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Abstract.  This paper describes the extension of the DLM to account for effects that 
are critical to the modelling of T-tail flutter.  The boundary condition is made more 
general to account for yaw/dihedral and sideslip/dihedral coupling and the calculation 
of forces is generalised to account for lateral load due to roll, and rolling moment due 
to yaw, yaw rate and sideslip.  In addition, the steady load and the quadratic 
components of the mode shapes are taken into account in the calculation of 
generalised forces. 
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00 nernn ti ×+= ω   instantaneous normal vector 
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r     modal rotation vector 
U    free stream velocity 
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0u     steady perturbation velocity vector 

1u     unsteady perturbation velocity vector 
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1. INTRODUCTION  

The subsonic doublet lattice method (DLM) [1] has been the workhorse of aeroelastic 
analysis for several decades.  Despite its widespread use, it is not suitable for the 
analysis of T-tail flutter in its basic form.  
 
The essence of the T-tail problem is that the DLM only calculates the unsteady 
aerodynamic loads and generalised forces due to pitching and plunging of a lifting 
surface.  This is acceptable for a conventional horizontal tail plane, however, for a T-
tail the horizontal tail plane (HTP) sits on top of a flexible fin, and thus experiences 
significant rolling, yawing and spanwise in-plane motion, in addition to the usual 
pitching and plunging motion.  Both in-plane loads and normal loads due to in-plane 
motion become important.  
 
In addition to including in-plane motions and loads in the analysis, it is also necessary 
to consider the quadratic component of the natural modes.  For example, in the case of 
a fin bending mode, the top of the fin moves along a circular arc.  In the case of a fin 
torsion mode the fin actually shortens and the stabiliser moves normal to itself.  Under 
these circumstances the steady load on the stabiliser contributes significantly to the 
unsteady generalised forces. 
 
A further complication is that the incremental aerodynamic loads due to roll and yaw 
acting on the horizontal tail plane are dependent on the steady aerodynamic load. 
In practical terms this complication adds another 'dimension' to the flight envelope 
that needs to be cleared for flutter - i.e. in addition to altitude, speed and aircraft 
configuration, the range in steady loading on the HTP also needs to be cleared for 
flutter. Estimating the range in steady loading on the HTP is a huge task in itself. 
 
In the present study the unsteady boundary conditions as well as the calculation of 
unsteady forces were generalised to account for the in-plane loads as well as the 
normal loads due to in-plane motions.  In addition, the steady load and the quadratic 
modeshape components were taken into account in the calculation of generalised 
forces.  The T-tail extensions were implemented in a DLM with a surface panel body 
representation including a separated wake model.  The same code is used to solve the 
steady flow field and the unsteady loads. 
 
2. THEORY 
 
The solution process for the T-tail DLM differs from that of the wing-body code only 
in that the more general boundary condition for body surface panels is also applied to 
lifting surfaces.  The boundary condition is briefly stated and then the calculation of 
forces is addressed. The calculation of in-plane loads and of normal loads due to in-
plane motion is based on the work of Queijo [2].   
 

2.1 Lifting surface boundary condition 

For the T-tail application the same boundary condition as for body panels is employed 
for lifting surface panels.  The general form of the boundary condition is: 
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or 
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The steady boundary condition is simply: 
 

000 nunu ⋅−=⋅ ∞  (3) 
 
Rigid body motion is assumed to uncouple the unsteady boundary condition from the 
steady disturbance flow.  With this assumption, the unsteady boundary condition is: 
 

( )0001 nrunhnu r ×⋅−⋅=⋅ ∞ω  (4) 
 
The general form of the second factor in the second term takes account of 
yaw/dihedral coupling and the general form of the first term takes account of unsteady 
sideslip/dihedral coupling (note that ωrh may represent the unsteady sideslip velocity).  
 

2.2 Calculation of forces for lifting surface panels 

Although the downwash equation relates a pressure differential over a panel to the 
induced velocity, it is appropriate for T-tail configurations to calculate the forces as 
the cross product of the flow velocity and the circulation vector.  Three vortex 
elements per box need to be considered: the quarter-chord bound vortex and the two 
chordwise-bound trailing vortices.  The strength of the quarter-chord bound vortex is 
derived from the box pressure differential.  The strength of the chordwise-bound 
vortices is given by the sum of the strengths of the upstream quarter-chord bound 
vortices. 
 
