Open middleware for robotics

Molaletsa NamosHe N S Tlalé, C M Kumilé, G. Bright

'Department of Material Science and Manufacturin§IF& Pretoria, South Africa,

mnamoshe@csir.co.zatlale@csir.co.za

’Department of Mechanical Engineering, Tshwane Usityeof Technology, Pretoria, South Africa

kumilecm@tut.ac.za

3Department of Mechanical Engineering, UniversityKefaZulu-Natal, Durban, South Africa

brightg@ukzn.ac.za

Abstract-Despite advances in recent years, autonomous multi-
robot systems remain classed as complex systems,cédgse
control and coordination of these systems remain ahallenging
task. Autonomous mobile robot houses heterogeneoisets of
connected modular devices and are expected to comnicate
both synchronously and asynchronously. Robot comptéies
make the development of components for robot applations non-
trivial and failure prone exercise. In trying to find a solution to
the problem efficient modular interaction, robot sdtware
“Middleware” emerged. Middleware is software layer that
provides an infrastructure for integration of applications and
data in distributed systems domain.

This article discusses freely available middlewardor robotics

and their technologies within the field of multi-robot systems to
ease the difficulty of realizing robot applications And lastly, an
example of algorithm development for multi-robot ceoperation

using one of the discussed software architecture [sesented.

Keywords — autonomous mobile robot, middleware, resability,
software architecture, robot application

I. INTRODUCTION

Despite considerable gains in mobile robotics icent
years, control and coordination of autonomous mudtot
system remains a challenge. The difficulty in radesystem
stems due to the following attributes: (i) Rapidacbe in
sensors, actuators and computer technologies ¢teiadreased
investigation into new robot capabilities, e.g. nesnsor and
actuator systems imply that sophisticated signalcgssing
algorithms are possible (ii))Robotic systems areeightly
distributed, i.e. sensors and actuators are dig#ib over
interconnected subsystems, and in multi-robot systbe
distribution scales up , (iii) Components or Preessneed to
interact in an efficient way, (vi) Autonomous rob®gstem
requires its sensing, action and processing aliityvork in
accord and (v) autonomous systems incorporataisieeof

algorithms such SLAM, Obstacle Avoidance, Navigatio

primitives, Vision processing algorithms just tonm&a a few.
These algorithms are angled towards solving proliarad by
a robot operating in a physical environment, i.eroaot
capable of sophisticated decision-making as sisgitem or
in a team working to accomplish a task. The timd aork

required to come up with such a robot system istequi
enormous. A robot programmer needs to be well méat in a
number of engineering fields. Robotics domain cewarious
fields like signal processing, computer sciencegsiof,
Electrical, artificial intelligence. This is notvedhys possible,
and leads to a scenario where individuals and tut&tns
around the world concentrate on specific topicodfat system,
and present their results and move to the nexeptoj

The current trend in robotics research is workimghange
all that by the use of open robotic softwavkddleware This
is connectivity software that consists of a seteofbling
services that allow multiple modular processes (mhexl
components) running on board a robot or off boarthteract
across a network [1]. The software is a platfornr fo
componentsreuse, i.e. reusability of modules accepted as
solved problem in robotics e.g. Extended Kalmaed. This
‘plug and play’ concept will open up new area irbatics
where new standard need to be met by research.

Integrating this modules into one system is noteasy
matter though, because these components are dedelop
individually and have different network technolagjibut need
to communicate both asynchronous and synchronously.
Middleware manages the iteration between robotidutes
by abstract interfaces and transparent communitatio
protocols to processes computing off board. Thigwsoe
allows programmers to concentrate on building stjfzited
and smarter modular components and incorporatee thte
the system without upsetting the existing moduldss will
lead to increased robot intelligence or multi robggtem able
to perform complex tasks.

The rest of the paper is structured as follows.tiGecl|
covers related work, i.e. looking at other roboftwgare in
robotic with similar attributes to middleware dissed in
section Ill. Section IV discusses the advantagassiofg robot
software. Section V discusses the criteria usedhoose
appropriate software. Section VI shows simulati@suits,
followed by conclusion and future work in section 7
Acknowledgement and reference are in section 8 @nd
respectively.

