
Open middleware for robotics

Molaletsa Namoshe1*, N S Tlale1, C M Kumile2, G. Bright3

1Department of Material Science and Manufacturing, CSIR, Pretoria, South Africa,

mnamoshe@csir.co.za, ntlale@csir.co.za
2Department of Mechanical Engineering, Tshwane University of Technology, Pretoria, South Africa

 kumilecm@tut.ac.za
3Department of Mechanical Engineering, University of KwaZulu-Natal, Durban, South Africa

brightg@ukzn.ac.za

Abstract-Despite advances in recent years, autonomous multi-

robot systems remain classed as complex systems, because
control and coordination of these systems remain a challenging
task. Autonomous mobile robot houses heterogeneous sets of
connected modular devices and are expected to communicate
both synchronously and asynchronously. Robot complexities
make the development of components for robot applications non-
trivial and failure prone exercise. In trying to find a solution to
the problem efficient modular interaction, robot software
“Middleware” emerged. Middleware is software layer that
provides an infrastructure for integration of applications and
data in distributed systems domain.

This article discusses freely available middleware for robotics
and their technologies within the field of multi-robot systems to
ease the difficulty of realizing robot applications. And lastly, an
example of algorithm development for multi-robot co-operation
using one of the discussed software architecture is presented.

Keywords – autonomous mobile robot, middleware, reusability,
software architecture, robot application

I. INTRODUCTION

Despite considerable gains in mobile robotics in recent
years, control and coordination of autonomous multi robot
system remains a challenge. The difficulty in robotics system
stems due to the following attributes: (i) Rapid change in
sensors, actuators and computer technologies lead to increased
investigation into new robot capabilities, e.g. new sensor and
actuator systems imply that sophisticated signal processing
algorithms are possible (ii)Robotic systems are inherently
distributed, i.e. sensors and actuators are distributed over
interconnected subsystems, and in multi-robot system the
distribution scales up , (iii) Components or Processes need to
interact in an efficient way, (vi) Autonomous robot system
requires its sensing, action and processing ability to work in
accord and (v) autonomous systems incorporate the use of
algorithms such SLAM, Obstacle Avoidance, Navigation
primitives, Vision processing algorithms just to name a few.
These algorithms are angled towards solving problem faced by
a robot operating in a physical environment, i.e. a robot
capable of sophisticated decision-making as single system or
in a team working to accomplish a task. The time and work

required to come up with such a robot system is quite
enormous. A robot programmer needs to be well informed in a
number of engineering fields. Robotics domain covers various
fields like signal processing, computer science, Vision,
Electrical, artificial intelligence. This is not always possible,
and leads to a scenario where individuals and institutions
around the world concentrate on specific topic of robot system,
and present their results and move to the next project.

 The current trend in robotics research is working to change
all that by the use of open robotic software/ Middleware. This
is connectivity software that consists of a set of enabling
services that allow multiple modular processes (modules/
components) running on board a robot or off board to interact
across a network [1]. The software is a platform for
components reuse, i.e. reusability of modules accepted as
solved problem in robotics e.g. Extended Kalman filters. This
‘plug and play’ concept will open up new area in robotics
where new standard need to be met by research.

Integrating this modules into one system is not an easy
matter though, because these components are developed
individually and have different network technologies, but need
to communicate both asynchronous and synchronously.
Middleware manages the iteration between robotic modules
by abstract interfaces and transparent communication
protocols to processes computing off board. The software
allows programmers to concentrate on building sophisticated
and smarter modular components and incorporate these into
the system without upsetting the existing modules. This will
lead to increased robot intelligence or multi robot system able
to perform complex tasks.

The rest of the paper is structured as follows. Section II
covers related work, i.e. looking at other robot software in
robotic with similar attributes to middleware discussed in
section III. Section IV discusses the advantages of using robot
software. Section V discusses the criteria used to choose
appropriate software. Section VI shows simulation results,
followed by conclusion and future work in section 7.
Acknowledgement and reference are in section 8 and 9
respectively.