The appropriate quarter-chord circulation vector, Γ, is minus one half the box chord 
times the pressure coefficient differential (as determined by solving the downwash 
equation) times the vector from the doublet line inboard end to the outboard end. 
 

Γ×= VF  (5) 
 
where F is the total force, normalised by dynamic pressure, and V must be regarded as 
the relative flow velocity, normalised by the free stream velocity.  The total 
circulation is given by  
 

010 Γ×+Γ+Γ=Γ titi ere ωω  (6) 
 
The total relative velocity is given by 
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The induced velocity and modal displacement are those at the doublet line midpoint.  
The steady part of the total force is given by  
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( ) 000 Γ×+= ∞ uuF  (8) 

 
and the first harmonic of the total force is given by  
 

( ) ( ) ( ) ( ) 0100101 Γ×−+Γ××++Γ×+= ∞∞ huruuuuF rω  (9) 
 
The first term includes the normal force that is usually calculated by the DLM and is 
due to the unsteady circulation.  u0 is usually neglected as it is small compared to u∞.   
 
The second term is due to the change in direction of the steady circulation vector.  
This accounts for both lateral load due to roll and rolling moment due to yaw (in the 
case of a swept HTP). 
 
The third term includes the unsteady induced drag and the unsteady lift and drag due 
to the motion of the doublet line.  It is acknowledged that this way of calculating 
induced drag is not physically correct but fortuitously provides a useful estimate. 
 

2.3 Forces on chordwise bound vortices 

The forces resulting from the interaction of spanwise flow with the chordwise bound 
vortices also need to be considered.  In the vortex lattice method the trailing vortices, 
i.e. the chordwise bound vortices, have constant strength from one bound vortex to the 
next downstream bound vortex or to the wing trailing edge.  In the present method 
these segments of the chordwise bound vortices are associated with the upstream 
aerodynamic box.  The displacements of the vortex segment midpoints are calculated 
from the upstream box modal displacements, and the velocities at these points are 
taken to be the same as at the bound vortex midpoint except that the normal 
component is removed.  In the case of an isolated flat wing the wing elements do not 
induce in-plane velocities in the plane of the wing.  The gradients of the in-plane 
velocities are therefore small and it seems justified not to compute induced velocities 
at each trailing vortex segment midpoint. 
 
In unsteady flow, the strength of the trailing vortices also vary in the chordwise 
direction due to the flow unsteadiness.  This spatial variation is accompanied by a 
continuous sheet of vorticity being shed from the doublet line.  This sheet of shed 
vorticity is however convected downstream by the flow and no force is generated 
from it.   It is therefore only necessary to take account of the variation in the strength 
of the trailing vortices. 
 

2.4 Calculation of forces for body panels 

The original derivation for the surface panel body model did not consider the unsteady 
force resulting from the rotation of the steady force vector.  The total force is given by 
 

nCF p−=  (10) 

 
Note that the normal vector is not a unit vector, but has a length equal to the panel 
area, and that the normal vector has a steady and an unsteady component.  The 
pressure coefficient is given by 
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and the instantaneous normal vector by 
 

00 nernn ti ×+= ω  (12) 
 
The mean value of the force is 
 

0
0
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And the first harmonic 
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The first term is the unsteady component due to the rotation of the steady force vector 
and the second term is due to the unsteady pressure on the panel.  All the modal 
displacements and rotations are those at the panel centroid. 
 

2.5 Calculation of generalised forces 

The forces calculated as described above may lead to spurious generalised forces if a 
linear description of the modal displacement is used.  Imagine a panel on an annular 
wing, generating a steady outward lift force and executing a circular arc motion about 
the axis of the annular wing.  The rotation will give rise to a tangential force (due to 
the rotation of the force vector) as well as a tangential motion.  The resulting 
generalised force (an unstable stiffness force) is, however, spurious and is only 
cancelled by the generalised force resulting from the steady lift force and the 
quadratic normal displacement. 
 
The displacement of the doublet line midpoint in the case of a lifting surface panel or 
the panel centroid in the case of a body surface panel is given by 
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The total force is given by  
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The virtual work is defined as  
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The virtual work can also be derived from eqs. (15) and (16) as  
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Only terms containing ( )2tie ω  need to be considered.  The elements of the generalised 
force matrix are therefore defined by 
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The higher harmonic of the modal displacement needs to be entered by the user or 
some pre-processor.  For bodies the modal displacement and rotation are entered on 
the reference axis.  The transfer of rotation from the body axis to the body surface 
gives rise to quadratic displacements, which are added to the quadratic displacements 
on the axis.  
 
