Using An Implicit Min/Max KD-Tree for Doing Efficient Terrain Line of Sight
Calculations

Bernardt Duvenhage*
The Council for Scientific and Industrial Research

Abstract

The generation of accurate Line of Sight (LOS) visibility informa-
tion consumes significant resources in large scale synthetic environ-
ments such as many-on-many serious games and battlefield simu-
lators. Due to the importance of optimum utilisation of computing
resources, a number of LOS algorithms are reported in the litera-
ture to either efficiently compute LOS information or reduce the
impact of LOS queries on the run-time performance of synthetic
environments. From the literature it is known that a k-dimensional
tree (kd-tree) based raytracing approach, to calculating LOS infor-
mation, is efficient.

A new implicit min/max kd-tree algorithm is discussed for evaluat-
ing LOS queries on large scale spherical terrain. In particular the
value of low resolution boundary information, in quickly evaluating
the LOS query, is emphasised. The min/max algorithm is empiri-
cally compared to other LOS approaches that have either implicitly
or explicitly used kd-trees to optimise LOS query evaluation. The
min/max algorithm is shown to have comparable performance to
these existing LOS algorithms for flat earth, but improved perfor-
mance when the application domain is extended to spherical earth.
An average of a factor 3.0 performance increase is experienced over
that of the existing implicit and explicit max kd-tree algorithms on
spherical earth. This is achieved by combining the existing kd-tree
algorithm with the classic smooth-earth LOS obscuration test and
from there the min in min/max kd-tree.

CR Categories: 1.6 [Simulation and Modelling]: General;

Keywords: line of sight, implicit kd-tree, spherical earth

1 Introduction and Overview

Line of Sight (LOS) information is used extensively in synthetic en-
vironments such as shown in Figure 1. Accurate LOS information
is, according to Mlaker [2004], one of the most important inter-
system interactions for modelling a combat environment effec-
tively. Seixas et al. [1999] defines LOS information between the po-
sitions A and B—of two systems within a synthetic environment—
as an indication of whether or not the line segment AB intersects
the terrain or some other environmental structure. LOS informa-
tion, in other words indicates whether the system at A could po-
tentially see the system at B across terrain, buildings, etc. and vice
versa. A LOS query in turn looks up, or triggers the calculation of,
the LOS information/result between A and B.

The first and most obvious use case of a LOS algorithm in such
an environment is by a virtual individual to simulate which of its

*e-mail: bduvenhage @csir.co.za

Time 00:01:28.40 (88.40sec)

Figure 1: A Visual Representation of a Synthetic Environment

opponents it can see or detect. Section 2 presents three use cases in
more detail and shows the approximate frequency of LOS queries
typically required in large and many-on-many scenarios.

1.1 Background

For the purposes of this paper, terrain representations are divided
into two basic groups viz. regular grid-post—a.k.a. height-map—
and triangulated irregular network (TIN) representations. Section 3
gives more details on these and the advantages/disadvantages of
regularised versus irregular terrain representations.

According to Mlaker [2004], and Fought and Kull [1993], a large
portion of current LOS algorithms are designed for grid-post ter-
rain and use a common basis to determine whether a sensor at po-
sition A has LOS to a target at position B. This common basis
may be phrased as, stepping in small increments along the line AB
and applying a line-of-sight-to-terrain hit test at each step. A clas-
sic and efficient line stepping algorithm for grid-post terrain is the
Bresenham [1998] algorithm. Bangay [1993] has however shown
that an optimised Digital Differential Analyser (DDA) line stepping
approach can be almost twice as efficient as a naive Bresenham al-
gorithm implementation. Further, Boyer and Bourdin [2000] have
shown that N-step—a.k.a. multi-step—and their Auto Adaptive ex-
tensions to the Bresenham algorithm can be up to four times as ef-
ficient as the naive Bresenham algorithm. A disadvantage of these
algorithms is however that they all have O(n) performance, where
n is some measure of the distance between the sensor and target.

Fought and Kull [1993] mention that, for TIN terrain, an intersec-
tion of line segments algorithm can outperform a line stepping al-
gorithm when high frequency terrain features are absent and the
terrain has a low number of triangles. The TIN algorithm’s perfor-

mance is potentially linearly related to the number of triangle edges
in the TIN. The TIN LOS algorithm then approximately has O(n?)
performance, where n is a measure of maximum LOS query length.

Section 4 explains the particulars of the above two classic LOS al-
gorithms and the advantages of each over the other. However, for
large scale virtual environments the O(n) or worse performance of
these algorithms, where n may be generalised to a measure of the
length of LOS queries, becomes prohibitively slow. More efficient
LOS algorithms and terrain representations are therefore required.

1.2 The Problem Statement and Previous Work

Calculating LOS information does indeed consume significant
amounts of processing time. Salomon et al. [2004] quotes synthetic
environment studies indicating as much as 27 % of processing time
typically being consumed by LOS queries. Further, as the num-
ber of virtual participants (observers and observees) increase, the
number of LOS queries and therefore the processing time required
may potentially increase exponentially. As stated by Fought and
Kull [1993], LOS algorithms are however a trade-off between stor-
age requirements, computational time and accuracy. Due to the
importance of optimum utilisation of computing resources a num-
ber of LOS algorithms are reported in the literature to therefore
either more efficiently compute LOS information or alternatively
reduce the performance impact of LOS queries by pre-computing
or caching LOS information.

The first group of existing algorithms, which attempt to compute
LOS information efficiently, seem to make use of either: the Graph-
ics Processing Unit (GPU) and computer graphics techniques, or a
CPU ray tracing approach and related accelerated quad- or kd-tree
terrain geometry. The second group of existing algorithms, which
focusses on reducing the performance impact of LOS queries on the
simulation, typically makes use of memory- and lookup-efficient
approaches and data structures to store pre-computed LOS infor-
mation. Section 5 discusses examples of the above mentioned two
approaches and the details, advantages and disadvantages of each
algorithm in terms of performance and accuracy. In summary:

e The current GPU approaches potentially have better than
O(n) performance. An average of 4 us per-query has been
measured by Salomon et al. [2004] even on the hardware of a
few years ago. GPU approaches are however only efficient for
large batches of LOS queries. GPUs are relatively inefficient
for small batches due to high CPU to GPU communication
overhead.

e The existing ray tracing—with quad- or kd-tree terrain
geometry—approaches have better than O(n) performance at
3-4 us per-query as measured by Funfzig et al. [2007], but
existing implementations seem to have focussed on flat earth
and does not directly support spherical earth scenarios.

e The pre-computed LOS approaches potentially have O(1)
performance, but the accuracy is roughly proportional to the
cache size and inversely proportional to the scenario size for
a fixed cache size.