II. RELATED WORK

TABLE I

ROBOT SOFTWARE CLASS

 Middleware Discussed

Player √

Orca √

Miro √

OpenRDK ×

Marie √

Smartsoft ×

Orocos √
Control architecture

 ADE ×

 MCA ×

 ADE ×

Development

Toolkit

TCA (IPC & TDL)

×

CARMEN √

YARP √

There are many robotic middleware, control architectures
and development tool kits in use toady. Table I above shows
freely available robotic software and classes them according to
their distinct categories. The ticks indicate that software is
briefly discussed in this article.

We are looking at open robotic middleware capable of
implementing multi mobile robot system. This constraint
eliminates Orocos middleware [2]. The Orocos project was
developed specifically for industrial robots as platform for
building modular framework for robots and machine control.
The middleware is organized in to four libraries- i. the real-
time toolkit (RTT), ii. Kinematic and Dynamics library (KDL),
iii. The Bayesian Filtering library (BFL), iv. Orocos
Component library (OCL). These libraries are implemented in
C++.

Another important toolkit is CARMEN [3], it is one of the
most extensively used software in robotic research. It offers
distributed collection of modules organized as three layered
architecture. The hardware management layer/ base layer
govern components interaction and control as well as
presenting abstract interfaces to base and sensor systems.
Navigation primitives are handled by the Navigation layer
while the top layer is for high level task implementation.
Modules communicate with each other over IPC (Inter-
process communication) protocol. This tool did not make the
cut because it tailored for single robot systems.

Humanoid robot uses YARP (Yet Another Robot Platform),
is a multi-platform open-source framework that supports
distributed computation. The main design focus is on robot
control and efficiency [4]. It provides a set of protocols and a
C++ implementation for inter-process communication on a
local network.

III. WHY OPEN MIDLEWARE?

Developing a middleware from scratch is an enormous task,
because of the level of expertise required to come up with a
flexible robotic software system. Therefore, a sensible
alternative is to adopt one of the already existing open
middleware for building robot applications. Making choice of
which to use can be influenced by a number of factors. And
these include things like robot software and existing hardware
compatibility issues. Which languages are supported? What
communication mechanism(s) are used? Are existing sensors
and actuators supported? Is the software extendable? Ease of
use, how easy is it to use and understand? Is real time
implementation possible? What types of modules can be
implemented using the middleware? etc.

Robot systems are too complex for one person to build and
maintain software and hardware, therefore modules or
components need to be modular. Modularity in robotics
describes the loose tightness of coupling between components,
and hence has the following advantages

• Extensibility- Addition of newly developed or
modification of components need not interfere with
the existing processes.

• Reliability- self contained components fail safe - if
one module fail the rest of the system is spared.

• Network support- Some system need high
computational power to process a task, therefore a
more logical thing is to distribute the load using off
board computers, i.e. distributed computing.

• Maintainability – components are easy to improve
because the changes do not affect the rest of the
system.

IV. OPEN ROBOTIC FRAMEWORKS

A. Miro

Figure 1. Miro architecture.

Miro [5] is an open, object-oriented robotic framework
consisting of three layers as shown in figure 1 above. It has an
underlying middleware called CORBA. CORBA standards
allow for inter-process and cross-platform communication,
thereby facilitating for distributed control architectures.

CORBA [11] has two main layers: ACE (Adaptive
Communication Environment) and TAO (The ACE ORB).
The ACE layer is linked to Miro Device layer to provide
abstract interfaces to specific sensors and actuators of a robot.
While the TAO CORBA and Miro Service Layer combination
provides service abstraction to hardware devices via CORBA
IDL (Interface Description Language). The third layer is the
Class Framework which houses numerous robot control
functional modules like mapping, localizer, Planner, and
logging. All core functionalities are coded in C++ and hence
achieve high runtime efficiency.
B. Marie

Marie [12] is a framework for integrating existing robotic
components. The software offer decentralized integration
management, and advocates for the ideas of code reuse of
components from other developers, as well as integrating
locally developed applications.
In order to handle distinct components developed
independently, Marie follows a three layers abstraction
approach.
• Core layer- consists of tools for communications, data

handling, and OS related issues
• Component layer – It is also a management layer and

built on top of the Core layer, consists of frameworks
used to implement new components.