Il. RELATED WORK

TABLE |
ROBOT SOFTWARECLASS
Middleware Discussed
Player v
Orca y
Miro v
OpenRDK X
Marie v
Smartsoft X
Orocos v
Control architecture
ADE X
MCA x
ADE x
Development
Toolkit
TCA (IPC & TDL)
X
CARMEN \
YARP J

There are many robotic middleware, control architess
and development tool kits in use toady. Table Ivabshows
freely available robotic software and classes theoording to
their distinct categories. The ticks indicate tlsaftware is
briefly discussed in this article.

We are looking at open robotic middleware capalie o

implementing multi mobile robot system. This coasit
eliminates Orocos middleware [2]. The Orocos projas
developed specifically for industrial robots astfoan for
building modular framework for robots and machimatcol.
The middleware is organized in to four librariesthie real-
time toolkit (RTT), ii. Kinematic and Dynamics lidmy (KDL),
iii. The Bayesian Filtering library (BFL), iv. Oros
Component library (OCL). These libraries are impbaed in
C++.

Another important toolkit is CARMEN [3], it is onef the
most extensively used software in robotic resealtcbffers
distributed collection of modules organized as ¢hla@yered

architecture. The hardware management layer/ bager |

govern components interaction and control as waell
presenting abstract interfaces to base and senstenss.
Navigation primitives are handled by the Navigatiayer
while the top layer is for high level task implenteion.

Modules communicate with each other over IPC (inter

process communication) protocol. This tool did natke the
cut because it tailored for single robot systems.

Humanoid robot uses YARP (Yet Another Robot Platfipr
is a multi-platform open-source framework that sanpp
distributed computation. The main design focus nisrobot
control and efficiency [4]. It provides a set obfwmcols and a
C++ implementation for inter-process communicatimm a
local network.

lll. WHY oPENMIDLEWARE?

Developing a middleware from scratch is an enormask,
because of the level of expertise required to comevith a
flexible robotic software system. Therefore, a #aas
alternative is to adopt one of the already existimgen
middleware for building robot applications. Makiogoice of
which to use can be influenced by a number of factand
these include things like robot software and exgstiardware
compatibility issues. Which languages are supp@rtéchat
communication mechanism(s) are used? Are exis&mg@s
and actuators supported? Is the software extereldtdse of
use, how easy is it to use and understand? Is thew
implementation possible? What types of modules ban
implemented using the middleware? etc.

Robot systems are too complex for one person til laund
maintain software and hardware, therefore modules o
components need to be modular. Modularity in ratoti
describes the loose tightness of coupling betweemponents,
and hence has the following advantages

» Extendghbility- Addition of newly developed or
modification of components need not interfere with
the existing processes

* Rdiability- self contained components fail safe - if
one module fail the rest of the system is spared.

 Network support- Some system need high
computational power to process a task, therefore a
more logical thing is to distribute the load usioff
board computers, i.e. distributed computing.

* Maintainability — components are easy to improve
because the changes do not affect the rest of the
system.

IV. OPEN ROBOTIC FRAMEWORKS

A. Miro

Miro application

Miro Service Layer

Miro Device Layer

os

Figure 1. Miro architecture.

Miro [5] is an open, object-oriented robotic franmw C. Orca
consisting of three layers as shown in figure lvabdt has an Orca [8] is an open source framework (not architextfor
underlying middleware called CORBA. CORBA standardsdeveloping components based robotic systems. Coemp®n
allow for inter-process and cross-platform commatioan, here are stand-alone process interacting with other
thereby facilitating for distributed control arattures. components using clearly-defined interfaces. Then&work

CORBA [11] has two main layers: ACE (Adaptive does not impose any architectural constraints a@n rtibot
Communication Environment) and TAO (The ACE ORB).system. Orca is now on the second generation,dcéliea 2
The ACE layer is linked to Miro Device layer to pide and is hosted by SourceForge [9]. The differencth whe
abstract interfaces to specific sensors and aggiafoa robot. earlier version is the communication middleware e Thst
While the TAO CORBA and Miro Service Layer combinat version used several transport mechanism like CORBA
provides service abstraction to hardware devicesGORBA some custom made communication libraries. Thesee wer
IDL (Interface Description Language). The thirgdais the ditched due to CORBA middleware complexity and some
Class Framework which houses numerous robot contrdimitations presented by custom transport mechanigire
functional modules like mapping, localizer, Plannend current version usesce (Internet Communication Engine)
logging. All core functionalities are coded in Cand hence [10], [11]. It is a contract-based middleware saniln many
achieve high runtime efficiency. respects to CORBA middleware. CORBA uses IDL for
B. Marie Interface implementation, while Ice relies on a ikEm

