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Abstract— Many optimisation problems are multi-objective
and change dynamically. Many methods use a weighted average
approach to the multiple objectives. This paper introduces
the usage of the vector evaluated particle swarm optimiser
(VEPSO) to solve dynamic multi-objective optimisation prob-
lems. Every objective is solved by one swarm and the swarms
share knowledge amongst each other about the objective that it
is solving. Not much work has been done on using this approach
in dynamic environments. This paper discusses this approach as
well as the effect of the population size and the response meth-
ods to a detected change on the performance of the algorithm.
The results showed that more non-dominated solutions, as well
as more uniformly distributed solutions, are found when all
swarms are re-intialised when a change is detected, instead of
only the swarm(s) optimising the specific objective function(s)
that has changed. Furthermore, an increase in population size
results in a higher number of non-dominated solutions found,
but can lead to solutions that are less uniformly distributed.

I. INTRODUCTION

Optimisation problems occur in many situations and as-
pects of modern life. In reality, many of these problems
are dynamic in nature, where changes can occur in the
environment that influence the solutions of the optimisation
problem. In a world where many people travel frequently,
the scheduling of aircrafts’ take-off and landing, requires
careful planning, since sudden changes to the schedule can
be caused by an airplane arriving earlier or later and flights
being delayed. Two goals of air traffic control can be defined
as minimising the waiting time for an aircraft to take-off or
land and minimising the possibility of collisions. These two
goals are in conflict with one another. In order to decrease
the possibility of a collision, the waiting time of an aircraft
to take-off or land will be increased. This is just one example
where the optimisation problem is a dynamic multi-objective
problem (DMOOP).

Generally a DMOOP does not have a single solution. In
many cases the objectives are in conflict with one another,
and an improvement in one objective leads to a worse
solution for at least one of the other objectives. Therefore, the
set of solutions that can be found where no other solution is
better for all the objectives, is called the Pareto optimal front
(POF), and the solutions are called non-dominated solutions.

To efficiently solve a DMOOP the algorithm should be
able to track the changing POF efficiently. Therefore, the
algorithm should be able to detect that a change has occurred
and should be able to respond to the change accordingly.
However, the comparison of one algorithm’s performance
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against another in terms of solving a DMOOP, is not a trivial
task, since the true POF are unknown in many cases.

This paper proposes using the Vector Evaluated Particle
Swarm Optimisation (VEPSO) algorithm to solve DMOOPs
and discusses the performance of the VEPSO algorithm with
regards to specific DMOO benchmark functions. The effect
of the swarm sizes, as well as the effect of various responses
to detected changes in the environment, are also highlighted.

The rest of the paper’s layout is as follows: Section II
provides background information and highlights related work
that is relevant for the research discussed in this paper.
Section III provides an overview of the VEPSO algorithm
and the changes that has been made to the algorithm for
DMOOPs. The benchmark functions and performance me-
trics that have been used to test the algorithm’s performance
are discussed in Sections IV and V respectively. Section VI
describes the experiments that have been done to test the
algorithm’s performance and the results of the experiments
are highlighted in Section VII. Finally, Section VIII discusses
conclusions on the work presented in this paper.

II. BACKGROUND

Particle Swarm Optimisation (PSO), introduced by Eber-
hart and Kennedy [1], is a population-based optimisation
method inspired by the social behaviour of bird flocks. Each
PSO swarm consists of a number of particles that move
in the search space in search of solutions. Each individual
particle has a current position in the search space, x;, a
current velocity, v;, and a personal best position in the search
space, y;, where the particle had the smallest error with
regards to the objective function. The position amongst all
the particles’ personal best positions that yielded the smallest
error, is called the global best position, denoted as y. During
each iteration every particle’s velocity is updated and the
new velocity is added to the particle’s current position to
determine its new position.

PSO has been successfully applied to solve dynamic
single-objective optimization problems ([2], [3], [4], [5]).
However, when dealing with dynamic problems, it is vital
that the algorithm can detect that a change has occurred and
then respond to the change in an appropriate manner. Carlisle
and Dozier [6] introduced the concept of a sentry particle to
detect whether a change has occurred in the environment.
A sentry particle is randomly selected after each iteration,
and then re-evaluated before the next iteration. During the
re-evaluation its current fitness value is compared with its
previous fitness value, i.e. its fitness value after the previous
iteration. If the two values differ more than a specified value,
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the swarm is alerted that a change has taken place and
responds accordingly. Hu and Eberhart [7] suggested to use
the global best, and global second best particles as sentries.