• Application layer –Is made up of necessary interaction
tools to build applications using available components.

Marie architecturally adopts Mediator Design Pattern (MDP)
depicted by figure 2 below. This is a centralized control unit
which handles the arbitration between applications and
interacts with these modules on direct basis. Communication
protocols/ data management is decouples form components
functionalities, implying that specialized components can be
design irrespective of how data is sent or received.

Figure. 2. Mediator design pattern for distributed system

C. Orca
Orca [8] is an open source framework (not architecture) for

developing components based robotic systems. Components
here are stand-alone process interacting with other
components using clearly-defined interfaces. The framework
does not impose any architectural constraints on the robot
system. Orca is now on the second generation, called Orca 2
and is hosted by SourceForge [9]. The difference with the
earlier version is the communication middleware. The first
version used several transport mechanism like CORBA and
some custom made communication libraries. These were
ditched due to CORBA middleware complexity and some
limitations presented by custom transport mechanism. The
current version uses Ice (Internet Communication Engine)
[10], [11]. It is a contract-based middleware similar in many
respects to CORBA middleware. CORBA uses IDL for
Interface implementation, while Ice relies on a similar
specification language called Slice. The language is used to
define communication contracts (interfaces) between
components at runtime, i.e. an explicit description of services
to be provided by other components to others. Ice components
can communicate with each other regardless of the language
of implementation. Supported languages include PHP, C++,
Python, Java, C# etc.

D. Player

Player project [12], [13] is an open source software project
tailored for robotic research. It provides an infrastructure for
distributed access to a number of popular robotic hardware
devices. Player run on many UNIX-like platforms, and is
released as Free Software under the GNU General Public
License. The software is implemented in C++ and uses POSIX
threads or pthread interface for multi-threading.

Figure 3. Player device server

Figure 3 above depicts the internal structure of player.
When a client wishes to access a specific device, a command
is sent to the command buffer. The command ‘sit’ waiting for
the driver to read it form command buffer before a target
device can be manipulated. In a similar vein, data from a
device is written to a data buffer, where it waits for read
command from a client thread. The client can run on an
onboard computer or any computer that has network
connectivity to the robot running player, i.e. distributed
computing. Drivers have their own thread of execution and
associated command and data buffer to channel information.

Player supports two kinds of communication mechanism,
which are client- server communication and Device-Device
communication. Inter-device communication is possible
within a player server or between servers by pass-through
device. Inter-client communication is possible but it is left to
the programmer to figure it out.

V. CHOOSING A SUITABLE MIDDLEWARE

The choice of middleware to use in our robot system was
influenced by factors mentioned in section 3. Considering this
issues, Miro, Orca and Player jumps out of the list as one of
the possible software to consider. Selecting which software
best suit our need, we needed to look at the robot platforms
already in our lab. We have a couple of ER1 robots [14] from
Evolution robotics, Robotino robot [15] from Festo, and about
two in house developed robots. Given these robot platforms,
Player make a sensible choice because it is portable to both
ER1 and Robotino robots, reducing the time needed to port the
software.

Table 2 below shows a comparison between open robotic
middleware discussed in this article.

TABLE II

SUMMARY OF OPEN ROBOTIC FRAMEWORKS

Middle-

ware

Arbitration

Model

Components

information

sharing

Additional

Tools

Player Threads,

process

Client/

server

Logging,

Remote

inspection

Orocos Call backs,

threads

CORBA Stage &

Gazebo

simulators

Carmen Processes IPC Visualization,

logging

Marie Processes Handles

many

configuration

GUI

Orca Processes ICE Logging,

remote

inspection

Miro Processes CORBA Logging

Yarp Processes,

Threads

Client, server logging

As shown the table Miro uses CORBA for transport
mechanism while Player and Orca rely on client/server and
ICE model respectively.

CORBA is one of the most widely used communication
software in robotics because it offers flexible inter-module and
inter-robot communication. The main drawback with CORBA
is that it is large and complex software. The complexity
associated with this communication middleware violates one
of the criteria mentioned in section 3 which is ease of use.
Though, CORBA and Miro middleware combination seems to
form a very stable system.