Marie [12] is a framework for integrating existimgbotic specification language calleslice The language is used to
components. The software offer decentralized irtidgn define communication contracts (interfaces) between
management, and advocates for the ideas of cods reli components at runtime, i.e. an explicit descriptidrservices
components from other developers, as well as iategy to be provided by other components to others. tceponents
locally developed applications. can communicate with each other regardless ofdhguage
In order to handle distinct components developedf implementation. Supported languages include PEHP:,
independently, Marie follows a three layers absibac Python, Java, C# etc.
approach.
» Core layer- consists of tools for communicationatad

handling, and OS related issues Player project [12], [13] is an open source sofewaroject
+ Component layer — It is also a management layer anthilored for robotic research. It provides an isfracture for
built on top of the Core layer, consists of framelgo distributed access to a number of popular roboticdWvare

D. Player

used to implement new components. devices. Player run on many UNIX-like platforms,dais
e Application layer —Is made up of necessary intévact released as Free Software under the GNU GenerdicPub
tools to build applications using available compuse License. The software is implemented in C++ and (@SIX

Marie architecturally adopts Mediator Design PattgDP) threads or pthread interface for multi-threading.
depicted by figure 2 below. This is a centralizemteol unit
which handles the arbitration between applicaticersd
interacts with these modules on direct basis. Conication
protocols/ data management is decouples form coergsn
functionalities, implying that specialized compotseran be —

c
design irrespective of how data is sent or received - ;
“
App E g %
0 o |0
Prodessin: Procsssing X . S L
y 9\ o N $ % :“0‘“/
SIS ; : .
Aop S . ; 2 :
L]
a |6 . s 1
8 |3 : : :
8 |g 5 B -
212 o : :
pédiator| : :
| / N\ \ ﬁ }/mm :
/ Ao H o
)/ \ s $.
Ve 3 3)Q%de |
Aop e N Vices
Dmﬁg b E’O::::lng
Node
App 7

. . . __ Fi 3.PI devi
Figure. 2. Mediator design pattern for distribusgdtem gure ayer device server

Figure 3 above depicts the internal structure cfyet.
When a client wishes to access a specific deviamnamand
is sent to the command buffer. The command ‘sititing for
the driver to read it form command buffer beforaasget
device can be manipulated. In a similar vein, daten a
device is written to a data buffer, where it wdits read
command from a client thread. The client can runaon
onboard computer or
connectivity to the robot running player, i.e. disited
computing. Drivers have their own thread of exemutand
associated command and data buffer to channeliafibon.

Player supports two kinds of communication mechmanis
which are client- server communication and DevieaAbe
communication. Inter-device communication is pdssib
within a player server or between servers by plassigh
device. Inter-client communication is possible lius left to
the programmer to figure it out.

V. CHOOSING A SUITABLE MIDDLEWARE

The choice of middleware to use in our robot systeas
influenced by factors mentioned in section 3. Cdesng this
issues, Miro, Orca and Player jumps out of thedstone of
the possible software to consider. Selecting wisicfiware
best suit our need, we needed to look at the rpladforms
already in our lab. We have a couple of ER1 rofib4$ from
Evolution robotics, Robotino robot [15] from Festmd about
two in house developed robots. Given these rolafgoms,
Player make a sensible choice because it is pertabboth
ER1 and Robotino robots, reducing the time needgubit the
software.

As shown the table Miro uses CORBA for transport
mechanism while Player and Orca rely on client/seand
ICE model respectively.

CORBA is one of the most widely used communication
software in robotics because it offers flexibleeirtnodule and
inter-robot communication. The main drawback witBRBA
is that it is large and complex software. The camippy

any computer that has networlssociated with this communication middleware v‘@daone

of the criteria mentioned in section 3 which iseead use.
Though, CORBA and Miro middleware combination se¢ms
form a very stable system.

ICE is a modern implementation software similar gnan
respects to CORBA. The difference being that ICR much
smaller and has consistent API. Communication task€E
are managed by a core library using a protocollihatoptions
for compressing messages. Compressed data stréamnfacst
data transmission than uncompressed one. Furtherthere
is also support for UDP (User Datagram Protocolj acP
(Transmission Control Protocol). ICE can be implated in a
number of operating system flavors namely Linuxnddiws,
and MacOS X.