The proposed min/max LOS algorithm was developed for a Ground
Based Air Defence (GBAD) synthetic environment, as discussed
by Duvenhage and Nel [2008]. The terrain data procured for use
is 100 m grid-post Digital Terrain Elevation Data (DTED-level 1)
mapped to a spherical earth. An algorithm for the grid-post terrain
is considered. There is however scope for future research in using a
TIN algorithm as, according to Chamberlain et al. [2003], there are
well studied algorithms to efficiently convert between the terrain
representations. It is important to note that man-made objects such

B

A

Altitude Ceiling Altitude Ceiling Altitude Ceiling

A

—
Altitude Floor Altitude Floor

Centre of Earth

Figure 2: Min/Max LOS Test Evaluates to (Left to Right): Certain
True, Uncertain, and Certain False.

as bridges that can not be represented by terrain augmentation is
not directly included in the LOS algorithms discussed.

For the GBADS application it was also decided to experiment with
the first group of dynamic LOS algorithms that guarantee per-
query-accurate results. Although future research may look into this
decision, the pre-computed LOS cache size that would be required
for a pre-computed cache based approach to LOS—especially for
the high accuracy and large scenario sizes—seemed impractical in
terms of time required for pre-computation and the run-time mem-
ory requirement. This article further focuses on a CPU LOS algo-
rithm which has better than O(n) performance for spherical earth.
The value of implementing the implicit min/max kd-tree or simi-
lar algorithm on a GPU should be investigated in future to possibly
further improve on the performance and/or explore algorithm vari-
ations.

The proposed min/max algorithm, in particular, exploits the value
of low resolution terrain data to efficiently calculate LOS infor-
mation. The lower resolution max tests have been implemented
by both Chamberlain et al. [2003] and Funfzig et al. [2007] for
their flat earth LOS algorithms as described in Section 5. The pro-
posed min/max approach however combines the lower resolution
max tests with lower resolution min tests—a variation of the classic
smooth earth LOS obscuration test—to further optimise LOS for
spherical earth.

1.3 The Basic Min/Max Algorithm

Figure 2 visually demonstrates the min/max algorithm and the value
of low resolution boundary information. The figure shows a pie-
slice of a side view of a spherical earth with some mountainous
terrain. The left-hand-side diagram in the figure is an example of
the LOS query—Iline A B—being above the altitude ceiling. In this
case LOS between A and B is certain to be true irrespective of
the terrain detail. The right-hand-side diagram is an example of
the LOS query being below or intersecting the altitude floor. In
this case LOS between A and B is certain to be false irrespective
of the terrain detail. The diagram in the middle is an example of
where part of AB is between the altitude ceiling and floor. In this
case LOS is uncertain when the terrain detail is not known. There-
fore, if the terrain’s altitude ceiling/floor—the altitude min/max—
is known, a very efficient constant time min/max smooth-earth test
may be applied to first test whether the LOS query may be labelled
as certain true or certain false.

The implicit min/max kd-tree algorithm, described in this article, is
principally based on the above min/max test. A LOS query is firstly
evaluated at a low resolution. If the result of this query is labelled
as uncertain, then the sub-segments of the LOS query are evalu-
ated at recursively higher resolutions until the query is resolved.
The existing max algorithms by Chamberlain et al. [2003] and Fun-
fzig et al. [2007] only does the max test and therefore can cull the

tree traversal only on LOS certain true or LOS uncertain and not on
LOS certain false.

A mip-map [Fernando and Kilgard 2003] (Latin phrase multum in
parvo - much in a small space) is used to represent the implicit kd-
tree. An example mip-map is shown later in the article in Figure 7.
However, instead of an averaging function—as is usual in computer
graphics—a min and a max function is applied to generate two sets
of the lower levels of detail. Section 6 gives a brief introduction to
kd-trees. Section 7 then discusses the details of the min/max kd-
tree and LOS algorithm. Section 7 also contains details of what the
cells of a grid-post terrain look like for a spherical earth.

Due to its recursive nature, the min/max algorithm’s performance
does not linearly depend on the query distance. The algorithm may,
however, have a best case constant—O(1)—performance for high
altitude and well-beyond horizon LOS queries, and potentially a
worst case O(n) performance for short and long range terrain-
hugging LOS queries. Optimised implementations of both—max
and min/max—algorithms were implemented and are evaluated
over 6x6 degree flat and spherical real-world terrains. Experi-
mental performance results and analysis are given in Section 8.
In summary: For flat earth, the measured performance indicates
a 2.5-7.4 % improvement above that of the implicit and explicit
max kd-tree algorithms of Chamberlain et al. [2003] and Fun-
fzig et al. [2007]. For spherical earth the min/max algorithm finds
a solution in 24 - 33% of the time—a 200-300% performance
increase—compared to the max kd-tree algorithm.

2 The Line of Sight Use Cases

The LOS algorithm use cases are presented in relatively large syn-
thetic environment scenarios containing—for demonstration—100
virtual inhabitants. The ground-based simulated observers and sen-
sors are placed at altitudes between 1.8 and 12 meter above ground
while the airborne observers and sensors may potentially be at any
altitude.

The first use case of the LOS algorithm is to simulate a virtual in-
habitant’s sense of sight. The observer might want to know which
other inhabitants it can potentially see or not see due to terrain
obscuration. A LOS query is generated between each observer-
inhabitant pair, which results in 99 +... 4+ 1 = 4950 = % * (n — 1)
queries when taking into account n = 100 observers. Considering
that some or all of the inhabitants may be dynamically moving at a
simulation update rate of between 10 and 100 Hz, the LOS queries
might have to be calculated as many as 100 times a second. This
results in roughly half a million LOS queries per-second.