Once a change in the environment has been detected,
the algorithm should respond effectively to these changes.
One approach is to re-calculate the value of each particle’s
personal best [8]. If the new value is less fit than the
particles’s current position, its personal best value is replaced
by its current position. This comparison ensures that valid
past experience is not lost. Another approach is to re-
initialize a percentage of the swarm population. This ensures
that the swarm does not remain in a small area after the
change has occurred and a portion of the particles do not
lose their memory, which could be valuable information if
the change is small. Cui et al. [5] proposed the usage of
an evaporation constant, that can take a value between zero
and one, to update the particle’s best fitness value. This will
cause the particle’s memory to gradually decrease over time,
until at a certain point in time the particle’s current fitness
will be better than the decreased fitness value. When this
happens, the decreased fitness value will be replaced by the
particle’s current fitness. With this approach the evironment
is not monitored by any particles, as is the case with the
usage of sentry particles.

More recently research has been done on using evolu-
tionary algorithms (EAs) ([9], [10], [11]) and PSO ([12],
[13]) to solve DMOOPs. In order to test and analyse an
algorithm’s capability of tracking a dynamic Pareto optimal
front, benchmark functions are used. Jin and Sendhof [14]
introduced a way to define a dynamic two-objective optimisa-
tion problem by reformulating a three-objective optimisation
test function. Guan et al. [9] created dynamic problems
by replacing objectives with new ones at specific times.
Many benchmark functions were developed by adapting
static MOO benchmark functions to dynamic ones. Farina
et al. [15] developed a number of test functions for DMOO
based on the static MOO two-objective ZDT functions [16]
and the scalable DTLZ functions [17]. Some adaptions to
these test functions were proposed in ([10], [18]). Mehnen et
al. [10] also proposed DSW functions that are adapted from
the static MOO function problem of Schaffer [19]. Others
added noise to Deb’s functions ([20], [21]).

In order to compare one algorithm’s performance against
another algorithm, performance metrics are required. For
DMOOP two groups of performance metrics exist, namely
performance metrics where the true POF is known and
performance metrics where the true POF is unknown. For a
known POF the convergence, measured by the generational
distance proposed by Van Veldhuizen [22], and spread or
distribution of the solutions are often used to measure an
algorithm’s performance ([21], [23]). Branke et al [12]
proposed the reversed generational distance and the collective
mean error as performance metrics. Another metric is the
HV R(t) metric, which represents the ratio of the hyper-
volume of the solutions and the hypervolume of the known
POF at a specific time ([22], [12]). Li et al. [12] proposed
a metric of spacing that can be used when the true POF is
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unknown. The size of the non-dominated solution set can also
be used to measure an algorithm’s performance [18]. Cdmara
et al. proposed measures of accuracy, stability and reaction
capacity of an algorithm, that are based on the calculation
of the hypervolume of the non-dominated solution set [13].

III. VEPsoO

Parsopoulos et al. [24] introduced the Vector Evaluated
Particle Swarm Optimisation (VEPSO) that is a multi-swarm
variation of PSO, inspired by the Vector Evaluated Genetic
Algorithm (VEGA) [25]. In VEPSO each swarm solves one
objective function and shares its knowledge with the other
swarms. The shared knowledge is used to update the velocity
of the particles as indicated in Equations (1) and (2) below:

vi(t+1) = X'’ "
cra (i (1) — 2] (1))]

2 (t+1)=2i(@t) +vi(t+1) )

ol (1) + el (! (1) — 2 (1) +

where n represents the dimension with ¢ = 1,...,n; m
represents the number of swarms with j = 1,...,m as the
swarm index; §/¢ is the global best of the s-th swarm; ¢{ and
¢ are the cognitive and social parameters of the j-th swarm
respectively; 71,79 € [0,1]; w’ and x7 are the inertia weight
and constriction factor of the j-th swarm respectively; and
s €l,...,5— 1,7+ 1,..., M] represents the index of a
respective swarm.

