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Abstract 
 

Piezoelectric patch actuators are employed for monitoring the health of structures and for 

performing active control of vibration.  When the structure is long, slender and has constant 

cross-section, such as a pipe, rail or rod, it can be considered to be an infinite waveguide.  The 

excitation of waves in waveguides may be analysed in the time domain using conventional 

finite element methods.  This analysis is computationally very demanding as the model must 

be a number of wavelengths long to avoid the influence of reflections from the ends of the 

model.  In addition, separating the contributions of the individual modes of propagation can 

be difficult.  This paper presents a highly efficient analysis method for computing the waves 

excited as a function of frequency for waveguides excited by piezoelectric patch actuators.  

The waveguide is modelled using specially developed waveguide finite elements.  These 

elements are formulated using a complex exponential to describe the wave propagation along 

the structure and finite element interpolation over the area of the element.  Therefore only a 

two-dimensional finite element mesh covering the cross-section of the waveguide is required.  

The response of the waveguide to harmonic forces at the nodes which are in contact with the 

piezoelectric patch can be computed to produce a stiffness matrix (complex and frequency 

dependent) representing the waveguide.  This matrix is included in a model of the 

piezoelectric patch developed using conventional three-dimensional piezoelectric finite 

elements.  The response of the piezoelectric patch actuator (attached to the waveguide) to 

electrical excitation is computed and the displacements at the interface degrees of freedom are 

used to compute the forces applied to the waveguide and hence the waves excited in the 

waveguide.  The method is applied to a patch actuator on an infinite beam of rectangular 

cross-section, which has been studied analytically, to verify the method.  A model of a rail, 

excited by piezoelectric patches, is used to demonstrate the ability of the method to analyse 

the excitation of high frequency waves in waveguides with complex cross-sections.  This 

modelling technique would be useful during the design of piezoelectric patches and arrays of 

patches for excitation of a specific mode of wave propagation.  
 

 

1. INTRODUCTION 
 

Guided wave ultrasonics is an emerging technology that offers various advantages over 

conventional methods [1].  Guided waves, with frequencies typically up to 200 kHz, can be 

used to inspect or monitor large areas of structures in structural health monitoring systems.  

The guided waves can be transmitted and received by piezoelectric patches bonded to or 



embedded in the structure.   The actuation of finite structures, by the piezoelectric patch 

actuators, has been analysed by various authors using models of varying complexity.  

Excitation of waves in infinite rectangular beams was analysed by Gibbs and Fuller [2, 3] and 

Giurgiutiu [4] analysed Lamb wave generation in infinite plates.  When the structure is long, 

slender and has constant cross-section, such as a pipe, rail or rod, it can be considered to be an 

infinite waveguide.  The excitation of waves in waveguides of arbitrary cross-section may be 

analysed in the time domain using conventional finite element methods.  This analysis is 

computationally very demanding as the model must be a number of wavelengths long to avoid 

the influence of reflections from the ends of the model.  In addition, separating the 

contributions of the individual modes of propagation can be difficult.  This paper presents a 

highly efficient analysis method for computing the waves excited as a function of frequency 

for waveguides excited by piezoelectric patch actuators.   
 

Waves, which propagate in cylindrical waveguides, may be determined analytically [5].  The 

low-frequency longitudinal and bending waves in rectangular waveguides may be analysed by 

using Euler-Bernoulli beam theory.  Numerical solutions are required at higher frequencies 

and for waveguides of more complex cross-section.  Efficient finite element methods, for the 

analysis of wave in waveguides, have been implemented by Gavrić [6], Hayashi [7], and 

Damljanović and Weaver [8].   In these methods a complex exponential function was used to 

represent the displacement variation along the waveguide and finite element discretization 

was applied over the cross-section.  This results in a two-dimensional mesh, which is capable 

of modeling the wave propagation along the waveguide.  Wave propagation in waveguides of 

arbitrary cross-section, at high frequencies, can therefore be analyzed. The formulation of 

these elements is briefly described in section 2.  Although not used in this paper, these 

elements can also be formulated to include piezoelectric waveguides [9].    

