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Abstract. This paper describes the extension of the DLM wwoant for effects that
are critical to the modelling of T-tail flutter. h€ boundary condition is made more
general to account for yaw/dihedral and sidesligdral coupling and the calculation
of forces is generalised to account for lateratildae to roll, and rolling moment due
to yaw, yaw rate and sideslip. In addition, theadly load and the quadratic
components of the mode shapes are taken into aicdaumhe calculation of

generalised forces.

NOMENCLATURE
Cg steady pressure coefficient
C; unsteady pressure coefficient
F=F,+F,e“ total force vector
Fo steady force vector

n
F,= Zq E total unsteady force vector

j=1
F unsteady force vector due to mgde
h modal displacement vector
h linear modal displacement due to mode
h? guadratic modal displacement due to miode
Kk reduced frequency,
n=n,+re“xn, instantaneous normal vector
n, mean normal vector in global coordinates
q generalised coordinajte
r modal rotation vector
U free stream velocity
u=u, +u, +u,e“ instantaneous total velocity vector, normalisgdJb
u, free stream velocity vector
u, steady perturbation velocity vector
u, unsteady perturbation velocity vector
r=r,+r,e“+re“xr, total circulation vector, normalised hy
I, steady circulation vector
r, unsteady circulation vector

i
w = m wave number



1. INTRODUCTION

The subsonic doublet lattice method (DLM) [1] haeib the workhorse of aeroelastic
analysis for several decades. Despite its widesbrese, it is not suitable for the
analysis of T-tail flutter in its basic form.

The essence of the T-tail problem is that the DLMyocalculates the unsteady
aerodynamic loads and generalised forces due ¢hipg and plunging of a lifting
surface. This is acceptable for a conventionaizbatal tail plane, however, for a T-
tail the horizontal tail plane (HTP) sits on topaflexible fin, and thus experiences
significant rolling, yawing and spanwise in-planetion, in addition to the usual
pitching and plunging motion. Both in-plane loadsl normal loads due to in-plane
motion become important.

In addition to including in-plane motions and loaalishe analysis, it is also necessary
to consider the quadratic component of the natades. For example, in the case of
a fin bending mode, the top of the fin moves alargrcular arc. In the case of a fin
torsion mode the fin actually shortens and theilkk$ab moves normal to itself. Under
these circumstances the steady load on the stbdentributes significantly to the
unsteady generalised forces.

A further complication is that the incremental ameamic loads due to roll and yaw
acting on the horizontal tail plane are dependarthe steady aerodynamic load.

In practical terms this complication adds anotléménsion' to the flight envelope

that needs to be cleared for flutter - i.e. in &ddito altitude, speed and aircraft
configuration, the range in steady loading on thEPHalso needs to be cleared for
flutter. Estimating the range in steady loadinglonHTP is a huge task in itself.

In the present study the unsteady boundary comditas well as the calculation of
unsteady forces were generalised to account forirth@ane loads as well as the
normal loads due to in-plane motions. In additithwe, steady load and the quadratic
modeshape components were taken into account ircalwilation of generalised
forces. The T-tail extensions were implemented DLM with a surface panel body
representation including a separated wake modeé seme code is used to solve the
steady flow field and the unsteady loads.

2. THEORY

The solution process for the T-tail DLM differs fnathat of the wing-body code only

in that the more general boundary condition forybsdrface panels is also applied to
lifting surfaces. The boundary condition is biye$tated and then the calculation of
forces is addressed. The calculation of in-plameldoand of normal loads due to in-
plane motion is based on the work of Queijo [2].

2.1  Lifting surface boundary condition

For the T-tail application the same boundary coodigs for body panels is employed
for lifting surface panels. The general form & ttoundary condition is:



hth=u 1)

o, b tn, +1xn,e )= (u, +u, +u,e“ )dn, +rxn,e) )
The steady boundary condition is simply:
[N, 3)

Rigid body motion is assumed to uncouple the udsté@mundary condition from the
steady disturbance flow. With this assumption,uthsteady boundary condition is:

u,[ny =« hing -u, [(rxn,) (4)

The general form of the second factor in the secterin takes account of
yaw/dihedral coupling and the general form of tingt term takes account of unsteady
sideslip/dihedral coupling (note thath may represent the unsteady sideslip velocity).