For lifting surface panels the modal displacement and rotation are given at the 
spanwise and chordwise centre of the panel.  The displacements at the collocation 
point and doublet line midpoint are calculated by the DLM, also taking account of the 
additional quadratic displacement.  
 

2.6 The case for quadratic mode shapes: ΠΠΠΠ-tail example 

The requirement for quadratic mode shapes is illustrated by the following example.  
Consider a finite planar wing with a mass of 5 kg, span 1 m and chord 0.25 m, 
suspended in space by two vertical supports of length 0.5 m, 0.5 m apart.  The 
supports are stiff in the fore-aft sense and in the wing pitch sense, and are hinged at 
the top and bottom to allow lateral movement of the wing (Figs. 1 and 2).  The wing is 
supported laterally by a linear spring with stifness constant 1 kN/m.  This gives an air-
off frequency of 2.25 Hz, ignoring gravtiy.   
 
With the wing set at an angle of attack of 10° it would produce a lift force of 812.5 N 
(e=0.65) at a dynamic pressure of 5kPa.  We know intuitively  that the steady lift 
force would have a stiffening effect on the structure, similar to the effect of gravity on 
a pendulum.  The steady lift force translates to a lateral spring stiffness of 1625 N/m .  
The frequency at this dynamic pressure would therfore be 3.65 Hz.  Conversely, with 
the wing set at an angle of attack of –10°, the frequency would go to zero at a 
dynamic pressure of 3078 Pa. 
 
To solve the frequency of the system using the present DLM, we note that for a 
(small) unit lateral displacement, the displacement of every point on the wing is given 
by 
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With this mode shape input the present DLM calculates a generalised force of 
-0.0326 m2/Pa/°, irrespective of the reduced frequency.  The frequency of the structure 
can be solved from the flutter equation as a function of dynamic pressure 
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q
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 (21) 

 
From this expression the frequency at 5 kPa dynamic pressure and 10° angle of attack 
can be solved as 3.65 Hz and the divergence dynamic pressure for –10° angle of 
attack as 3067 Pa. 
 

 
Figure 1: The hypothetical wing experiment as it might appear in a wind-tunnel (neutral position) 
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Figure 2: The hypothetical wing experiment as it might appear in a wind-tunnel (deflected) 

 

2.7 Obtaining quadratic mode shapes 

The question should be asked whether it is feasible to obtain quadratic mode shapes 
for general structures.  This is possible and not too difficult using a sine-dwell ground 
vibration test system and inertial sensors (accelerometers), provided that the 
accelerometers measure down to zero frequency.  The response due to the quadratic 
component occurs at twice the excitation frequency.  Due to the rotation that the 
accelerometers may experience, one cannot simply take the response at twice the 
excitation frequency to be the quadratic component.  The rotation of the accelerometer 
and the transverse acceleration produce a DC offset (a known problem in the use of 
accelerometers as angle of attack sensors in wind-tunnel models) as well as a response 
at twice the excitation frequency.  The quadratic mode shape component can be 
solved from the DC offset and the response at twice the excitation frequency without 
knowing the actual rotation amplitude.  In practice this requires  testing at large 
amplitudes or using high precision instrumentation to obtain sensible results. 
 
Quadratic displacements can also be readily obtained by post-processing of finite 
element analysis results.  In the example of the simple T-tail shown in Fig. 3 below, a 
condition of zero in-plane stretching of the plate elements was enforced.   
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Figure 3: Quadratic mode shape of a simple T-tail: Green:undeflected, Blue: Linear deflection, Red: 

Quadratic deflection 

 

3. CALCULATED RESULTS 

Results from the present DLM were compared to Queijo’s results for isolated wings 
executing different motions.  The method was also applied to the flutter analysis of a 
simple T-tail flutter model.   
 