ICE is a modern implementation software similar many
respects to CORBA. The difference being that ICE is a much
smaller and has consistent API. Communication tasks in ICE
are managed by a core library using a protocol that has options
for compressing messages. Compressed data stream offer fast
data transmission than uncompressed one. Furthermore there
is also support for UDP (User Datagram Protocol) and TCP
(Transmission Control Protocol). ICE can be implemented in a
number of operating system flavors namely Linux, Windows,
and MacOS X.

Player on the other hand uses client/server communication
model. In this model, threads communicate through shared
memory space. The space organized such that each device has
a specific command and a data buffer. These buffers present
an infrastructure for asynchronous communication channel
between the read/write client threads and the device threads
(drivers). When a client wishes to control a device through
player, the following sequence is followed; first client reader
thread receives a command from a client, then it writes the
command into the command buffer for that specific device.
The command will ‘sit’ in the command buffer until a device
thread is ready to receive new command. The driver then
reads the command from the command buffer and passes it to
the target device. Data from devices follows a similar process
but in this instant a device thread writes it into data buffer in
the shared Global address space. This data is sent to clients by
default at 10Hz but a programmer can changes the setting to
meet the demands of clients.

Players’ applications information sharing is not optimal
because of the ‘sitting’ of data/ command in the buffers. The
server also does not implement device logging mechanism,
implying that multiple clients can concurrently write
commands to a single command buffer. Since there is no
queuing of commands, each time a device thread is ready to
read it ‘picks’ what it finds in the command buffer irrespective
of whether its old or new command. This presents a
disadvantage since there is no guarantee that a command will
reach target device since new command overwrites old
command.

Looking at the concurrency models of the three frameworks
one can conclude that ICE offers a better inter-module or
inter-robot communication protocol. Orca though, has few
readily developed robotic components and hardware and
sensor support. Due to this lack, Orca is not selected. Player

then takes the nod because it supports a wide variety of
sensors, actuators and robot platforms available in the market
today. It is actively developed by both the public and
developers, creating a good platform for components reuse.
Player project in addition has got two simulation tools called
Stage and Gazebo which are 2D and 3D environments
respectively.

VI. PLAYER/ STAGE SIMMULATION RESULTS

The paper present simulation results of an ongoing project
in multi-robot system. In the project a handful of robots
explore the environment for hidden target. Control of robots in
the system is achieved through the use of perception-action
units, or behaviors. Each behavior is activated depending on
feedback information from carefully selected sensor readings
or message from a team member. Behaviors such as
ObstacleAvoidance, GoalsearchMode, GoalFoundMode,
TargetHomingMode, Mapbuilding, CommunicationMode,
pathplanning, and Pathfollowing are used. GoalsearchMode
mode has two other sub modes, Initializer and Gobbler.
Initializer mode requires all robots in a team to giveaway their
position and communication channel to other robots in the
environment. Gobbler mode is used when robots are initially
close knit, and it causes robots to spread quickly way from
each other before normal search begins.
Figure 4 below shows three robots exploring and environment
in a search mode. The robots in the simulation are able to
locate a target (green square) but other behaviors such as
communication and map building are not yet optimal. The
path taken by a robot when TargetHomingMode is entered is
currently implemented in MATLAB. A point of interest is
tracked using a camera keeping it in view all the time. Range
and bearing to the goal are evaluated and appropriate speeds
are calculated to enable the robot stop at target position. The
speed is proportional to range and it reduces as is goal is
reached. Figure 5 shows a trajectory followed by a robot from
an initial position to a target position.

Figure 4. Three robots in GoalsearchMode

Figure 5. Trajectory following

Figure 6 shows bearing angle to the goal

Figure 6 above shows how the bearing to the target changes

as the robot moves towards a goal position. Initially bearing is
around 0.68 radians but as the robot moves parallel to the
target for a few seconds it sharply increases to above 0.9
radians. Then the robot start turning towards the goal position
indicated in the figure by decline in bearing which eventually
settles to zero, when robot and target are aligned.