Player on the other hand uses client/server coneatian
model. In this model, threads communicate throulgared
memory space. The space organized such that eaile deas
a specific command and a data buffer. These buffersent
an infrastructure for asynchronous communicatiomnciel
between the read/write client threads and the detliceads
(drivers). When a client wishes to control a devikeough
player, the following sequence is followed; firdient reader
thread receives a command from a client, then itesrthe

Table 2 below shows a comparison between open iobotcommand into the command buffer for that speciiwide.

middleware discussed in this article.
TABLE Il

SUMMARY OF OPEN ROBOTIC FRAMEWORKS

Middle- Arbitration Components Additional
ware Model information Tools
sharing
Player Threads, Client/ Logging,
process server Remote
inspection
Orocos Call backs, CORBA Stage &
threads Gazebo
simulators
Carmen Processes IPC Visualizatign,
logging
Marie Processes Handles configuration
many GUI
Orca Processes ICE Logging,
remote
inspection
Miro Processes CORBA Logging
Yarp Processes, Client, server logging
Threads

The command will ‘sit’ in the command buffer urgildevice
thread is ready to receive new command. The drikien

reads the command from the command buffer and péisse
the target device. Data from devices follows a improcess
but in this instant a device thread writes it ideta buffer in
the shared Global address space. This data iscselents by
default at 10Hz but a programmer can changes ttieg¢o

meet the demands of clients.

Players’ applications information sharing is nottimal
because of the ‘sitting’ of data/ command in thé&drs. The
server also does not implement device logging nmshg
implying that multiple clients can concurrently teri
commands to a single command buffer. Since theraois
queuing of commands, each time a device threadadyrto
read it ‘picks’ what it finds in the command bufferespective
of whether its old or new command. This presents a
disadvantage since there is no guarantee that anaach will
reach target device since new command overwritebs
command.

Looking at the concurrency models of the three &arks
one can conclude that ICE offers a better interutedr
inter-robot communication protocol. Orca thoughs Haw
readily developed robotic components and hardwaré a
sensor support. Due to this lack, Orca is not setedPlayer

ol

then takes the nod because it supports a wide tyadake
sensors, actuators and robot platforms availabtbénmarket
today. It is actively developed by both the pubhad
developers, creating a good platform for componeeatse.
Player project in addition has got two simulatiools called

Stage and Gazebo which are 2D and 3D environments 401 8

respectively.
VI. PLAYER/ STAGE SIMMULATION RESULTS

The paper present simulation results of an ongpimgect
in multi-robot system. In the project a handful mbots
explore the environment for hidden target. Contfalobots in
the system is achieved through the use of peraepiition
units, or behaviors. Each behavior is activatededdmg on
feedback information from carefully selected sensadings
or message from a team member.
ObstacleAvoidance GoalsearchMode,
TargetHomingMode, Mapbuilding,
pathplanning, and Pathfollowingre usedGoalsearchMode
mode has two other sub moddsijtializer and Gobbler.

Initializer mode requires ahlobots in a team to giveaway their

position and communication channel to other rokintshe

environment.Gobbler mode is used when robots are initially

close knit, and it causes robots to spread quiekdy from

each other before normal search begins.

Figure 4 below shows three robots exploring andrenment
in a search mode. The robots in the simulation anle to

locate a target (green square) but other behawoch as
communication and map building are not yet optinfdie

path taken by a robot whefargetHomingModeés entered is
currently implemented in MATLAB. A point of interess

tracked using a camera keeping it in view all iheet Range
and bearing to the goal are evaluated and apptepsizeeds
are calculated to enable the robot stop at targsitipn. The
speed is proportional to range and it reduces ago# is

reached. Figure 5 shows a trajectory followed bgteot from

an initial position to a target position.

Zlock tielp

NI
/]

| |
£ \\ \\ m»i |
§
\
\ o
\ 4
\ b
§

SN

]

Figure 4. Three robots in GoalsearchMode

Behaviors such as
GoalFoundMode,
CommunicationMode,

trajectory follwing
80 T T T

60+ Goal ,

y(em)

201 '..n i

0
401 yeeeesere®” 1
Initial-position

-80 I I I I I ! !
-80 -60 -40 -20 0 20 40 60 80

x(cm)

Figure 5. Trajectory following

change in bearing angle to the Goal
1 T T T T T

0
0 50 100 150 200 250 300 350 400 450 500

iterations

Figure 6 shows bearing angle to the goal

Figure 6 above shows how the bearing to the tatgatges
as the robot moves towards a goal position. Ihytiakaring is
around 0.68 radians but as the robot moves paral¢he
target for a few seconds it sharply increases tovab0.9
radians. Then the robot start turning towards thel gosition
indicated in the figure by decline in bearing whirentually
settles to zero, when robot and target are aligned.