2.2 Calculation of forces for lifting surface panels

Although the downwash equation relates a pressifiierehtial over a panel to the

induced velocity, it is appropriate for T-tail capirations to calculate the forces as
the cross product of the flow velocity and the wiation vector. Three vortex

elements per box need to be considered: the qt@rted bound vortex and the two
chordwise-bound trailing vortices. The strengtlitef quarter-chord bound vortex is
derived from the box pressure differential. Theersgth of the chordwise-bound

vortices is given by the sum of the strengths ef tipstream quarter-chord bound
vortices.

The appropriate quarter-chord circulation veckgrjs minus one half the box chord
times the pressure coefficient differential (ased®ined by solving the downwash
equation) times the vector from the doublet lin@oiard end to the outboard end.
F=Vx[ )
whereF is the total force, normalised by dynamic pressanelV must be regarded as
the relative flow velocity, normalised by the frestream velocity. The total
circulation is given by

[=L,+[.e“+re“xr, (6)
The total relative velocity is given by

V =u, +U, +u,e“ - he™ @)

The induced velocity and modal displacement arsdhat the doublet line midpoint.
The steady part of the total force is given by



Fo= (U, +ue)xTg (8)
and the first harmonic of the total force is giv®n
Fy= (U, +up)x Dy + (U, +up)x(rxFo)+ (U, —a h)x T, ©)

The first term includes the normal force that isally calculated by the DLM and is
due to the unsteady circulationg is usually neglected as it is small compared.to

The second term is due to the change in directioth® steady circulation vector.
This accounts for both lateral load due to roll aoking moment due to yaw (in the
case of a swept HTP).

The third term includes the unsteady induced drafjthe unsteady lift and drag due
to the motion of the doublet line. It is acknowded that this way of calculating
induced drag is not physically correct but fortugty provides a useful estimate.

2.3 Forces on chordwise bound vortices

The forces resulting from the interaction of spasenilow with the chordwise bound

vortices also need to be considered. In the vdatiice method the trailing vortices,

i.e. the chordwise bound vortices, have constaahgth from one bound vortex to the
next downstream bound vortex or to the wing trgiledge. In the present method
these segments of the chordwise bound vorticesasseciated with the upstream
aerodynamic box. The displacements of the vorégxnent midpoints are calculated
from the upstream box modal displacements, andvéthecities at these points are
taken to be the same as at the bound vortex mitipinept that the normal

component is removed. In the case of an isoldsdving the wing elements do not
induce in-plane velocities in the plane of the winghe gradients of the in-plane
velocities are therefore small and it seems jestifiot to compute induced velocities
at each trailing vortex segment midpoint.

In unsteady flow, the strength of the trailing wogs also vary in the chordwise
direction due to the flow unsteadiness. This gpatariation is accompanied by a
continuous sheet of vorticity being shed from tloailalet line. This sheet of shed
vorticity is however convected downstream by thewnfland no force is generated
from it. It is therefore only necessary to takeaunt of the variation in the strength
of the trailing vortices.

2.4  Calculation of forces for body panels

The original derivation for the surface panel battydel did not consider the unsteady
force resulting from the rotation of the steadycéowector. The total force is given by

F=-C_n (20)

p_

Note that the normal vector is not a unit vectart bas a length equal to the panel
area, and that the normal vector has a steady andnsteady component. The
pressure coefficient is given by



C, :Cg +ei‘“Cf) (11)
and the instantaneous normal vector by

n=n,+re“xn, (12)

The mean value of the force is

F,=-Cpn, (13)
And the first harmonic

F,=-Cp(rxn,)-Cin, (14)

The first term is the unsteady component due todbation of the steady force vector
and the second term is due to the unsteady pressutbe panel. All the modal
displacements and rotations are those at the panégloid.

2.5  Calculation of generalised forces

The forces calculated as described above may ¢eapurious generalised forces if a
linear description of the modal displacement isdusémagine a panel on an annular
wing, generating a steady outward lift force andaiing a circular arc motion about
the axis of the annular wing. The rotation wilgirise to a tangential force (due to
the rotation of the force vector) as well as a émigl motion. The resulting
generalised force (an unstable stiffness force)hmyever, spurious and is only
cancelled by the generalised force resulting frdra steady lift force and the
guadratic normal displacement.