3.1 Comparison with Queijo’s results for isolated wings 

Queijo gave extensive results for the following parameters for isolated wings without 
dihedral: 

1. 
L

l

C

C
β   Rolling moment due to sideslip 

2. 
L

l

C

C
r   Rolling moment due to yaw rate 

3. 
plC   Roll damping 

4. 
L

Y

C

C
p   Side force due to roll rate 

5. 
L

n

C

C
p   Yawing moment due to roll rate 

 
Note that of all these parameters, the standard DLM would only calculate roll 
damping.  In the present DLM code it is possible to specify the steady angle of attack, 
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steady angle of sideslip and the 6 rigid body degrees of freedom as modes.  The six 
degrees of freedom are 
 

1. x-displacement 
2. z-displacement 
3. pitch 
4. y-displacement 
5. yaw 
6. roll 

 
The pitch and yaw rotations are specified around the origin, i.e. the root quarter-chord 
point.  For some of Queijo’s results the rotation centre is specified around the 
aerodynamic centre.  It is therefore necessary to determine the aerodynamic centre 
from 
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where Qij is the generalised force corresponding to pressure mode j and displacement 
mode i.  If j is zero, it indicates the steady (or mean) pressure distribution. 
 
The estimates for Queijo’s parameters in terms of the generalised forces calculated by 
the present method are given by 
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The parameters rolling moment due to sideslip and rolling moment due to yaw rate 
compared well, except for the correction of 0.05 added to the rolling moment due to 
sideslip parameter.  In the comparison below, this correction was omitted from 
Queijo’s results.   
 
The other parameters depend on the circulation distribution due to roll rate for which 
Queijo used a crude approximation.  The comparison between the present results and 
Queijos’ was therefore not very good.  His approximation could however easily be 
incorporated into the present method in order to make a meaningful comparison.  The 
circulation distribution due to roll rate was determined from the load distribution due 
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to angle of attack calculated using the present method by using Queijo’s equation (4).  
With this approximation, the results for roll damping compare favourably. 
 
The results for side force due to roll rate still did not compare well even with this 
approximation for the load distribution.  The side force and yawing moment due to 
roll rate result from the interaction of the roll velocity and the steady (angle of attack) 
circulation.  The present method uses the relative velocity of the air flow (which is the 
resultant of the free stream and the induced velocity at the doublet line midpoint) to 
determine the load on the doublet line, whereas Queijo neglected the induced velocity.  
In the comparison below, the induced velocity was also ignored in the present method. 
 
The results below are for wings with a taper ratio of 0.5.  Quejo’s results were 
obtained by digitizing his plots of *y  and *~y , and using the digitized values in his 
expressions for the relevant parameters.  The correction added to the rolling moment 
due to sideslip by Queijo was omitted.  64 spanwise strips on each semi-span were 
used in the present method.  
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Figure 4: Rolling moment due to sideslip 
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Figure 5: Rolling moment due to yaw rate 
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Figure 6: Roll damping 
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Figure 7: Side force due to roll rate 
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Figure 8: Yawing moment due to roll rate 

3.2 Flutter analysis of a simple T-tail model 

A simple T-tail flutter model was constructed from Aluminium plate and mounted on 
a base that allowed rotation about the vertical axis (Fig. 9).  The flutter speed could be 
changed to suit the wind tunnel by changing the spring stiffness of the rotating base.  
The incidence of the HTP could be changed manually.  The base also incorporated a 
plucking mechanism and a flutter amplitude limiter.  The latter allowed the model to 
flutter safely and hence made it possible to obtain a precise flutter speed.  The flutter 
speed graph below shows error bars on the experimental flutter speed from the highest 
speed at which flutter could not be induced, to the lowest speed at which flutter could 
be induced. 
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Figure 9: Simple T-tail flutter model construction 
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Figure 10: Flutter speed comparison for the simple T-tail model 
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MSC NASTRAN was used to determine the natural modes and post-processed to 
obtain the quadratic displacements.  The present DLM was used to calculate 
generalised forces for a number of HTP incidence angles and the p-k formulation of 
the flutter equation was solved to obtain the flutter speed.  The comparison between 
the calculated and measured flutter speeds is shown in Fig. 10.  The agreement is 
reasonable.   
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5. CONCLUSIONS 

The present DLM for T-tails models most of the phenomena that is necessary to 
predict T-tail flutter.  Limited comparisons with experimental and published data to 
date were encouraging.  Further experimental work to validate the method is in 
progress, including a larger model with a swept fin and stabiliser.  The simple model 
will also be adapted to test the effect of dihedral.  A transonic extension is not 
envisaged as fluid-structure coupled solutions are already viable for this application.  
Some aspects of the present work may be relevant to such solutions. 
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