In Equation (1) the global best of another swarm (indexed
by s) is used to update the velocity of the particles of the
j-th swarm. The index s can be set up in various ways,
affecting the topology of the swarms in VEPSO, e.g. if s is
selected according to Equation (3) the swarms will have a
ring topology, where

_ M forj=1
8_{j—1 forj=2,...,M 3)

Sentry particles are used to detect a change [6] in the
environment. After each iteration a sentry particle is ran-
domly selected and re-evaluated before the next iteration. If
the two fitness values differ more than a specified value, the
swarm is alerted that a change has taken place and responds
accordingly, as explained in the pseudo code below:

Sfor number of iterations do
check whether change occurred
if change occurred
respond to change
re-evaluate solutions in POF
remove dominated solutions from POF
perform iteration
if new solutions are non-dominated
if space in archive
add new solutions to POF
else
remove solutions from archive
add new solutions to archive
select sentries
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IV. BENCHMARK FUNCTIONS

To test the performance of VEPSO with DMOOPs, with
two or more objective functions, as well as various types
of POFs, two functions proposed by Farina et al. [15] are
used. Furthermore, two functions introduced by Abido [26]
for static MOOPs, are modified to create DMOOPs.

Below, 7 is the generation counter, 7, is the number of
iterations for which ¢ remains fixed and n; is the number of
distinct steps in .

The FDAI problem is depticted as:

Minimize : f(x,t) = (f1(xi,t), g(x11,t)-
h(x11, fi(x1, 1), 9(x11,t), t))

Jix) =i

glxm) =143, (@i — G(1))?

FDAL = 4)
h(fig) =1—/2
where :
G(t) = sin(0.5mt), t= L PJ
WS [0’ 1}; XI1 = (I27' . . 7‘%") € [7171]

The function parameters were set as n = 20 and n; = 10
(as suggested by [15]). Function FDA1 (Equation (4)) has a
convex POF where the values in the decision variable space
changes, but the values in the objective space remains the

same.
The FDA4 problem:

Minimize : fi(x),..., fu(x)
ming : fi1(x) = (1+ g(xr)) Hz 1 CO&(m;ﬂ)
ming : fr(x) = (1+ g(xu))([T12; " cos(%47))
sin(PM=ERTY k=2, M —1
FDA4 — 4 mina : fur(x) = (14 g(xar)) sin(Z57)
where :
9(x1r) = 3, ey (w1 — G(1))?
G(t) = |sin(0.57t)|
F(t) = 102500570 4 n% {%J
X11 = (:Ifzw,...,ﬂfn);ilfi S [0,1],VZ =1,...,n

)

For FDA4 the parameters were set as n = M + 9, |X;| =
10, ny = 10 (as suggested by [15]) and M = 3. Function
FDA4 (Equation (5)) has a non-convex shaped POF where
the values in the decision variable space changes, but the

values in the objective space remains the same.
The TP1,,04 problem:

Minimize : (f1(z), f2(x))
-z forz <1

fi(z) = —2+42 forl<az<3

W= 4-2 for3<az<4

TPliyod = —4 _2" x forx >4 ©)

fa(z) = (z = 5)* + G(t)
where :
G(t) = |sin(0.57t)], ¢ =~ HJ
—100 < 2 <100

For Function TP1,,,4 the parameter n; was set to 10 as
suggested by [15] for the FDA functions. Function TP1,,04

(Equation (6)) has a discontinuous POF.
The TP2,,,4 problem:
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Minimize : (f1(x), f2(z))
(@1, 22) =2+ (m2 — 1)? — 10e1G(2)

+(z1 —2)°
fz(.’L'l,.'L'z) =9z + (1'2 — 1)2 — IOCQG(t)
where :
TP2moa = o, = a forei <0 @)
=Y 0 forep >0

co fores <0
Co = N

0 forco>0

G(t) = |sin(0.57t)|, t = - {%J
x1, 2 € [—20,20]

For TP2,,4 the parameter n; was set to 10 as suggested
by [15] for the FDA functions. Function TP2,,4 (Equa-
tion (7)) has a convex POF.

V. PERFORMANCE METRICS

This paper assumes that the POF of the benchmark func-
tions are unknown, since in reality this will often be the
case. The performance metrics that are used to compare the
performance of various algorithms are discussed below.

A. Number of non-dominated solutions found

The first performance metric is the average number of
non-dominated solutions found at each iteration before a
change has occurred in the environment. To compare the
performance of one algorithm against another, the number
of non-dominated solutions found (from now on referred to
as the VS metric) is calculated for each iteration before a
change in the environment occurs (refer to Equation (8)).

NS' = iy NS = NSz 8
ns; ”rjzl ®)

where n,. is the number of runs, ns; is the numnber of non-
dominated solutions found for iteration ¢ and N S; is the
NS metric value of run j at iteration ¢, which is an iteration
before a change occurs in the environment.