The displacement of the doublet line midpoint ia tase of a lifting surface panel or
the panel centroid in the case of a body surfaocelpa given by

h=3qhie“ +3 g?n2(e“ ) (15)
i1 =1
The total force is given by
F=F,+Yq,F e (16)
=1
The virtual work is defined as

M:id:]iQi :idqiiQijqj (17)

i=1

The virtual work can also be derived from eqs. @& (16) as



SN =h(F =3 &y hle™ EEEO +iquje‘“j +> 2q507 (@) EEEO +iquje‘“J
i=1 =1 i=1 j=1
(18)

Only terms containing(e““‘)2 need to be considered. The elements of the gesesta
force matrix are therefore defined by

Q; :bilEEj1i¢j

(19)

Q; =hi [F, +2h’ [F,

The higher harmonic of the modal displacement needse entered by the user or
some pre-processor. For bodies the modal dispkaceand rotation are entered on
the reference axis. The transfer of rotation friihki body axis to the body surface
gives rise to quadratic displacements, which adeddo the quadratic displacements
on the axis.

For lifting surface panels the modal displacememti aotation are given at the
spanwise and chordwise centre of the panel. Thplatiements at the collocation
point and doublet line midpoint are calculated oy DLM, also taking account of the
additional quadratic displacement.

2.6 The case for quadratic mode shapeg$l-tail example

The requirement for quadratic mode shapes is iifitestl by the following example.
Consider a finite planar wing with a mass of 5 kgan 1 m and chord 0.25 m,
suspended in space by two vertical supports oftkefig5 m, 0.5 m apart. The
supports are stiff in the fore-aft sense and inviireg pitch sense, and are hinged at
the top and bottom to allow lateral movement ofvliveg (Figs. 1 and 2). The wing is
supported laterally by a linear spring with stifaesnstant 1 kN/m. This gives an air-
off frequency of 2.25 Hz, ignoring gravtiy.

With the wing set at an angle of attack of 10° @wd produce a lift force of 812.5 N
(e=0.65) at a dynamic pressure of 5kPa. We knduitively that the steady lift
force would have a stiffening effect on the stroetsimilar to the effect of gravity on
a pendulum. The steady lift force translates lateral spring stiffness of 1625 N/m .
The frequency at this dynamic pressure would therbe 3.65 Hz. Conversely, with
the wing set at an angle of attack of —10°, theydfemcy would go to zero at a
dynamic pressure of 3078 Pa.

To solve the frequency of the system using thegme®LM, we note that for a
(small) unit lateral displacement, the displacenaér@very point on the wing is given

by

h' =(010)
h? = (00,-1)

(20)



With this mode shape input the present DLM cal@daa generalised force of
-0.0326 M/Pa/°, irrespective of the reduced frequency. fiéguency of the structure
can be solved from the flutter equation as a femctif dynamic pressure

1000-5w° = -0.03260
or (21)
W= 1000+ 0.032&q

5

From this expression the frequency at 5 kPa dyng@massure and 10° angle of attack
can be solved as 3.65 Hz and the divergence dynpregsure for —10° angle of
attack as 3067 Pa.

Figure 1: The hypothetical wing experiment as igimiappear in a wind-tunnel (neutral position)



Figure 2: The hypothetical wing experiment as igimiappear in a wind-tunnel (deflected)

2.7  Obtaining quadratic mode shapes

The question should be asked whether it is feaslebtain quadratic mode shapes
for general structures. This is possible and ootdifficult using a sine-dwell ground
vibration test system and inertial sensors (acosleters), provided that the
accelerometers measure down to zero frequency. rdgponse due to the quadratic
component occurs at twice the excitation frequendue to the rotation that the
accelerometers may experience, one cannot simply tlae response at twice the
excitation frequency to be the quadratic compondihie rotation of the accelerometer
and the transverse acceleration produce a DC dfiskhown problem in the use of
accelerometers as angle of attack sensors in wimaet models) as well as a response
at twice the excitation frequency. The quadratioden shape component can be
solved from the DC offset and the response at tifieeexcitation frequency without
knowing the actual rotation amplitude. In practibtés requires testing at large
amplitudes or using high precision instrumentatmobtain sensible results.

Quadratic displacements can also be readily oldae post-processing of finite
element analysis results. In the example of thpla T-tail shown in Fig. 3 below, a
condition of zero in-plane stretching of the plakements was enforced.



Figure 3: Quadratic mode shape of a simple T-&ieéen:undeflected, Blue: Linear deflection, Red:
Quadratic deflection

3. CALCULATED RESULTS

Results from the present DLM were compared to @igeijesults for isolated wings
executing different motions. The method was algoliad to the flutter analysis of a
simple T-tail flutter model.