Taking the same scenario as above, the LOS algorithm may also be
used to simulate line of sight for radio communication or radar and
optical sensor detections. The LOS information as generated in the
previous use case is potentially only partially reusable. This is due
to radio communication including the antenna height in the LOS
queries and sense of sight typically being simulated to the centre
of an object. For example a soldier carrying a radio has sense of
sight from eye level, but his radio might have a long antenna—or
operate on a lower than microwave frequency—which increases the
radio horizon. Up to an additional half a million LOS queries per-
second may therefore be required to simulate radio communication
and sensor detections.

Again taking the same scenario as above; There might be sensors
or antennas—or cellphone towers—for which the sensor or antenna
coverage must be calculated for evaluation and deployment. An an-
tenna coverage pattern indicates the area of the responsibility or
effectiveness and is hugely affected by the local terrain topogra-
phy. The LOS algorithms typically only support point to point LOS

Figure 3: Regular Grid-Post (a) and Irregular TIN (b) Terrain

queries. To calculate an area LOS query a large set of point-to-point
queries are executed. It might, for example, be required to sample at
1 degree azimuth intervals and range intervals of 500 m. For an an-
tenna with a typical range of 50km, in the order of 360*100=36 000
LOS queries is required each time a coverage pattern is generated
or updated.

3 Regular and Irregular Terrain Representa-
tions

For the purposes of this paper, terrain representations are divided
into two basic groups viz. regular grid-post—a.k.a. altitude-map—
and triangulated irregular network (TIN) representations as shown
in Figure 3. Grid-post terrain is named for the fact that terrain al-
titude posts are virtually placed at regular latitude and longitude
intervals. An example of grid-post terrain is DTED. DTED level 1
represents each 1-by-1 deg of the earth as a 1 200-by-1 200 element
height-above-sea-level map, placing the grid posts approximately
100 m apart.

A TIN terrain representation, on the other hand, constructs the ter-
rain out of an irregular network of triangular polygons. Examples

Terrain Gridposts

Figure 4: Top View of the Line Stepping Algorithm

are shown in Figure 3 (b) and Figure 6. The triangle/polygon ver-
tices are placed at the correct terrain altitude with the polygon ge-
ometry being dependent on the terrain shape and detail. Cham-
berlain et al. [2003] states that there are well studied algorithms to
efficiently and optimally convert from a grid-post to a TIN terrain
representation if required. The reverse may be done within certain
limits.

4 The Classic Grid-Post and TIN Line of Sight
Algorithms

Grid-post and TIN terrain have each their own basic flat-earth LOS
algorithm and approach. The line step DDA algorithm may be used
to efficiently stepwise visit the required integer terrain grid posi-
tions of grid-post terrain along the surface projection of AB, as
shown in Figure 4. At each step the altitude of the terrain may be
found with a simple lookup into the terrain data. The line step LOS
algorithm applies a line-of-sight-to-terrain hit test between the ter-
rain altitude and AB at each step. The LOS hit test returns false at
each successive step along AB until it is found that LOS between
A and B is obstructed by something at the step position. A possi-
ble method, stated by Mlaker [2004], to test LOS obstruction is to
compare the elevation of B to the elevation of the terrain surface
at the step position. If the elevation of B relative to A is smaller
than the elevation of the terrain relative to A, see step position 3 in
Figure 5, then the hit test returns true and LOS is obstructed.

A line stepping approach also inherently does not sample the terrain
in between steps. This leads to small features such as corners and
edges of terrain features being potentially missed. The accuracy
of the LOS information is therefore dependent on the accuracy of
the grid-post terrain representation and how accurate the line steps
sample the grid-post data. The influence of the step size on the
accuracy of the DDA LOS algorithms are discussed in Section 8.

Modern terrain and synthetic environment visualisation systems of-
ten use TIN terrain representations to render the environment’s ter-
rain. Although the line-step LOS algorithm may be used, Fought
and Kull [1993] mention that, LOS may be directly and efficiently
computed over a TIN terrain by intersection of line segments. The
first step in the algorithm is to find all the intersections between the
3D LOS line and the TIN’s polygon edge line segments as projected
on the zero-altitude surface plane. The intersections are indicated
with dots in Figure 6. As these projected intersections are found,
the intersection heights on the LOS line and line segments respec-

Figure 5: Side View of the Line Step Elevation Hit Test

Figure 6: Top View of the TIN LOS Algorithm

tively are computed through substitution of the intersection coordi-
nates into the respective line equations. If a LOS line intersection
is found that is below its corresponding line segment intersection,
or if A or B are under the terrain, then the LOS line intersects the
terrain and LOS is blocked. According to Chamberlain et al. [2003]
LOS over a flat terrain, with relatively few triangles, using a well
optimized TIN can outperform a line step LOS calculation. For
highly detailed terrain the number of edges can however quickly
become the limiting factor in computing LOS queries efficiently as
the TIN algorithm’s average performance is linearly dependent on
the number of polygon edges. The number of polygon edges in
turn increase approximately exponentially with the terrain block’s
diameter.

The intersection of line segments does however not spatially dis-
cretise the search domain into steps. The LOS accuracy is therefore
only dependent on the accuracy of the triangle terrain representa-
tion.

Both algorithms also support spherical earth terrain, by replacing
the line stepping algorithm with an appropriate latitude/longitude
curve stepping algorithm and mapping the TIN to a spherical earth.
The line-of-sight-to-terrain hit test must then be applied in the
spherical coordinate system and not, as before, in the flat earth co-
ordinate system.