VII. CONCLUSION& FUTURE WORK

(2]

The paper briefly described a number of open source
[3

robotic framework comparing their concurrency moded
their information sharing methods. ICE middlewareers
attractive for implementing interfaces for compasetut
Orca system supports a few sensory and actuatongese
This constraint means time lost in actually buitdinew
components for robots used, than actually codiggrahms
for robot application. Player uses client serveodei to
access and control a number of popular robot bdtsemain
drawback is the latency issues because commands Hieir
respective buffers waiting to be read. Having shat though,
Player is easy to use and the client side can pteimented in
any language with socket support.

The project was undertaken with no prior knowledide

how player work, hence some modules are still lagdiehind
in terms of implementation. The next step is to etdules
mentioned in section four to function together bgring the
right information to accomplish the cooperativershdask.

VIII.
The author would like to thank the MMM robotic gpotor

their questions and additions. This work was fidlypported
by Council for Scientific and Industrial Resear@85(R).

ACKNOWLEDGMENT

IX. REFERENCES

[1] D. Krager, I. Lil, N. Stinderhauf, R. Baumgarfd, Protzel, “Using and

Extending the Miro Middleware for Autonomous RohbdtSowards
Autonomous Robotic Systems (TAROS), Guildford, $egier 2006.

[4]

(5]

(6]

H. Bruyninckx. “Open robot control software etfOROCOS proje¢tin
|IEEE International Conference on Robotics and Awttoom (ICRA'01),
vol. 3, pp 2523-2528, 2001. [Online: http: //wwvacos.org].

M. Montemerlo, N. Roy, and S. Thrun. Pergpes on standardization
in mobile robot programming: The Carnediellon navigation
(CARMEN) toolkit. In IEEE/RSJ International Confeie on
Intelligent Robots and Systems, pp. 2436-2441, 20D8line: http://
carmen.sf.ngt

G. Metta, P. Fitzpatrick, and L. Natale. “YARRet another robot
platform,” International Journal on Advanced Robotics Systems
vol. 3, No. 1, pp. 43-48, 2006. [Online: http:/fyéusf.net].

Utz, H., Sablatnég, S., Enderle, S., Kraetmsah G., “Miro —
Middleware for Mobile Robot Applications”, vol. 1&o. 4, pp. 493-
497, |EEE Transactions on Robotics and Automatiarg 2002.
Vinoski, S. “CORBA: integrating diverse appligans within distributed
heterogeneous environments,” IEEE Communicatiohs3% No. 2, pp
46-55, Feb 1997.

[7] C. Cote, D. Letourneau, F. Michaud, and Y. &m®au, “Robotic Software

(8]

[9]
[10]

Integration Using MARIE,” International Journal &flvanced Robotic
Systems, vol. 3, No. 1, pp 55-60, March 2006[Online
http://marie.sf.nét

G. Brooks, A., Kaupp, T., Makarenko, A., Orekad., and Williams, S.
“Towards component-based robotics,” In Proceedofgéhe IEEE/RSJ
International Conference on Intelligent Robots 8ydtems, April 2005.
Orca Project. Orcahttp://orca-robotics.sf.net
ZeroC,Inc. Ice performance,
http://zeroc.com/performanke

2005. [Online:

[11] M. Henning and M. Spruiell. “Distributed Pr@gnming with Ice”. 2006.

(12]

(13]

[14]
[15]

Gerkey. B, Vaughan. R, & Howard. A, “The Plajgiage project: Tools
for multi-robot and distributed sensor systenis’,Proceedings of the
11th international conference on advanced robetipp. 317-323.
Coimbra, Portugal, 2003.

I. T.HJ. Collett, B.A. MacDonald, and B.P. i®ey, “Player 2.0:
Toward a practical robot programming framework”. Australasian
Conference on Robotics and Automation (ACRA’05)c@mber 2005.
[Online: http:// playerstage.sf.riet
http://www.evolution.com/erljaccessed 29-08-2008].
http://www.festo-didactic.com/int-en/learning-systnew-robotino/
[accessed 23-08-2008].

