveguide.  The response of the waveguide to harmonic excitation is used to determine a complex boundary condition 
representing the waveguide in a finite element model of the piezoelectric transducer.  This model allows computation of 
the frequency response of the transducer when attached to the waveguide.  The forces at the interface between the 
transducer and waveguide are computed and used to determine the response of the waveguide.  The frequency response 
of each mode of the waveguide is computed and the contribution from each mode can be summed to provide the total 
frequency response.  The method has advantages over conventional time domain simulation of a length of waveguide as 
it requires only a two dimensional model of the waveguide, provides frequency response information directly (no 
Fourier transforms required) and provides the response of the individual modes, which can be difficult to extract from 
time domain simulations.  However, for comparison with measured time domain signals it is necessary to use the 
frequency response to predict the time response.  This is achieved by multiplying the frequency spectrum of the 
excitation with the frequency response, at the measurement point, and performing and inverse Fourier transform.  This 
section provides an overview of the mathematical details of the method.     

2.1. Formulation of the Waveguide Finite Elements 
The finite elements used to describe the waveguide make use of complex exponential function to describe the variation 
of the displacement field along the waveguide and interpolation functions over the area of the element.  This means that 
only a two dimensional mesh of the cross-section of the waveguide is required.  The displacement fields (u, v, w) in an 
elastic waveguide, extending in the z direction (as shown in figure 1), can be written as; 
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where, z is the coordinate in the direction along the waveguide, κ the wavenumber and ω the frequency.    
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Figure 1: Waveguide coordinates and displacements. 
 
The formulation used here follows that presented by Gavrić [2].  Formulations of Hayashi [3] and Damljanović and 
Weaver [4] are similar to this formulation.  Hayashi’s formulation results in complex equations of motion while 
Damljanović and Weaver also derived complex equations of motion and then applied a transformation to obtain 
equations of motion comparable to those of Gavrić.   
 
The strain and strain energy of the waveguide can be separated into terms that are independent, linearly dependent or 
quadratically dependent on the wavenumber.   Applying conventional finite element discretization to these terms yields 
three elemental stiffness matrices with these dependencies.  After assembling the elemental matrices into global 
matrices the system of equations of motion, for the waveguide, is as follows: 

[ ] fuKKKuM =+⋅+⋅+ 012
2 κκ&&           (2) 

The waves supported by the waveguide may be determined from the free vibration problem (f = 0) by performing an 
eigensolution.  If a constant, real wavenumber (κ ) is selected a real eigenproblem must be solved for the frequencies 
(ω ) and mode shapes (ψ ) of the propagating waves that correspond to this wavenumber.  If the frequency is specified a 
complex eigenproblem must be solved.  The wavenumbers that are obtained, by solving this problem, can be real, 
imaginary or complex and occur in pairs with opposite sign corresponding to waves traveling in opposite directions.  If 

the number of nodes in the model is denoted N, the eigensolution results in 6N eigenvalue-eigenvector pairs rκ  and rψ . 

2.2. Combining waveguide and conventional finite element models 
The approach adopted was to use the waveguide finite element model to calculate the receptance of the waveguide to 
point forces.  The receptance is used as a boundary condition, representing the waveguide in a conventional finite 
element model of the piezoelectric patch actuator.  The forces applied to the waveguide are computed and then applied 
to the waveguide model to compute the response of the waveguide [8].  
 
The forced response of the waveguide finite element model was developed by Damljanović and Weaver [7].  Their 
finite element formulation is slightly different to that used here but the method of solving the forced response still 
applies.  The equations of motion may be solved by a method similar to that used for solving multi-degree-of-freedom 
damped oscillator systems.  Equation 2 is complemented with an identity as follows,  
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so that it may be written in the form 

fuBuA =−κ .            (4) 
The solution to the forced vibration problem is found by applying a Fourier transform to equation 4 to obtain an 
equation in the wavenumber domain, solution in the wavenumber domain and inverse Fourier transform to obtain the 
solution in the spatial domain [7],   
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where the summation is performed only over the positive real poles, negative imaginary poles and complex poles with 
negative imaginary parts. 
 