5 The Existing Optimised Algorithms

Existing Computer Graphics (CG) techniques may be used to effi-
ciently process LOS queries. This is generally referred to as im-
age based LOS due to an image being drawn that has the LOS
query results encoded in it. Image based LOS is decoupled from
the terrain representation and geometry as long as there is an algo-
rithm to draw the terrain. A GPU is a specialised processor that
uses a highly parallelised implementation of a stream programming
model [Fernando and Kilgard 2003; Pharr and Fernando 2005]. The
GPU may be used as a co-processor to accelerate the image based
LOS calculations. GPU based LOS algorithms are discussed by
Salomon et al. [2004] and Verdesca et al. [2006] which achieves an
average of 4 us per-query. The Top view image based LOS, for
example, is algorithmically similar to the line step LOS algorithm,
but with a z-buffer LOS hit test instead of an elevation condition.
The communication overhead between the CPU and GPU, how-
ever, typically limits the frequency of GPU/CPU interaction—such
as submitting a batch of LOS queries—to below 10 000 Hz. The
hardware accelerated image analysis is therefore not efficient for
small batches of LOS queries. As mentioned before, line stepping
algorithms that compute LOS information suffer from sampling in-
accuracies. The influence of the step size on the accuracy of the
result for DDA algorithms are discussed in Section 8. Similarly,
because image based LOS algorithms are pixel based, image based
algorithms potentially suffer from sampling inaccuracies.

Seixas et al. [1999] describes an algorithm and R3-Tree data struc-
ture for optimised TIN LOS. They then compare the performance
of the TIN LOS to that of Bresenham LOS and find that the Bre-
senham LOS still outperforms the optimised TIN LOS by a factor
of 17.

Fought and Kull [1993] experimentally compare various line step
DDA and a TIN LOS algorithm for determining line of sight in
real-time simulations at the NASA-Ames Vertical Motion Simula-
tor (VMS) facility. The LOS approach they found to be most ef-
ficient is a grid-post terrain format in conjunction with a Digital
Differential Analyser algorithm which is similar to the Bresenham
LOS algorithm.

Chamberlain et al. [2003] presents a LOS algorithm developed for
the Jet Propulsion Laboratory at the California Institute of Tech-
nology. The algorithm is based on a quad-tree optimised terrain
representation and ray tracing. They use the max terrain elevation
within each quad-tree node to cull large pieces of terrain that are
lower than the LOS query. According to the authors, the algorithm
has a O(log n) performance and allows spherical earth and atmo-
sphere to be approximated. They also compared it to an optimised
TIN algorithm. The ray tracing algorithm was found to be more
efficient. Chamberlain, et al.’s algorithm may also be described as
an implicit max kd-tree ray tracing approach.

Similarly, Funfzig et al. [2007] have implemented a kd-tree which
keeps track of the max terrain elevations within each node. They
too have found that a kd-tree ray tracing approach that makes use
of the low resolution elevation ceiling information has better than
O(n) performance and significantly outperforms the simpler line
stepping and TIN LOS algorithms. Funfzig, et al. seem to have a
well optimised implementation. They have achieved an average of
3-4 us per-query. Their results also indicate a log(n) relationship
between the terrain size—therefore the LOS query lengths—and
the average query execution time.

Mlaker [2004] gives an example of pre-computed LOS. The Proba-
bility of Line of Sight (PLOS) algorithm classifies terrain into tem-
plates according to roughness or type. Each terrain template is a
mock-up of a typical block of terrain of the specific roughness and

type. Every terrain template is then assigned a probability of LOS
against range curve for every elevation in the chosen set of sen-
sor elevations. A PLOS curve is calculated from pre-computing a
batch of random LOS queries over the terrain template. When the
system needs to determine LOS during a simulation run, it uses the
sensor-to-target range, sensor elevation, and terrain type to simply
determine the probability of LOS from the lookup table. The num-
ber of terrain templates, elevation PLOS curves per-template and
the range resolution is finite which implies a finite set of unique
cached LOS queries. A general LOS query is therefore approxi-
mated by choosing the closest terrain template and sensor elevation
to the query and executes in a constant time.

6 An Overview of Explicit and Implicit KD-
Trees

A kd-tree is a space partitioning data structure for organising points
in a k-dimensional space [Bentley 1975; Grof et al. 2007]. Kd-
trees are a special case of Binary Space Partition (BSP) trees. Kd-
trees have for example been used to represent large synthetic scenes
which then allow efficient ray traversal when doing ray tracing. In
the case of the LOS algorithms, a 2 dimensional kd-tree is used to
organise and store the spherical or flat earth terrain.

An implicit—as opposed to explicit—kd-tree is a kd-tree defined
implicitly above a rectangular grid. The space partitioning planes
are therefore not explicitly defined. A slim kd-tree is defined as an
implicit kd-tree with the restriction that they can only be built over
integer hyper-rectangles with side lengths that are powers of two.
The slim implicit representation of a balanced kd-tree is used for
its memory and time efficiency [Bentley 1975; Grof3 et al. 2007].
There is no overhead for keeping track of the parent child relation-
ships as the tree is regularised.

In the case of the proposed min/max LOS algorithm the DTED grid-
post map represents the leaf nodes of the tree. The successively
lower resolution min/max layers of the mip-map, shown in Figure 7,
then represent the intermediate to root layers of the implicit kd-tree.
Before building the mip-map, the DTED data is always re-sampled
to be a square map of dimension a power of two.

A min, max or min/max kd-tree is a kd-tree that, in each node, re-
spectively stores the min, max, or min and max values of the node’s
children. The balanced min/max kd-tree for the LOS algorithm is
built from the leaves to root, starting with the DTED as the leaves
and systematically finding the min/max pair for each of the non-leaf
nodes in the tree. The kd-tree is implicitly defined in flat latitude
and longitude space for both the flat and spherical earth applications
domains. Each non-leaf layer in the tree represents consecutively
lower resolution min/max terrain cells and therefore the consecu-
tively lower resolution mip-map images.

7 The Min/Max KD-Tree Algorithm Details

As mentioned, the mip-map implementation of the proposed LOS
algorithm is an implicit 2D kd-tree and more specifically a slim kd-
tree. This allows for an efficient time and memory footprint.

