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Abstract: The performance analysis of high rate space–time trellis-coded modulation (HR-STTCM) using the
Gauss–Chebyshev quadrature technique is presented. HR-STTCM is an example of space– time codes that
combine the idea used in trellis coded modulation (TCM) design that is signal set expansion and set
partitioning into its construction. HR-STTCM construction is based on the concatenation of an outer TCM
encoder and inner space–time block code. This paper evaluates the exact pairwise error probability of HR-
STTCM based on the Gauss–Chebyshev quadrature formula. Comparison of numerical and simulation results
shows that the proposed method is accurate. The method used is shown to be computationally simpler than
those in the literature.
1 Introduction
In [1] high rate space–time trellis-coded modulation (HR-
STTCM) was introduced as a space–time coding scheme
that has higher coding advantage when compared with the
earlier design of space–time trellis-coded modulation
(TCM) [2–4]. The advantage of the construction in [1] is
that the standard technique for designing good TCM
codes [5], such as the classic set-partitioning concept, can
be adopted to realise the HR-STTCM design with large
coding gain.

A parameterised class of space–time codes was introduce
in [6], that is, super-orthogonal space–time trellis codes
(SOSTTC), which gives a systematic approach in the
design of HR-STTCM.

The SOSTTC does not only provide a scheme that has an
improvement in the coding gain when compared with the
original space–time TCM schemes, but it answers the
question of a systematic design for any rate, number of
states and the maximisation of coding gain. This matrix
expansion in HR-STTCM given in [1] corresponds to the
angle multiplication in the SOSTTC. This means that the
identity matrix multiplication with the original Alamouti
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code [7] corresponds to the angular multiplication in the
SOSTTC.

For example, the multiplication of diag[1,21] with
Alamouti code in HR-STTCM corresponds to u ¼ p in
the orthogonal transmission matrix of the SOSTTC shown
in (1) below.

A x1, x2, u
� �

¼
x1e

ju x2
�x�2e

ju x�1

� �
(1)

where (�) stands for conjugate and xi [ e j(2pa=m), i ¼1, 2.

When u ¼ 0 (1) becomes the Alamouti code. For an
m-PSK constellation with constellation signals represented
by e j(2pa=m), a ¼ 0, 1, . . . m2 1, one can pick u ¼ 2pa0/
m, where a0 ¼ 0, 1, . . ., m2 1.

Our interest in this paper is in the pairwise error probability
(PEP) and the average bit error probability (BEP) in slow
(quasi-static) fading channel of the HR-STTCM using the
orthogonal transmission matrix shown in (1).

In [4], performance criteria for space–time codes were
derived based on an upper bound on the PEP for both
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quasi-static and fast fading channels. Although the upper
bound derived in [4] allows for considering all possible
error events and gives a final expression for the average
error probability terms, it is too loose for most signal-to-
noise ratio ranges. Several research works [8–10] have been
done to obtain a tighter bound for most space–time codes
using various methods and based on these expressions an
analytical estimate for the BEP can be computed, taking
into account the dominant error events. A closed form
expression for the exact PEP for space–time trellis code
was derived in [9] based on the residual method using
characteristic function [11], which has been used previously
in the performance analysis of TCM. On the basis of this
expression, an analytical estimate for the BEP was
computed, taking into account the dominant error events.
The derivation in [9] shows that the exact PEP is the
upper bound derived in [4] modified by a correcting factor
given by the second product term whose value depends on
the poles of the characteristic function of the quadratic
form of the complex Gaussian random variable.

In [12], the moment-generating function previously used
for the analysis of uncoded and coded digital
communication over fading channels using only a single
transmitter is applied to provide a closed form expression of
the PEP for space–time coded systems with multiple
antennas. The method used in [12] has an additional
advantage of allowing for direct evaluation of the transfer
function upper bound on the average BEP. In [10], the
moment-generating function-based approach was extended
to analyse the PEP of the SOSTTC. It was shown that for
slow and fast fading channels, it is possible to obtain a
closed form expression for the PEP in terms of the element
of the error signal difference matrix that characterises the
super-orthogonal space–time block code.

A different approach to finding the exact expression of the
PEP with less computational difficulty is presented in this
paper. This approach is based on the Gauss–Chebyshev
quadrature technique that has been used in the
performance analysis of TCM [13]. This method combines
both simplicity and accuracy in finding the closed form
expression of the PEP.

The paper is organised as follows. In Section 2, we discuss
the general transmission model of the HR-STTCM and the
channel model. In Section 3, we describe the derivation of
the PEP using the Gauss–Chebyshev quadrature technique
and also give a numerical example. In Section 4, we use the
PEP obtained in Section 3 to estimate the average BEP for
slow fading channels. Section 5 concludes the paper with
discussion on the results obtained from the numerical
example of both the PEP and the average BEP.