The response of the waveguide to forces at each of the degrees of freedom (dof) in contact with the piezoelectric 

transducer may be computed by equation 5 and the receptance ijr  is defined as the response at dof i due to a unit force 

applied at dof j, i.e. jiji fru =   .  The displacements at the interface dof ( inu ) due to loads at the interface dof can then be 
related by the receptance matrix, 

inin fRu = .            (6) 
Recalling that the response of the waveguide was computed for a particular frequency of harmonic excitation, the 
inverse of this matrix (Dw) is the dynamic stiffness matrix of the interface dof’s, at this frequency, i.e.  

ininw fuD = .             (7) 
The dynamic stiffness matrix of the waveguide is symmetric but fully populated.  It is also complex representing the 
mass/stiffness loading and the damping due to energy being radiated along the waveguide.   
 
A dynamic stiffness for the piezoelectric patch can be computed at the excitation frequency and this matrix (Dp) can be 
partitioned into degrees of freedom in contact with the patch (uin) and degrees of freedom not in contact (un).  The two 
dynamic stiffness matrices can then be combined to represent the piezoelectric patch attached to the waveguide. 
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The forces in this equation include electrically induced piezoelectric forces. This equation allows the computation of the 
forced harmonic response of the piezoelectric patch (attached to the waveguide).  The forces applied to the waveguide 
can be computed by substituting the interface displacements into equation 7.  The response of the waveguide can then 
be computed by substituting these interface forces into equation 5.  Our interest will often be in the amplitude of 
response of a particular mode of wave propagation rather than the amplitude at a specific point on the waveguide.  This 
response is written as, 
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2.3. Time Domain Simulations 
The frequency content of a time domain excitation signal (v(t)), such as a tone-burst, is given by the Fourier transform 
of the signal. 

∫
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This can be computed using the Fast Fourier Transform algorithm. 
 
The response to this excitation at distance z is then simply 
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The time-domain response can be computed using the inverse Fourier transform, 
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Once again, this can be computed using the inverse FFT algorithm. 

2.4. Mode Separation Technique 
It is clear from equation 11 that the total response is a linear combination of the response of each mode in the 
waveguide.  In some cases it may be useful to evaluate the response of only selected modes, especially the propagating 
modes.  To do this we require the mode shape and wavenumber of that particular mode as a function of frequency.  As 
the wavenumber versus frequency curves generally cross each other a technique is required to separate the modes.  A 
technique was developed which utilized the orthogonality property of the mode shapes.   
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The B-orthogonality of the real mode shapes at frequency step k to those at frequency step k+1 was computed. 
)()( 1+⋅⋅=Θ kk

T B ωψωψ    (14) 
If the wavenumber versus frequency curves have not crossed in this frequency interval then the diagonal terms in the 
matrix Θ will be the largest terms.  The presence of an off-diagonal term that is larger than the diagonal term indicates 
that the curves have crossed.  This is then taken into account in the numbering of the waves. 
  

3.  PIEZOELECTRIC PATCH ON A RAIL 
 
The method described above was applied to a rail excited by a piezoelectric patch.  The mesh used is shown in figure 2.  
The PZT4 piezoelectric patch was 30x10x2mm in dimension and was modeled using three-dimensional elements, which 
extended 10mm along the axis of the rail.    

 
Figure 2: Finite element mesh rail and piezoelectric patch. 

 
Equation 3, with f=0, was used to compute the dispersion characteristics of the rail by setting the frequency and 
computing the wavenumbers (complex) at equally spaced frequency points.  The first 20 real wavenumbers 
(propagating modes) are plotted in figure 3.  The mode separation technique outlined in section 2.4 was used to 
automatically identify the modes when the curves intersect.  The corresponding group velocities are plotted in figure 4.  
The group velocities were computed using an analytical expression based on the eigensolution without resorting to a 
finite difference approximation [5].  In the procedure points with negative group velocity were excluded and the 
wavenumber was only plotted once the group velocity became positive.  In this way the problem of having two 
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wavenumbers for a mode at a particular frequency was avoided.  The wavenumber and group velocity are properties of 
the rail only and do not involve the piezoelectric patch.  Figure 5 shows the amplitude of each of the first 20 propagating 
waves excited by the patch when driven with a 1 Vpeak harmonic excitation.   
 