The basic building block for the LOS algorithm is the computation
of line of sight between two points A and B over an m X n degree
piece of flat or spherical earth, called a cell. Note that for spheri-
cal earth the latitude (North and South) boundaries are non-planar,
but conical as can be seen in Figure 8. The min/max LOS test,
as detailed in the introduction, is applied recursively from the tree
root—lowest resolution cell—to the leaf nodes—the actual DTED
pixel sized cells.

Floor

Middle Lat

iddle
Longitude

(a) (b)

/

The Earth ,/

Figure 8: The Shape of a Cell

For each recursively evaluated tree branch, the LOS test may termi-
nate early due to a certain true or a certain false min/max result in
one of the following ways:

e A certain true result in general allows early culling of the
current branch without reaching a result—the LOS result de-
pends on the remaining branches.

e A certain true result at the root allows constant time evalua-
tion of the query to true.

e A certain false result, at any point, allows early evaluation of
the query to false.

The query also evaluates to true if all branches have been culled
away without reaching a result. The floor of AB is used in the
min/max test against a cell’s ceiling and floor. For flat earth,
floor(AB) is defined as the minimum altitude of A and B. For
spherical earth floor(AB) is defined as the minimum distance be-
tween AB and sea level of the spherical earth.

If, on the other hand, the min/max LOS result over a cell is un-
certain then the LOS query is not terminated early, but propagated
to the child cells pending a ray trace intersection. To intersect a
line/ray AB with a cell C it is assumed that AB is contained within
C. This need only be enforced at the root level by clipping AB to
the root cell. Once it is known that AB is contained within C, the
only line-to-cell intersections that need be calculated are the inter-
sections of AB with the middle latitude cone and middle longitude
plane that divides C into the four higher resolution child cells.

The middle longitude plane equation is found to be:
T * ng + y * ny = 0.0 for n the plane normal, and x and y - axes

as in Figure 8. n = (—sin(0), cos(0),0.0) for 6 = longitude.

The middle latitude cone equation is found to be:

22

2+ y2 = @ for ¢ = latitude and the x,y and z - axes as

indicated in Figure 8.

The parametric form of AB, x = t-l + xo, y = t-m + yo and
z = tn + zo, for (I,m,n) = B — A and ¢ in [0..1], is then
substituted into the plane and cone equations respectively to arrive
at the intersection distances, viz.:

t = —(yony + zonz)/(l-ny + m-ny) for the plane, and

— — 2
t = —bEVba—dac V;f‘mc for the cone where a = 1% + m? — b=

2
2x0-l 4+ 2yo-m — QZ‘Ié'", c=x3 +ys — %" and k = tan?(9).

The intersections outside AB are culled away. The resulting line
of sight sub-segments that are created between the neighbours in
the sorted list of coordinates A, the sub-cell intersections and B are
then contained within their respective sub-cells. The centre of each
sub-segment is used to calculate which sub-cell—viz. 0, 1,2 or 3—
the LOS sub-query should be submitted to. The sub-segment LOS
queries are then recursively submitted to sub-cell min/max LOS
tests and further subdivided as required. This recursive process is
in fact a kd-tree hit-or-not ray trace algorithm.

When measuring the relative performance of the existing max algo-
rithm the min/max algorithm is used, but the min test is simply not
done until the leaf nodes—the DTED data elements—are reached.
This simulates the behaviour of the max algorithm and allows the
two algorithms to be accurately compared by using the same code
base.

Due to the natural mapping of the grid-post terrain to cell grids,
a grid-post terrain representation is preferred to easily compute the
mip-map and easily identify which terrain elements belong to a cer-
tain cell. Nothing prevents a TIN terrain representation from being
used though, as long as the polygons that are wholly or partly inside
a cell may be found efficiently.

The min/max kd-tree algorithm was initially developed in 2004,
independent from the max kd-tree algorithms by Chamber-
lain et al. [2003] and Funfzig et al. [2007]. Although the pro-
posed algorithm is very similar in its operation to the existing max
kd-tree algorithms, the min/max algorithm however includes the
min test to optimise the execution for a spherical earth application
domain. The implicit kd-tree representation also allows a much
smaller memory and execution time footprint than possible when
using an explicit non-slim tree structure.

The memory footprint of the min/max algorithm is the gridpost ter-
rain itself, the max mip-map and the min mip-map. Each mip-map
starts at half the resolution of the initial grid-post terrain and oc-
cupies less than half— + - + &5 + ...<4—of the memory of
the grid-post terrain. Figure 7 demonstrates that the terrain and
the two mip-maps—therefore the entire implicit min/max kd-tree—
occupies less than twice the memory of the DTED data itself.

8 The Experimental Results

8.1 The Setup

As mentioned, the min/max algorithm is, in effect, an extension to
the existing max kd-tree algorithms. To compare the performance
of the new algorithm to that of the existing max algorithms an op-
timised implementation of a slim max kd-tree LOS algorithm was
done. The performance of this algorithm is then experimentally
determined with and without the min/max early termination exten-
sion. As mentioned, a 6x6 degree flat and spherical terrain, using

Western Cape DTED level 1, was used.

The results were generated on a laptop with an Intel Core 2 Duo
2GHz (T7200) CPU and 2 GByte of RAM. The tests were run
within a single thread and therefore utilised only one of the two
processor cores.

It is also argued that the regularised slim kd-tree implementation
would be as fast or faster than an explicit kd-tree implementa-
tion [Bentley 1975; Grof et al. 2007]. Under this assumption
the implicit kd-tree implementation may be used to represent both
Chamberlain et al.’s [2003] and Funfzig et al.’s [2007] max kd-tree
algorithms to, at least, the same level of optimisation as the pro-
posed min/max algorithm.

It takes 0.37 seconds to build all the levels of detail of the min/max
mip-map and in effect the implicit representation of the min/max
kd-tree. Each 1x1 deg DTED tile is 1 200 x 1 200 pixels which re-
sults in a 6x6 deg terrain of 7 200 x 7 200 pixels. The terrain is then
scaled up to have dimensions of a power of two viz. 8§ 192 x 8 192.
The min-max mip-map—the implicit slim kd-tree—is created from
the up-sized terrain map.