The average over 30 runs is then calculated for each of
these iterations. The number of times that one algorithm has
a better NS average than the others, is counted and referred

to as NSyins-
B. Spacing
The metric of spacing [21] indicates how evenly the non-

dominated solutions are distributed along the discovered
POF, and is defined as

! [1 f(di—d)Q] d=—Yd ©

npr | NPr =1 nper =1

S =

where npp is the number of non-dominated solutions found
and d; is the euclidean distance, in the objective space,
between non-dominated solution ¢ and its nearest non-
dominated solution.

To compare one algorithm against another, the average
spacing metric ' is calculated for each iteration before a
change in the environment occurs (refer to Equation (9)).

1 <&
:E;Sj

(10)
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where n, is the number of runs and S; is the spacing metric
value of run j at iteration ¢, which is an iteration before a
change occurs in the environment.

The number of times that one algorithm has a better S
average than the others, is counted and referred to as Syins-

C. Hypervolume

The hypervolume (HV) or S-metric [16] computes the
size of the region dominated by a set of non-dominated
solutions based on a reference vector. The reference vector
is constructed using the worst objective values of each
objective.

In order to compare one algorithm against another, the
HYV metric is calculated for each iteration before a change
in the environment occurs. The average over 30 runs is then
calculated for each of these iterations. The number of times
that one algorithm has a better HV average than the others,
is counted and referred to as H V5.

If it is unknown when a change will occur, the performance
metrics can be calculated over all iterations instead of the
iterations just before a change occurrs.

To determine the algorithm with the best performance for
a specific function, its overall rank is calculated. For each of
the performance metrics the algorithm is ranked according
to its performance with regards to the specific metric. The
algorithm’s average rank value is calculated and then the
algorithm is ranked accordingly.

VI. EXPERIMENTS

This section describes the experiments that were conducted
to test the performance of VEPSO when solving DMOOPs.
The benchmark functions and performanc metrics discussed
in Sections IV and V respectively were used to test the
performance of variations of the VEPSO algorithm.

To test the influence of population size on the performance
of the VEPSO algorithm, the number of particles of the
swarms was varied between 2, 5, 10, 20, 30 and 40 particles
respectively. For each of these population sizes either all
swarms’ global best particle and second global best particle
were re-initialised when a change was detected, or only the
forementioned particles of the swarm that is solving the
objective function that changed.

To test the effect of the percentage of the swarm’s po-
pulation that is re-initialised when a change is detected in
the environment, a fixed population size of 40 was used and
either the global best particle and global second best particle,
or 10%, 20% or 30% of the population was re-initialised.
This was done for either all the swarms or only the swarm
that is solving the objective function that has changed.

All experiments consisted of 30 runs and each run con-
sisted of 1 000 iterations. The frequency of change, 7, was
set to 5 as suggested by [15]. Therefore, during each run the
functions change every 5 iterations, resulting in 200 changes
per run. Therefore the maximum number of Syins, N Swins
and HV,n,s are 200 per algorithm, since more than one
algorithm can have the best values for the specific time. The
PSO parameters were set to the following values: w=0.72
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and cl = c2 = 1.49, since these values lead to convergent
behaviour [27].

VII. RESULTS

This section discusses the results that were obtained from
the experiments, with regards to the overall rank of the
variations of VEPSO and the effect of the population size
on VEPSO’s performance. Furthermore, the effect of the
response to a detected change in the environment is high-
lighted. The results of the experiments can be seen in Tables I
- VIII. In the Tables (A) indicates that all swarms are re-
initialised in response to a change and (C) indicates that
only the swarms that solve the objective functions that have
changed are re-initialised.

A. Overall Rank of Variations of VEPSO

Considering the overall rank of the variations of VEPSO
(as discussed in Section V) a population size of 40 particles
where all swarms are re-initialised when a change in the
environment is detected, ranked overall mostly in first place
(refer to Tables I, II, III and IV).

B. Effect of Population Size

From the results it can be seen that an increase in the
population size leads to a higher number of non-dominated
solutions found. In some cases this can lead to a higher value
of the spacing metric, i.e. the non-dominated solutions are
less uniformly distributed.

Figure 1 illustrates various non-dominated solution sets
found over various runs with different population sizes for
Function FDA1 on the left. On the right only the non-
dominated solutions from these non-dominated solution sets
are illustrated. Non-dominated solutions found over various
runs with various population sizes for Functions TP2,,,,4 and
FDA4 are illustrated left and right in Figure 2 respectively.