In order to verify the proposed numerical method, time responses were computed and compared to measured responses.  
The measurements were performed using a National Instruments data acquisition card to generate the signal and capture 
the response.  The excitation used was a Hanning windowed 7.5 cycle 15 kHz tone-burst with duration of 0.5ms.  The 
signal was amplified to 200Vpeak using an A-303 piezo driver amplifier from AA-Lab Systems and the displacement 
response was measured using a Polytec laser vibrometer system.  The laser vibrometer system comprised the OFV-505 
sensor head and the OFV-5000 controller equipped with the VD-06 digital velocity decoder and the DD-500 
displacement decoder.  The signals from the laser vibrometer were captured by the data acquisition card and the average 
of 100 measurements was recorded.  The measured signal was converted to a displacement in meters and divided by 200 
so that it could be compared to the computed results where a 1 Vpeak excitation was used.  
 
The horizontal response of the web of the rail at a distance of 1.25m from the piezoelectric patch was computed using 
the method of section 2.3.  The computed response is shown in figure 6a, while the equivalent measured response is 
shown in figure 6b.  The computed and measured responses shown in figure 6 appear to be similar in shape and 
magnitude.  The computed result was based on only the first eight propagating waves.  If the tenth propagating wave 
was included the predicted response was far larger.  It is believed that his occurred because this wave cuts-on at a little 
over 15 kHz and at this frequency it has resonant behavior as shown by the modal amplitude which is effectively infinite 
at the cut-on frequency (see figure 5).  This occurs because no material damping has been included in the modeling.  
Wave propagation in damped rails was analyzed by Bartoli et al. [6] who compute the attenuation of the waves, which 
appears to be infinite at the cut-on frequency.  Damping has not been included in the modeling in this paper but it is 
suspected that including damping would solve the problem of the large response at the cut-on frequency.   
 
The computed and measured responses of the top of the rail in the vertical direction, again at a distance of 1.25m, are 
shown in figure 7.  Again it appears that the responses are qualitatively similar.  In this case, however, the experimental 
result is three to four times smaller than the computed result.  The cause for this difference has not been established.     
 
The frequency of 15 kHz was chosen for investigation because in addition to the two cut-on frequencies there is also a 
mode with large dispersion at this frequency.  This is evident in the wavenumber versus frequency plot where this curve 
changes slope drastically or in the group velocity plot where the group velocity decreases rapidly to a minimum close to 
15 kHz and then increases again.  The response, in the vertical direction at 1.25 m from the piezoelectric patch, of only 
this mode of propagation is shown in figure 8 along with the group velocity of only this mode.  Because of the large 
dispersion the time response appears to contain two modes of propagation but this is due to the differences in group 
velocity around this frequency.   
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Figure 3: Wavenumber – frequency plot of the 1st 20 propagating waves.  

 
 

Figure 4: Group velocity – frequency plot of the 1st 20 propagating waves.  
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Figure 5: Amplitude – frequency plot of the 1st 20 propagating waves.  

 
 
 

 
Figure 6: Computed and Measured Horizontal Displacements. 
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Figure 7: Computed and measured vertical displacements. 
 

Figure 8: Computed response and group velocity of a highly dispersive mode. 
 

4. CONCLUSIONS   
 
A method for computing the time domain displacement responses of one-dimensional waveguides, due to excitation by 
piezoelectric transducers, has been developed.  The method was applied to compute the waves propagating in a rail 
when excited by a rectangular piezoelectric patch transducer.  The computed responses compared favorably to 
experimental measurements performed with a laser vibrometer.   
 
The method can compute the response of individual waves of propagation thus providing insight into measured 
responses, which are a superposition of all the waves.  It is possible to determine which modes of propagation dominate 
the response and to predict the signals that would be obtained at large distances, which cannot be measured in the lab 
nor be computed using conventional finite element models.   
 
The waveguide model did not include damping and excessive responses were computed at the cut-on frequency of a 
mode of propagation.  It is recommended that damping be added in future to determine if damping will eliminate this 
problem. 
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