Optimised versions of a flat earth DDA and spherical earth DDA
were also implemented to measure relative performance and accu-
racy of the line step algorithms against the kd-tree raytracing algo-
rithms. A set of 5 000 random LOS queries were evaluated and the
performance measured for each LOS algorithm. All queries were
generated with A and B between 3.0 and 500.0 m above the terrain.
The statistical results are shown and analysed below.

8.2 The DDA Results

For flat earth the DDA algorithm achieves an average of 5 984
queries per-second at 167.1 us/query. An average 11 640 line step
operations are executed per-LOS-query at 0.01435 us/operation.
The average number of DDA steps per-terrain-gridpost was empiri-
cally chosen to give the same LOS results as the max and min/max
algorithms. For this specific experimental setup and the possibly
naive fixed-step-size implementation, the minimum number of steps
per-terrain-gridpost that is required is 10. Any lower number of
samples results in LOS answers that differ from the results of the
max and min/max algorithms due to the line steps that miss grid-
post edges and corners.

For spherical earth the DDA algorithm achieves an average
of 15 510 queries per-second at 64.48 ps/query. An aver-
age 215.0 line step operations are executed per-LOS-query at
0.2999 ps/operation. The effect of the spherical earth horizon
is evident from the significantly smaller number of operations per-
LOS-query compared to the flat earth DDA algorithm. This also
results in the spherical DDA algorithm executing faster than the
flat earth DDA algorithm, even though the spherical line step op-
erations are more expensive than the flat earth line step operations
at 0.2999 ps/operation and 0.01435 ps/operation respectively.
The average number of DDA steps per-terrain-gridpost was empiri-
cally chosen to give the same LOS results as the max and min/max
algorithms. For this specific experimental setup and the possibly
naive fixed step size implementation the minimum number of steps
per-terrain-gridpost that is required is 2. One hypothesis, on why
the number of required DDA steps is lower for spherical DDA than
flat earth DDA, is that in the spherical earth case a larger number
of the LOS queries are beyond the horizon and an accurate DDA
algorithm is required less often.

8.3 The Flat Earth Max and Min/Max Results

For flat earth the max kd-tree algorithm achieves an average of
329 290 queries per-second at 3.037 us/query. The average num-
ber of max operations per-query is 38.84.

For flat earth the min/max kd-tree algorithm achieves an average
of 337 500 queries per-second at 2.963 us/query. The average
number of min/max operations per-query is 38.03. The value of the
low resolution min test of the min/max algorithm is already evident
even on flat earth from the slightly lower number of operations per-
query—38.03 versus 38.84.

For A and B between 3.0 and 500.0 m above the terrain, the pro-
posed flat earth min/max algorithm executes a LOS query on av-
erage in 97.56% of the time of the max algorithm. For flat earth
and at these heights above terrain, the min/max algorithms there-
fore does not offer a real benefit over the max algorithm. The max
and min/max algorithms are however approximately 56 times faster
than the flat earth DDA.

8.4 The Spherical Earth Max and Min/Max Results

For spherical earth the max kd-tree algorithm achieves an average
of 60 080 queries per-second at 16.64 s/query. The average num-
ber of max operations per-query is 28.52 at 0.5836 us/op. The
slower per-operation execution speed, compared to flat earth, is due
to the terrain cells now having the more complex geometry shown
in Figure 8 instead of a simple flat grid. Spherical earth does how-
ever create a horizon which allows even the max recursive algo-
rithm to return earlier—28.52 operations versus 38.84 operations
per-query for flat earth.

For spherical earth the min/max kd-tree algorithm achieves an aver-
age of 181 760 queries per-second at 5.502 p1s/query. The average
number of min/max operations per-query is however now 9.603 at
0.5729 ps/op. The added value of the min test of the min/max al-
gorithm is evident from the much lower number of operations per-
query—9.603 versus 28.52. Additionally the lower per-operation
time, of 0.5729 s versus 0.5836 pus of the max algorithm, confirms
that the inexpensive low resolution min test has replaced some of
the expensive sub-cell intersection tests.

For A and B between 3.0 and 500.0 m above the terrain, the pro-
posed spherical earth min/max algorithm executes a LOS query on
average in 33.05 % of the time of the max algorithm. For spherical
earth the min/max algorithms therefore does indeed offer a benefit
over the max algorithm. Even though there is a high cost coupled to
the geometrically complex cell intersections which is not required
for the spherical DDA algorithm, the min/max algorithm are ap-
proximately 12 times faster than the spherical earth DDA.

8.5 The Initial Analysis

Graphing the per-query results for the 8§ 192 x 8 192 spherical ter-
rain is shown in Figure 9. The figure shows the measured per-query
time against the distance between the A and B of each query. The
worst case spherical DDA results that lie on the diagonal of the
graph are due to LOS queries that step all the way from A to B
and therefore return true. The better performing spherical DDA re-
sults are due to LOS obstructions between A and B being hit. At
larger query distances, the terrain horizon would ensure early ter-
mination and better than O(n) performance for n a measure of the
LOS query distance.

From the figure it is clear that the spherical max and min/max algo-
rithms do not display the O(n) performance behaviour of the line

Query Time vs. Query Length

7.00E-04
*
*
L]
6.00E-04 O
LX)
..
. L
4
5.00E-04
€
".
*
4.00E-04 t

L
.

® SpericalDDA
m SphericalMax
SphericalMinMax

*

Query Time (s)
o *®o

*

.

3.00E-04 1

oL %o
% *¢®

L d
)

LT

2.00E-04

1.00E-04

0.00E+00 4 .
0 200000 400000 600000 800000

Query Length (m)

Figure 9: LOS Query Time vs. Query Length for Real Spherical
Terrain

stepping algorithm. The performance of the min/max algorithm is
also clearly superior to the max algorithm for longer ranges.

8.6 More Tests: Low Altitude

It was also found that for LOS queries where A and B are both
fixed at a height of 1.0 m above the terrain, that the spherical earth
min/max algorithm offers an average query time of 24.24% of that
of the max algorithm—365 900 queries per-second versus 88 680
queries per-second for the max algorithm. The flat earth min/max
algorithm’s performance is also increased slightly to a LOS query
now taking only 93.10 % of that of the max algorithm query—
435 600 queries per-second versus 405 500 queries per-second for
the max algorithm. For flat earth the DDA algorithm achieves an
average of 39 330 queries per-second. For spherical earth the DDA
algorithm achieves an average of 261 800 queries per-second.