3.1  Comparison with Queijo’s results for isolated wings

Queijo gave extensive results for the followinggraeters for isolated wings without
dihedral:

1. z—'f Rolling moment due to sideslip
2. g—'L Rolling moment due to yaw rate
3. C|p Roll damping

4. CC:YLP Side force due to roll rate

5. CC::"" Yawing moment due to roll rate

-

Note that of all these parameters, the standard Dkdlild only calculate roll
damping. In the present DLM code it is possiblspecify the steady angle of attack,



steady angle of sideslip and the 6 rigid body degmef freedom as modes. The six
degrees of freedom are

x-displacement
z-displacement
pitch
y-displacement
yaw

roll

oukrwpnE

The pitch and yaw rotations are specified aroumdatfigin, i.e. the root quarter-chord
point. For some of Queijo’s results the rotatioentte is specified around the
aerodynamic centre. It is therefore necessaryeterthine the aerodynamic centre
from

30
= 22
X =70, (22)

whereQ; is the generalised force corresponding to pressun@ej and displacement
modei. If j is zero, it indicates the steady (or mean) presdistribution.

The estimates for Queijo’s parameters in term$iefgeneralised forces calculated by
the present method are given by

Sy _

CL bQ20 bQZO =0 bQ20 k=001
CIr (Im( 65)_ Xac Im( 64) / wr|

_Qw/B —_ Re(Qas)I - _M (23)

CRN o
_ Im(Qse)/|e|
C:|p - Sb2/2 (25)
C, Im(Q46)/|a)r|
s __IMQy)/ || 26
C|_ (b/Z)QZO ( )
Cnp — (Im(QSB)_ Xac Im(Q46))/|wr| (27)

C, b?/2)Q,

The parameters rolling moment due to sideslip afichg moment due to yaw rate
compared well, except for the correction of 0.08extito the rolling moment due to
sideslip parameter. In the comparison below, tosrection was omitted from
Queijo’s results.

The other parameters depend on the circulationitalision due to roll rate for which
Queijo used a crude approximation. The comparisween the present results and
Queijos’ was therefore not very good. His appradion could however easily be
incorporated into the present method in order t@areameaningful comparison. The
circulation distribution due to roll rate was detémed from the load distribution due

10



to angle of attack calculated using the presenhateby using Queijo’s equation (4).
With this approximation, the results for roll damgicompare favourably.

The results for side force due to roll rate still diot compare well even with this
approximation for the load distribution. The sidece and yawing moment due to
roll rate result from the interaction of the ro#lecity and the steady (angle of attack)
circulation. The present method uses the relaglecity of the air flow (which is the
resultant of the free stream and the induced ugia@dithe doublet line midpoint) to
determine the load on the doublet line, whereasj@ueglected the induced velocity.
In the comparison below, the induced velocity wlas &gnored in the present method.

The results below are for wings with a taper raifo0.5. Quejo’s results were
obtained by digitizing his plots of* and y", and using the digitized values in his
expressions for the relevant parameters. The creadded to the rolling moment

due to sideslip by Queijo was omitted. 64 spanwisgs on each semi-span were
used in the present method.
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Figure 4: Rolling moment due to sideslip
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Figure 6: Roll damping
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Figure 8: Yawing moment due to roll rate

3.2  Flutter analysis of a simple T-tail model

A simple T-tail flutter model was constructed fréxtuminium plate and mounted on

a base that allowed rotation about the verticad @xig. 9). The flutter speed could be
changed to suit the wind tunnel by changing théngpstiffness of the rotating base.
The incidence of the HTP could be changed manuallye base also incorporated a
plucking mechanism and a flutter amplitude limitdrhe latter allowed the model to

flutter safely and hence made it possible to obsaprecise flutter speed. The flutter
speed graph below shows error bars on the expetaiitutter speed from the highest
speed at which flutter could not be induced, toltlveest speed at which flutter could

be induced.
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Figure 9: Simple T-tail flutter model construction
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Figure 10: Flutter speed comparison for the siniptail model

14




MSC NASTRAN was used to determine the natural mames$ post-processed to
obtain the quadratic displacements. The presenM Dkas used to calculate
generalised forces for a number of HTP incidenagemnand the-k formulation of
the flutter equation was solved to obtain the éludpeed. The comparison between
the calculated and measured flutter speeds is shiowig. 10. The agreement is
reasonable.
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5. CONCLUSIONS

The present DLM for T-tails models most of the pbmena that is necessary to
predict T-tail flutter. Limited comparisons withkxgerimental and published data to
date were encouraging. Further experimental workvdlidate the method is in
progress, including a larger model with a sweptdiivd stabiliser. The simple model
will also be adapted to test the effect of dihedral transonic extension is not
envisaged as fluid-structure coupled solutionsahready viable for this application.
Some aspects of the present work may be relevanicto solutions.
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