 

Damljanović and Weaver [10] developed the solution for response of a waveguide to a 

harmonic force.  In section 3 this solution is used to derive the receptance of a waveguide.  

This receptance can be included in a conventional finite element model of a piezoelectric 

patch to compute the frequency response of the patch attached to the waveguide.  In addition 

the response of each wave, or mode of propagation, can be determined.  The method is 

applied to piezoelectric patches on a rectangular beam and on a rail.  The results, of these 

analyses, are presented in section 4. 

 

2. FINITE ELEMENT FORMULATION 

 
This section provides the essential details of the formulations of the finite elements used in 

this paper.   

 

2.1 Waveguide Finite Element Formulation 
 

The formulation used follows that presented by Gavrić [6].  The formulations of Hayashi [7] 

and Damljanović and Weaver [8] are similar to this formulation.  Hayashi’s formulation 

results in complex equations of motion while Damljanović and Weaver also derived complex 

equations of motion and then applied a transformation to obtain equations of motion 

comparable to those of Gavrić.  The displacement field in an elastic waveguide, extending in 

the z direction, is described by a complex exponential along the waveguide and a finite 

element approximation over the cross-section.  The displacement fields (u, v, w) can be 

written as: 
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where, z is the coordinate in the direction along the waveguide, κ the wavenumber and ω the 

frequency.    

 

The strain and strain energy of the waveguide can be separated into terms that are 

independent, linearly dependent or quadratically dependent on the wavenumber (* indicates 

complex conjugate transpose). 
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Applying conventional finite element discretisation to these terms yields the elemental mass 

and stiffness matrices. 
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Assembly of the element matrices produces the system equations of motion for the 

waveguide. 

[ ] fuKKKuM =+⋅+⋅+ 012
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2.2 Piezoelectric Finite Element Formulation 
 

Finite elements for piezoelectric materials were developed by Allik and Hughes [11] and the 

notation adopted here is similar to theirs.  The set of constitutive equations used for the 

piezoelectric material are, 
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where, T and S are stress and strain tensors, E is the electrical field vector, D is the electric 

displacement vector and the t superscript indicates matrix transpose.   

 



After application of finite element discretisation, elemental matrices are obtained.  These 

matrices are assembled to form global matrices describing the equations of motion having the 

following form [11]: 

 

(7) 

 

where, M and Kuu are mechanical mass and stiffness matrices, 
t

uu KK ΦΦ =  is the piezoelectric 

coupling matrix, KФФ is the capacitance matrix, u and Ф are nodal displacements and 

electrical potentials and F and Q are externally applied forces and charges.  

 

3. COMBINING WAVEGUIDE AND CONVENTIONAL FE MODELS 

 

The approach adopted was to use the waveguide finite element model to calculate the 

receptance of the waveguide to point forces.  The receptance is used as a boundary condition, 

representing the waveguide in a conventional finite element model of the piezoelectric patch 

actuator.  The forces applied to the waveguide are computed and then applied to the 

waveguide model to compute the response of the waveguide.  

 

The forced response of the waveguide finite element model was developed by Damljanović 

and Weaver [10].  Their finite element formulation is slightly different to that used here but 

the method of solving the forced response still applies.  The equations of motion may be 

solved by a method similar to that used for solving multi-degree-of-freedom damped 

oscillator systems.  Equation 5 is complemented with an identity as follows,  
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so that it may be written in the form 

fuBuA =−κ .      (9) 

 

The free vibration problem ( f = 0) is solved by performing an eigensolution.  If a constant, 

real wavenumber (κ ) is selected a real eigenproblem must be solved for the frequencies (ω ) 

and mode shapes (ψ ) of the propagating waves that correspond to this wavenumber.  If the 

frequency is specified a complex eigenproblem must be solved.  The wavenumbers that are 

obtained, by solving this problem, can be real, imaginary or complex and occur in pairs with 

opposite sign corresponding to waves travelling in opposite directions.  If the number of 

nodes in the model is denoted N, the eigensolution results in 6N eigenvalue-eigenvector pairs 

rκ  and rψ . 