At lower altitudes the average LOS-is-true fraction decreases—as
does the average operations per-DDA-query—due to the terrain
geometry and spherical earth horizon playing a larger and larger
role. For the low height LOS queries the operations per-DDA-query
has decreased significantly to 10.34 and 1 777 for spherical and
flat earth respectively. The min/max algorithm however still out-
performs these DDA algorithms for low level queries at 365 900
queries per-second versus 261 800 queries per-second for spherical
earth and 435 600 queries per-second versus 39 330 queries per-
second for flat earth. It should however be noted that the simplicity

of an efficient implementation of a line step—and even N-step—
algorithm does make it very attractive for applications requiring
short range queries or where algorithmic simplicity is important.

8.7 More Tests: High Altitude

As may be expected, for high altitude queries—above 4 000 m in
these experiments—when the terrain and horizon play only small
roles in the outcome of the LOS queries, the value of the min/max
algorithm over that of the max algorithm disappears. At these alti-
tudes, however, the max and min/max algorithms are at their most
efficient performance point while the line stepping algorithms are as
inefficient as possible resulting in an average min/max query time
that is approximately one 1000’th of that of the line stepping algo-
rithms.

8.8 More Tests: Simplified Algorithm

Another interesting result is that if a single simple LOS test against
the spherical earth’s smooth sea level—or some other minimum al-
titude reference—is done before each LOS query, some of the ben-
efit of the min/max algorithm is already achieved. The once-per-
query check to see if line AB is below sea level potentially gives an
early certain false result. In other words the low resolution min test
may be approximated to the first order if each LOS query is pre-
ceded by a simple below sea level check. The min/max algorithm
then, on average, only executes in 74.13 %, compared to 33.05 %,
of the time of a max algorithm query for A and B between 3.0 m
and 500.0 m above the terrain. The min/max algorithm also, on
average, then only executes in 61.72 %, compared to 24.24 %, of
the time of a max algorithm query for A and B 1.0 m above the
terrain. The min/max algorithm therefore allows a 35 - 62 % per-
formance increase beyond what a simple once-per-query below sea
level check gives. The advantage of the min/max algorithm would
however be lost for queries at higher altitudes when each query is
preceded by a simple below sea level check.

Figure 10 shows the min/max LOS algorithm performance versus
the performance of a max LOS algorithm preceded by a simple be-
low sea level check for A and B between 3.0 m and 500.0 m above
the terrain. Notice the performance advantage of the min/max algo-
rithm between 150 000 m and 300 000 m. From the figure it is also
clear that the spherical earth horizon is hit for all queries beyond ap-
proximately 300 000 m. Figure 11 similarly shows the performance
advantage of the flat earth min/max algorithm over the max algo-
rithm. Notice the good performers across all ranges at the bottom
of the figure.

8.9 More Tests: Various Terrain Resolutions

Artificially lowering the resolution of the input DTED data—and
in effect shortening the average LOS query without removing the
curvature of the earth—results in the performance behaviour shown
in Table 1.

The results in Table 1—also graphically shown in Figure 12—
indicate that the DDA algorithm has, on average, O(n) perfor-
mance while the min/max algorithm has better than O(n) perfor-
mance for n a measure of the LOS query distance. From the figure
the performance of the min/max algorithm seems to be O(logn)
which agrees with Chamberlain et al.’s [2003] analysis of their max
algorithm.

Query Time vs. Query Length

0.00007

0.00006

0.00005

0.00004

0.00003 -

Query Time (s)

0.00002 %=

0.00001 -

0+) A v h
0 50000 100000 150000 200000 250000 300000 350000
Query Length (m)

Figure 10: LOS Query Time vs. Query Length for Real Spherical

Terrain when each query is preceded by a simple below sea level
check

Query Time vs. Query Length

0.000014
0.000012 L
N n
0.00001 AR 5, =
o o5
3 4
£ 0.000008 = FlatEarthMax
I; FlatEarthMinMax
£ 0.000006
3
<] "
0.000004 wf{ it
I s Y
0.000002 L!“ .
|

ol ‘ ‘ ‘
0 200000 400000 600000 800000
Query Length (m)

Figure 11: LOS Query Time vs. Query Length for Real Flat Terrain
when each query is preceded by a simple below sea level check

9 Conclusion and Future Work

9.1 Results Analysis and Conclusion

For spherical earth LOS, a once-per-query smooth earth LOS test
against some minimum altitude reference results in a factor of 2.55
performance increase compared to the max algorithm without such
a pre-query. Specially considering the horizon within the spher-
ical LOS algorithm therefore already creates a significant perfor-
mance enhancement. Similarly significant performance improve-
ment would be gained by extending a spherical earth DDA algo-
rithm with such a simple pre-query.

The complete min/max algorithm is responsible for a further 2.5 -
7.4 % and 35 - 62 % performance increase for flat earth and spher-
ical earth respectively, for A and B placed 1.0 - 500.0 m above the
terrain. The min/max algorithm is, in general, most valuable for
surface to surface—such as ground-to-ground or ocean-to-coast—
type LOS queries on flat and spherical earth.

The complete spherical min/max algorithm includes the adaptive
smooth earth early termination condition and exhibits a factor of
3.03 performance increase compared to the max LOS query. The
min/max algorithm was also shown to have better than O(n)—and
indeed on average O(log n)—performance for n a measure of the
LOS query distance. To demonstrate the value of O(logn): For
spherical earth the min/max algorithm did, on average, 9.603 oper-

Map Dim Min/Max Query | DDA Query Time
Time (ps) (1)

8192 5.485 64.32

4096 4.868 32.57

2048 4.386 16.86

1024 3.843 9.050

512 3.386 5.170

256 2.900 3.242

128 2.493 2.241

64 2.139 1.745

Table 1: Query Time vs. Map Dimension for Min/Max and DDA

Map Dimension vs. Query Time

60 /.