C. Effect of Various Responses to Change

Tables V to VIII highlight the results that were obtained
with various variations of response to a detected change. It is
interesting to note that re-initialising either the global gbest
and second gbest or 10% of the population of all swarms
when a change is detected, consistently lead to one of the
best 3 performances.

Furthermore, when all swarms are re-initialised in re-
sponse to a change (indicated by (A) in the Tables), better
results are obtained than in the case where only the specific
swarm that optimises the objective function that changed is
re-initialised (indicated by (C) in the Tables). Re-initialising
all swarms when a change is detected, leads to a lower
spacing metric value (more uniformly distributed solutions)
and a higher number of non-dominated solutions found.

D. Comparison with Other Work

Zhen [18] found the average hypervolume for Function
FDAT1 as £0.6654 and the average hypervolume for Function
FDA4 as £0.466 when using a GA algorithm. However, it
should be noted that for these experiments 7, was set to
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Fig. 2. Non-dominated solutions found with various population sizes for TP2,,,,4 on the left and FDA4 on the right

2000, i.e. a change occurred in the environment after 2000
generations.

In the experiments of this paper 7, was set to 5, i.e.
a change occurred every 5 generations. Using VEPSO the
highest hypervolume value for Function FDAI1 was 1.05
with a population size of 40 and re-initialising 30% of
the population of the swarm that optimises the objective
function that has changed (refer to Table V). The second
highest hypervolume value for FDA1 was 0.57 for a VEPSO
algorithm with population size of 20 particles and only the
swarm optimising the objective function that has changed
are re-initialised (refer to Table I). For Function FDA4 very
large hypervolume values were obtained as can be seen in
Tables I and V. From the spacing metric values in these
tables can be seen that the non-dominated solutions are not
very uniformly distributed. Furthermore, from Figure 2 it
can be seen that there are a few solutions far away from the
others. If one of these values become part of the reference
vector in the calculation of the hypervolume, it can explain
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the high hypervolume values.

VIII. CONCLUSIONS

This paper introduced using the VEPSO algorithm for
DMOOPs. Through the usage of benchmark functions and
performance metrics variations of the VEPSO algorithm were
compared with one another.

The effect of the swarms’ population size, as well as vari-
ous responses to changes in the environment were discussed.

The results showed that VEPSO can solve a DMOOP
with a discontinuous POF and functions with more than two
objectives. An increase in the population size of the swarms
lead to more non-dominated solutions found. Furthermore,
re-initialising all swarms and not only the swarm(s) optimi-
sing the objective function(s) that have changed, resulted in
more non-dominated solutions, as well as more uniformly
distributed solutions.

Future work will include investigating various perfor-
mance metrics for DMOOPs, especially for cases where the
true POF is unknown.
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TABLE I