 

The solution to the forced vibration problem is found by applying a Fourier transform to 

equation 9 to obtain an equation in the wavenumber domain, solution in the wavenumber 

domain and inverse Fourier transform to obtain the solution in the spatial domain [10],   
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where the summation is performed only over the positive real poles, negative imaginary poles 

and complex poles with negative imaginary parts. 

 

QKuK

FKuKuM

u

uuu

=Φ+

=Φ++

ΦΦΦ

Φ

..



The response of the waveguide to forces at each of the degrees of freedom (dof) in contact 

with the piezoelectric patch may be computed by equation 10 and the receptance ijr  is defined 

as the response at dof i due to a unit force applied at dof j, i.e. jiji fru =   .  The displacements at 

the interface dof ( inu ) due to loads at the interface dof can then be related by the receptance 

matrix, 

inin fRu = .     (11) 

Recalling that the response of the waveguide was computed for a particular frequency of 

harmonic excitation, the inverse of this matrix (Dw) is the dynamic stiffness matrix of the 

interface dof’s, at this frequency, i.e.  

ininw fuD = .      (12) 

The dynamic stiffness matrix of the waveguide is symmetric but fully populated.  It is also 

complex representing the mass/stiffness loading and the damping due to energy being radiated 

along the waveguide.   

 

A dynamic stiffness for the piezoelectric patch can be computed at the excitation frequency 

and this matrix (Dp) can be partitioned into degrees of freedom in contact with the patch (uin) 

and degrees of freedom not in contact (un).  The two dynamic stiffness matrices can then be 

combined to represent the piezoelectric patch attached to the waveguide. 
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The forces in this equation include electrically induced piezoelectric forces. This equation 

allows the computation of the forced harmonic response of the piezoelectric patch (attached to 

the waveguide).  The forces applied to the waveguide can be computed by substituting the 

interface displacements into equation 12.  The response of the waveguide can then be 

computed by substituting these interface forces into equation 10.  Our interest will often be in 

the amplitude of response of a particular mode of wave propagation rather than the amplitude 

at a specific point on the waveguide.  This response is written as, 
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4. RESULTS 

 

Excitation of longitudinal and bending waves in infinite beams was analysed by Gibbs and 

Fuller [2, 3].  This analytical approximation is valid when the piezoelectric patch is thin 

compared to the beam and the cross section of the beam remains planar and perpendicular to 

the middle surface during deformation.  The longitudinal (u) and bending (w) deformations 

due to two piezoelectric patches, one on either side, are: 
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A 3mm thick aluminium beam with 2mm long 0.05mm thick PZT4 patches was analysed.  

The patches were driven by 1 kHz 1 Volt sinusoidal signals either in-phase or in opposite 

phase to excite the two waves.  The finite element technique includes strain across the width 

of the beam, which is not included in the analytical approximation, therefore a few different 

beam widths were considered.  The results of this analysis are listed in table 1.  The response 



to the bending excitation is divided into the propagating wave (wp) and the evanescent wave 

(we).    

 

Table 1: Comparison of FE Results against analytical results for rectangular beam. 