40 / ——Min/Max
30 —-=DDA

Query Time (us)

0 2000 4000 6000 8000 10000
Map Dimension (Pixels)

Figure 12: Query Time vs. Map Dimension for Min/Max and DDA

ations per-LOS-query while the non-recursive DDA did 215.0 oper-
ations per-query. For flat earth—not impeded by the horizon—the
min/max algorithm did 38.03 operations per-LOS-query while the
non-recursive DDA did a much higher 11 640 operations per-query.

At337 500 and 181 800 queries per-second for the flat and spherical
earth respectively, the min/max LOS algorithm does not quite meet
the demands of the use cases in Section 2. Reaching the 500 000 -
1 000 000 queries per-second required in the sketched use cases can
be accomplished by distributing the computational load of the syn-
thetic environment across multiple PCs as discussed by Duvenhage
and Kourie [2007; 2008]. Further research should however be done
on creating even more efficient, possibly fine-grained parallelised,
LOS algorithms as discussed below.

9.2 Future Work

It was consciously decided to investigate a CPU LOS algorithm and
not a parallelised GPU algorithm. Technological advances since
early 2003 have however ensured that GPUs are now general pur-
pose programmable. This makes the GPU a very powerful com-
puting platform for new LOS algorithms. The stream program-
ming model is ideally suited to algorithms that require a high ratio
of arithmetic intensity to communication intensity. NVidia’s new
Compute Unified Device Architecture (CUDA) technology allows
the GPU to be programmed in standard C. This allows easier migra-
tion of CPU LOS algorithms to the GPU, but it also opens the door
to new LOS algorithms tailored to the GPU’s stream programming
architecture. The value of implementing the min/max algorithm on
the GPU should be investigated to possibly further improve on the
performance.

It has further been found that, for at least these battlefield simula-
tions, a large fraction of LOS queries are spent in calculating area
coverage of sensors or such things as antennae patterns (use case 3

in Section 2). Finding an efficient solution to the area/volume LOS
query is therefore a hard, but potentially valuable problem to solve.

Acknowledgments

The author would like to acknowledge and give thanks for the
funding provided by the Armaments Corporation (ARMSCOR) of
South-Africa, the South-African DoD, the CSIR—where the LOS
algorithm was initially developed [Duvenhage and Nel 2008]—,
and the National Research Foundation without which this research
would not have been possible.

References

BANGAY, S. 1993. Parallel Implementation of a Virtual Reality
System on a Transputer Architecture. Master’s thesis, Rhodes
University, Grahamstown, South-Africa.

BENTLEY, J. L. 1975. Multidimensional binary search trees used
for associative searching. Commun. ACM 18, 9, 509-517.

BOYER, V., AND BOURDIN, J. 2000. Auto-adaptive step straight-
line algorithm. IEEE Computer Graphics and Applications 20,
5, 67-69.

BRESENHAM, J. E. 1998. Algorithm for computer control of a
digital plotter. Seminal Graphics: Poineering efforts that shaped
the field, 1-6.

CHAMBERLAIN, R., GONZALEZ, J., GUTT, G., AND TAILOR,
E. 2003. New line of sight algorithm renders superlative tins
superfluous. In Proceedings of INFORMS Annual Meeting.

DE BEAUCLAIR SEIXAS, R., MEDIANO, M., AND GATTASS, M.
1999. Efficient line-of-sight algorithms for real terrain data. In
Proceedings of SPOLM 1999.

DUVENHAGE, B., AND KOURIE, D. 2007. Migrating to a real-
time distributed parallel simulator architecture. In SCSC: Pro-
ceedings of the 2007 summer computer simulation conference,
Society for Computer Simulation International, San Diego, Cal-
ifornia, USA, 575-582.

DUVENHAGE, B., AND NEL, J. J. 2008. A line of sight algo-
rithm for a system of systems air defence simulation, DPSS-SM-
MSADS-006 Rev 3. Tech. rep., South African Council for Sci-
entific and Industrial Research.

DUVENHAGE, B. 2008. Migrating to a Real-Time Distributed
Parallel Simulator Architecture. Master’s thesis, University of
Pretoria, Pretoria, South-Africa.

FERNANDO, R., AND KILGARD, M. 2003. The Cg Tutorial: The
Definitive Guide to Programming Real-Time Graphics. Addison-
Wesley, New York, USA.

FOLEY, J., VAN DAM, A., FEINER, S., AND HUGHES, J.
1997. Computer Graphics: Principles and Practice, Second ed.
Addison-Wesley, New York, USA.

FouGHT, D., AND KULL, F. 1993. Line-of-sight determination
in real-time simulations. Tech. rep., American Institute of Aero-
nautics and Astronautics (AIAA).

FUNFzIG, C., ULLRICH, T., FELLNER, D., AND BACHELDER, E.
2007. Empirical comparison of data structures for line-of-sight
computation. In Proceedings of Intelligent Signal Processing
2007, IEEE Computer Society Press, Alcala de Henares, 291—
296.

GROSS, M., LOJEWSKI, C., BERTRAM, M., AND HAGEN, H.
2007. Fast implicit kd-trees: Accelerated isosurface ray trac-
ing and maximum intensity projection for large scalar fields. In
Proceedings of Computer Graphics and Imaging - 2007.

MLAKER, J. 2004. Aggregate Models for Target Acquisition in Ur-
ban Environments. Master’s thesis, Naval Post Graduate School,
Monterey, California, USA.

PHARR, M., AND FERNANDO, R., Eds. 2005. GPU Gems 2.
Addison-Wesley, New York, USA.

SALOMON, B., GOVINDARAJU, N., AND SUD, A. 2004. Acceler-
ating line of sight computation using graphics processing units.
In Proceedings of the 24th Army Science Conference.

VERDESCA, M., MUNRO, J., AND HOFFMAN, M. 2006. Using
graphics processor units to accelerate onesaf: A case study in
technology transition. Journal of Defence Modelling and Simu-
lation 3,3, 177-187.