SPACING, NS AND HYPERVOLUME METRIC VALUES FOR FUNCTION FDA1

#Particles Performance Metric Rank
S | Swins | NS | NSuyins | HV | HVyins
2(A) 0.19 61 34.45 0 0.53 1 3
2(C) 0.33 2 12.32 0 2.67 198 1
5 (A) 0.19 137 | 40.79 2 0.47 1 6
5(0) 0.45 2 13.34 0 0.25 0 5
10 (A) 0.23 0 36.0 0 0.17 0 3
10 (C) 0.41 0 13.51 0 0.21 0 2
20 (A) 0.29 0 37.06 2 0.17 0 8
20 (C) 0.62 0 13.57 0 0.57 0 10
30 (A) 0.26 0 36.87 2 0.13 0 8
30 (C) 0.6 0 13.03 0 0.45 0 10
40 (A) 0.26 0 48.52 198 0.46 0 12
40 (C) 0.38 0 26.85 0 0.4 0 7
TABLE II
SPACING, NS AND HYPERVOLUME METRIC VALUES FOR FUNCTION FDA4
#Particles Performance Metric Rank
S | Swins | NS | NSuwins HV HViins
2 (A) 0.19 61 14.6 2 2.84x1012 0 4
2(0) 0.33 2 14.76 2 1.29x10% 0 2
5(A) 0.19 137 22.39 2 1.66x1012 0 4
5(C) 0.45 0 21.76 2 8.29x1010 0 4
10 (A) 0.23 0 28.1 2 3.28x1015 0 4
10 (C) 0.41 0 26.93 2 3.08x10'3 0 4
20 (A) 0.29 0 33.41 2 5.82x10'7 0 12
20 (C) 0.62 0 33.64 2 2.74x1017 0 3
30 (A) 0.26 0 36.32 2 8.24x1019 0 10
30 (O) 0.6 0 36.68 2 1.58x10'8 0 4
40 (A) 0.26 0 4754 200 5.14x1018 2 1
40 (C) 0.38 0 38.34 2 1.41x1020 198 10
TABLE III
SPACING, NS AND HYPERVOLUME METRIC VALUES FOR FUNCTION TP1,,,4
#Particles Performance Metric Rank
S Swins | NS | NSwins | HV | HViins
2 (A) 173.36 0 13.41 2 23.69 0 11
2(0) 189.33 0 13.24 2 22.6 2 12
5 (A) 117.74 0 15.55 2 25.94 0 7
5(0) 77.28 0 15.02 2 17.52 0 10
10 (A) 97.55 0 15.41 2 21.62 0 7
10 (C) 73.98 0 15.31 2 17.98 0 7
20 (A) 58.11 0 15.74 2 14.33 0 5
20 (C) 71.38 2 15.38 2 20.33 0 6
30 (A) 56.02 0 15.84 2 13.33 0 2
30 (O) 56.43 4 15.61 2 16.18 0 3
40 (A) 48.78 194 | 48.52 200 4522 198 1
40 (C) 70.43 0 16.46 2 18.6 0 4
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TABLE 1V
SPACING, NS AND HYPERVOLUME METRIC VALUES FOR FUNCTION TP2,,,,4

#Particles Performance Metric Rank
S Swins | NS | NSwins HV HViyins
2 (A) 76742.04 1 1271 2 1.82x1013 2 8
2(0) 335163.25 0 11.98 2 2.97x1014 198 11
5 (A) 8212.6 0 14.4 2 8.16x1010 0
5(C) 9763.83 2 13.53 2 9.83x10'1 0
10 (A) 5550.94 3 14.56 2 2.71x1010 0
10 (C) 548733 0 143 2 1.39x1010 0 10
20 (A) 11956.53 0 14.4 2 5.5x1010 0 12
20 (C) 14442.61 0 14.96 2 1.18x101 0 4
30 (A) 17911.39 0 14.93 2 4.85x1011 0 2
30 (C) 19747.78 0 14.63 2 1.27x1011 0 8
40 (A) 3193.82 194 48.52 200 6.65x1010 0 1
40 (C) 7281.38 0 15.51 2 1.47x1010 0 4
TABLE V

SPACING, NS AND HYPERVOLUME METRIC VALUES FOR VARIOUS REPONSES TO CHANGE FOR FUNCTION FDA1

#Particles Re-initialised Performance Metric Rank
S | Swins | NS | NSwins | HV | HViins
Gbests Gsecondbest (A) | 0.26 0 48.52 200 0.46 2 1
Gbests Gsecondbest (C) | 0.38 1 26.85 2 04 0 7
10% of population (A) 0.22 0 48.52 200 0.13 0 3
10% of population (C) 0.33 0 28.49 2 0.3 0 5
20% of population (A) 0.27 0 48.52 200 0.21 0 4
20% of population (C) 0.37 0 26.95 2 0.33 0 7
30% of population (A) 0.15 199 48.52 200 0.27 0 2
30% of population (C) 0.39 0 26.73 2 1.05 198 5
TABLE VI
SPACING, NS AND HYPERVOLUME METRIC VALUES FOR VARIOUS REPONSES TO CHANGE FOR FUNCTION FDA4
#Particles Re-initialised Performance Metric Rank
S Swins | NS | NSuins HV HViins
Gbests Jsecondbest (A) 88022.62 197 47.54 200 5.14x10'8 0 2
Gvest> Isecondbest (C) 255519.6 0 38.34 2 1.41x1020 0 7
10% of population (A) 170312.66 0 47.54 200 9.25x1019 0 4
10% of population (C) 226776.26 2 38.31 2 1.4x10%0 0 6
20% of population (A) | 479245.04 0 47.54 200 1.81x10"° 2 3
20% of population (C) | 516639.06 1 387 2 5.03x102! 1 5
30% of population (A) 479245.04 0 47.54 200 7.49x1021 197 1
30% of population (C) 588408.68 0 36.97 2 2.05x1020 0 8
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