 Analytical FE 0.4 mm 

wide 

FE 4 mm 

wide 

FE 40 mm 

Wide 

kl (1/m) 1.23 1.23 1.23 1.23 

kf (1/m) 37.75 36.89 36.24 35.11 

u (m) 1.37x10
-10  

-j 1.69x10
-13

 

1.53x10
-10  

-j
 
1.80x10

-13
 

1.74x10
-10  

-j
 
2.03x10

-13
 

1.78x10
-10  

-j
 
2.07x10

-13
 

wp (m) 1.39x10
-10  

+j
 
3.69x10

-9
 

1.23x10
-10  

+j
 
3.39x10

-9
 

1.32x10
-10  

+j
 
3.68x10

-9
 

0.97x10
-10  

+j 2.74x10
-9

 

we (m) 3.83x10
-9  

 

-3.25x10
-9  

-j
 
1.30x10

-11
 

-3.54x10
-9  

-j
 
1.36x10

-11
 

-2.64x10
-9  

-j
 
0.80x10

-11
 

 

While the results are not identical they are judged to be in sufficient agreement to conclude 

that the finite element method is correctly formulated and implemented.  

 

The method developed in this paper is intended for the analysis of more complex waves in 

waveguides of complex cross-section.  The rail cross-section shown in figure 1 is an example 

of such a waveguide.  The rail cross-section has been divided into waveguide finite elements 

two-dimensional elements) and a piezoelectric patch is attached to the web of the rail.  The 

patch was modelled with three-dimensional piezoelectric elements, extending in the direction 

along the rail axis.  The patch was 2mm thick, 30 mm long and extended 10 mm along the 

rail.  The waveguide model can be used to compute the dispersion curves of the rail.  Figure 2 

shows the wavenumber – frequency relation for the first 30 propagating waves in the rail.  In 

addition to the propagating waves there are also evanescent, or near-field, waves, which decay 

exponentially along the waveguide.  The propagating waves at a frequency of 60 kHz can be 

very complex in nature.  Two examples are shown in figure 3.   

 
Figure 1. Rail geometry and piezoelectric patch attachment. 
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Figure 2. Wavenumber – Frequency dispersion curves for the 1st 30 the propagating waves. 

 

 
Figure 3. Propagating waves at 60 kHz with wavenumbers of 127 1/m (left) and 54 1/m (right). 

 

The patch, attached to the rail, was excited with a 1 Volt amplitude sinusoidal signal at 60 

kHz.  A second patch was added on the opposite side of the rail web.  It is expected that by 

exciting the two patches in-phase the ‘symmetric’ mode would be strongly excited, while 

excitation in opposite phase would strongly excite the ‘bending’ wave.  The amplitudes of 

these two modes of wave propagation for these cases are compared to the single patch case in 

table 2.  The mode amplitudes correspond to the largest displacement of a nodal degree of 

freedom.  The results indicate that a mode can be excited more than twice as effectively by 

using two patches on opposite sides.  It is believed that this is because the induced strain 

available from the patches is used to mainly excite the one mode and is not ‘wasted’ on the 

other.  It is clear that using two patches on opposite sides of the web offers important 

advantages for exciting a particular mode and this result could be generalised to more patches 

around the rail cross-section and along the rail.  
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Table 2: Rail Response to Different Patch Configurations.   

Configuration ‘Symmetric’ Mode 

Response (m) 

‘Bending’ Mode Response 

(m) 

1 Patch 6.23+j8.79x10
-10

 1.58+j5.65x10
-10

 

2 Patches – in-phase 2.44+j3.48x10
-9

 1.01+j0.18x10
-12

 

2 Patches – out of phase 3.48+j0.45x10
-12

 6.90+j23.4x10
-10

 

  

5. CONCLUSIONS  

 
A numerical method for modelling the excitation of waves in constant cross-section 

waveguides, by piezoelectric patch actuators was developed.  The method combined 

conventional three-dimensional finite elements representing the piezoelectric patch actuator 

with special two-dimensional finite elements representing the infinite waveguide.  The case of 

two piezoelectric patches on either side of an infinite beam was analysed and compared to an 

approximate analytical solution to verify the numerical method.  The method was then applied 

to the excitation of a rail cross-section waveguide at high frequency where the modes of 

propagation are not simple.  The model demonstrated the interesting possibilities available for 

excitation of specific waves by multiple patches.  The optimisation of patches and arrays of 

patches for exciting individual waves will be considered in future. 
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