METALORGANIC VAPOUR PHASE EPITAXIAL GROWTH AND INFRARED CHARACTERISATION OF InAsSb AND InAs ON InAs SUBSTRATES

TR Baisitse^{1,2}, JR Botha² and JAA Engelbrecht²

¹CSIR-National Laser Centre, Pretoria

²Physics Department, Nelson Mandela Metropolitan University, Port Elizabeth

Motivation

- Interest exists in III-V semiconducting materials (InAs, GaSb, InSb and related alloys) for the detection of infrared radiation
- Such materials could be used as alternatives for future infrared detectors and various sensing applications
- InAsSb is ideally suited for mid-infrared applications, since its band gap spans the wavelength range from 3 to 12 µm
- It can be combined epitaxially with GaSb for backsideilluminated detectors

Experimental – MOVPE growth

Epilayers and ternary alloys were prepared by Metal Organic Vapour Phase Epitaxy (MOVPE) technique

Substrates: GaAs (for electrical measurements)
InAs (for minimal lattice-mismatch and optical characterisation)

CSIR our future through science

© CSIR 2006

Experimental - Characterisation

Layers were characterized by:

☐ Fourier Transform infrared (FTIR) reflectance spectroscopy

Computer curve fitting techniques

Hall effect measurements at 300 K

CSIR our future through science

© CSIR 2006

Simulation/Calculation of Reflectivity

Interaction of radiation with a semiconductor

$$\varepsilon$$
 = $(n + ik)^2$ = $\varepsilon' + i\varepsilon''$

$$\varepsilon = \varepsilon_{\infty} \left[1 + \frac{\omega_L^2 - \omega_T^2}{\omega_T^2 - \omega^2 - i\omega\Gamma} - \frac{\omega_P^2}{\omega(\omega - i\gamma)} \right]$$

© CSIR 2006

Where

$$\omega_P^2 = \frac{4\pi N e^2}{m^* \varepsilon_{\infty}} \qquad \qquad \gamma = \frac{e}{m^* \mu}$$

Reflectivity R of the material in terms of complex dielectric function

$$R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}$$

$$R = \left| \frac{\sqrt{\varepsilon} - 1}{\sqrt{\varepsilon} + 1} \right|^2$$

© CSIR 2006

Results and discussion – FTIR spectrum of InAs substrate

Fit to the spectrum of InAs substrate yields :

- carrier concentration
 - 1.0 x 10¹⁸ cm⁻³
- carrier mobility
 - 2.3 x 10⁴ cm² V⁻¹ s⁻¹

Results and discussion – Hall measurements

Hall carrier concentration and mobility obtained from InAs substrate (300K)

 $n = 2.0 \times 10^{18} \text{ cm}^{-3}$

 $\mu = 0.9 \text{ x } 10^4 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$

Hall carrier concentration ~ twice the optical value

Hall mobility ~ half the optical value

CSIR our future through science

© CSIR 2006

Results and discussion – FTIR spectra of InAs layer on InAs substrate

- Simulation yields for layer $n = 3.1 \times 10^{15} \text{ cm}^{-3}$ $\mu = 2.9 \times 10^4 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ thickness 2.6 µm
 - For substrate $n = 1.0 \times 10^{18} \text{ cm}^{-3}$

 $\mu = 2.7 \text{ x } 10^4 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$

Resonance plasma frequency of InAs layer on InAs substrate

Results and discussion – FTIR spectra of InAsSb layer on InAs substrate

- Simulation yields for layer $n = 1.9 \times 10^{15} \text{ cm}^{-3}$ $\mu = 7.1 \times 10^4 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ thickness 3.4 µm
- For substrate
 - n = 1.0 x 10¹⁸ cm⁻³
 - $\mu = 2.0 \text{ x } 10^4 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$

Results and discussion – comparison of optical and electrical data

Sample	Simulation		Measured/Expected	
	n(cm ⁻³)	µ(cm² V ⁻¹ s ⁻¹)	n(cm⁻³)	µ(cm² V ⁻¹ s ⁻¹)
InAs sub	1.0 x 10 ¹⁸	2.3 x 10 ⁴	2.0 x 10 ¹⁸	0.9 x 10 ⁴
(InAs/InAs)				
Layer	3.1 x 10 ¹⁵	2.9 x 10 ⁴	**1.7 x 10 ¹⁵	** 2.1 x 10 ⁴
	! 4.4 x 10 ¹⁵			
Substrate	1.0 x 10 ¹⁸	2.7 x 10 ⁴	2.0 x 10 ¹⁸	0.9 x 10 ⁴
(InAsSb/InAs)				
Layer	1.9 x 10 ¹⁵	7.2 x 10 ⁴	**9.7 x 10 ¹⁵	** 2.1 x 10 ⁴
Substrate	1.0 x 10 ¹⁸	2.0 x 10 ⁴	2.0 x 10 ¹⁸	0.9 x 10 ⁴
	! From direct measurement of ω_P		** Simulation of magnetic field- dependent Hall measurements on similar layers	
Nelson Mandela Metropolitan University				SR

for tomorrow

www.csir.co.za

our future through science

Conclusion

Reasonable correlation between optical and electrical results

- Differences between carrier concentrations for substrate within supplier specifications
- Differences in mobility will depend on mechanisms of carrier scattering

For polycrystalline material [Journal of Electronic Materials, Vol. 35, No.4, 2006]

- Electrically scattering in bulk and at grain boundaries
- Optically bulk scattering only, since electrons displaced over a short distance

Present films are **single crystalline**, however \rightarrow discrepancies need

further investigation

© CSIR 2006

Acknowledgments

I would like to acknowledge NRF and National Laser Centre for financial support

I am also thankful to Dr. A. Forbes, Mr. G Katumba for their support, and useful discussions with / input from L Botha and P Shamba

© CSIR 2006