-80 -60 -40 -20 0 20 40 60 80
-80

-60

-40

-20

0

20

40

60

80

Initial-position

Goal

x(cm)

y(
cm

)

trajectory follwing

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
change in bearing angle to the Goal

iterations

th
et

a(
ra

di
an

s)

VII. CONCLUSION & FUTURE WORK

The paper briefly described a number of open source
robotic framework comparing their concurrency model and
their information sharing methods. ICE middleware seem
attractive for implementing interfaces for components but
Orca system supports a few sensory and actuatory devices.
This constraint means time lost in actually building new
components for robots used, than actually coding algorithms
for robot application. Player uses client server model to
access and control a number of popular robot bases. Its main
drawback is the latency issues because commands ‘sit’ in their
respective buffers waiting to be read. Having said that though,
Player is easy to use and the client side can be implemented in
any language with socket support.

The project was undertaken with no prior knowledge of
how player work, hence some modules are still lagging behind
in terms of implementation. The next step is to get modules
mentioned in section four to function together by sharing the
right information to accomplish the cooperative search task.

VIII. ACKNOWLEDGMENT

The author would like to thank the MMM robotic group for
their questions and additions. This work was fully supported
by Council for Scientific and Industrial Research (CSIR).

IX. REFERENCES

[1] D. Krüger, I. Lil, N. Sünderhauf, R. Baumgartl, P. Protzel, “Using and
Extending the Miro Middleware for Autonomous Robots,” Towards
Autonomous Robotic Systems (TAROS), Guildford, September 2006.

[2] H. Bruyninckx. “Open robot control software: the OROCOS project,” In

IEEE International Conference on Robotics and Automation (ICRA’01),
vol. 3, pp 2523–2528, 2001. [Online: http: //www.orocos.org].

[3] M. Montemerlo, N. Roy, and S. Thrun. Perspectives on standardization
 in mobile robot programming: The Carnegie Mellon navigation

(CARMEN) toolkit. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2436–2441, 2003. [Online: http://
carmen.sf.net].

[4] G. Metta, P. Fitzpatrick, and L. Natale. “YARP: yet another robot
platform,” International Journal on Advanced Robotics Systems,
vol. 3, No. 1, pp. 43–48, 2006. [Online: http://yarp0.sf.net].

 [5] Utz, H., Sablatnög, S., Enderle, S., Kraetzschmar, G., “Miro –
Middleware for Mobile Robot Applications”, vol. 18, No. 4, pp. 493-
497, IEEE Transactions on Robotics and Automation, Aug 2002.

[6] Vinoski, S. “CORBA: integrating diverse applications within distributed
heterogeneous environments,” IEEE Communications vol. 35, No. 2, pp
46-55, Feb 1997.

[7] C. Cote, D. Letourneau, F. Michaud, and Y. Brosseau, “Robotic Software
Integration Using MARIE,” International Journal of Advanced Robotic
Systems, vol. 3, No. 1, pp 55-60, March 2006[Online:
http://marie.sf.net].

[8] G. Brooks, A., Kaupp, T., Makarenko, A., Oreback, A., and Williams, S.
“Towards component-based robotics,” In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, April 2005.

[9] Orca Project. Orca2. http://orca-robotics.sf.net.
[10] ZeroC,Inc. Ice performance, 2005. [Online:

http://zeroc.com/performance].
[11] M. Henning and M. Spruiell. “Distributed Programming with Ice”. 2006.
[12] Gerkey. B, Vaughan. R, & Howard. A, “The Player/Stage project: Tools

for multi-robot and distributed sensor systems”, In Proceedings of the
11th international conference on advanced robotics, pp. 317–323.
Coimbra, Portugal, 2003.

[13] I. T.H.J. Collett, B.A. MacDonald, and B.P. Gerkey, “Player 2.0:
Toward a practical robot programming framework”. In Australasian
Conference on Robotics and Automation (ACRA’05), December 2005.
[Online: http:// playerstage.sf.net]..

[14] http://www.evolution.com/er1/ [accessed 29-08-2008].
[15] http://www.festo-didactic.com/int-en/learning-systems/new-robotino/

[accessed 23-08-2008].