2 System model
We consider a transmission system of nt transmit antennas
and nr receive antennas. The input binary data streams are
Commun., 2008, Vol. 2, No. 5, pp. 658–663
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first fed into an outer TCM encoder to generate a sequence
of complex-modulated symbols. The complex-modulated
symbols xj( j ¼ 1, 2, . . . , nt) are then fed into an inner
space–time block encoder to generate the orthogonal
transmitted code matrix (1). We define xnt

(n) as the complex
valued-modulated symbol transmitted from the nith
transmit antenna in the nth signalling interval and hlj

(n) as
the channel coefficient from the jth transmit antenna to the
lth receive antenna at the same signalling interval, j [ f1,
2, . . . , nr, l [ f1, 2, . . . , nrg.

Assuming that the signals of (1) are transmitted, the
corresponding set of successive signal samples at the
receiver at nth signalling interval is given by

r(n)l ¼ h(n)l1 x
(n)
1 e ju(n)

þ h(n)l2 x
(n)
2 þ h

(n)
l

r(n)lþnr
¼ h(n)l1 (�x(n)2 )�e ju(n)

þ h(n)l2 (x
(n)
1 )� þ h(n)

lþnr
(2)

where l ¼ 1, 2, . . . , nr and xl
(n) are independently identical

distributed complex zero mean Gaussian noise samples,
each sample with s2/2 per dimension. We assume that the
channel undergoes Rayleigh fading, and the channel state
information is known at the receiver.

3 Pairwise error probability
3.1 Derivations

To evaluate the PEP, that is, the probability of choosing the
codeword sequence ~X ¼ (~x(1)1 , ~x(1)2 , . . . , ~x(1)nt

~x(2)1 , ~x(2)2 , . . . ,
~x(2)nt

:~x(N )
1 , ~x(N )

2 , . . . , ~x(N )
nt

) when in fact the codeword

sequence, X ¼ (x(1)1 , x(1)2 , . . . , x(1)nt
x(2)1 , x(2)2 , . . . , x(2)nt

. . .

x(N )
1 , x(N )

2 , . . . , x(N )
nt

) was transmitted, we use the maximum

likelihood metric corresponding to the correct path and the
incorrect path. The maximum likelihood metric
corresponding to the correct path is given by

m r, Xð Þ ¼
XN
n¼1

Xnr
l¼1

r(n)l � h(n)l1 x
(n)
1 e ju(n)

þ h(n)l2 x
(n)
2

� �������h 2

þ r(n)lþnr
� h(n)l1 �x(n)2

� ��
e ju(n)

þ h(n)l2 x(n)1

� ��� ���� ���2�

(3)

The above is based on an observation of N blocks (2N
symbols), where each is described by (2).

For the incorrect path, the corresponding metric is given
by (3) with xj

(n), j ¼ 1, 2 and u(n) replaced by ~x(n)j , j ¼ 1, 2
and ũ

(n)
j , respectively.

The realisation of the PEP over the entire frame length
and for a given channel coefficient H is given by

P(X ! ~X jH ) ¼ Pr{m(r, X ) . m(r, ~X )}

¼ Pr{m(r, X )� m(r, ~X ) . 0} (4)
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Substituting (3) and the corresponding expression for
m(r, ~X ) into (4) and simplifying gives

P(X ! ~X jH ) ¼ Pr
XN
n¼1

Xnr
l¼1

[ Aj j
2
þ Bj j

2] > 0

( )

¼ Pr
XN
n¼1

Xnr
l¼1

H (n)
l Dn

			 			2> 0

( )
(5)

where

A ¼ h(n)l1 ~x(n)1 e j ~u
(n)

� x(n)1 e ju(n)
� �

þ h(n)l2 ~x(n)2 � x(n)2

� �

B ¼ �h(n)l1 ~x(n)2 e�j ~u
(n)

� x(n)2 e�ju(n)
� ��

þh(n)l2 ~x(n)1 � x(n)1

� ��

and Dn is given as the codeword sequence matrix that
characterises the HR-STTCM and its expression is given
in (6) below and H (n)

l ¼ h(n)l1 h(n)l2

h i
.

Dn ¼
x(n)1 e ju(n)

� ~x(n)1 e jũ
(n) �x(n)2

� ��
e jũ

(n)

�

�~x(n)2

� ��
e jũ

(n)

x(n)2 � ~x(n)2 (x(n)1 )� � (~x(n)1 )�

2
6664

3
7775 (6)

The conditional PEP given in (5) can be expressed in terms
of the complementary error function [13] as shown in (7).

P(X ! ~X jH ) ¼
1

2
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Es

4N0

Xnr
l¼1

HlDD
HHH

l

s !
(7)

The function DDH is a diagonal matrix of the form shown in
(8). This represents the codeword sequence matrix for the
entire frame length. ( )H represents the conjugate transpose of
the matrix element and Es/N0 stands for the SNR per symbol.

DDH
¼

D1D
H
1 0 � � � � � � 0

0 D2D
H
2 0 ..

.
0

0 0 . .
. ..

. ..
.

..

. ..
. ..

.
DN�1D

H
N�1 0

0 0 � � � 0 DND
H
N

2
666666664

3
777777775
(8)

The complementary error function, as defined integrally in
[14, 7.4.11] is given by

erfc bð Þ ¼
2

p

ð1
0

e�b2 t2þ1ð Þ

t2 þ 1
dt (9)

Enumerating (7) using (9), we can then express the
conditional PEP as an integral. Thus, with E(x) denoting
The Institution of Engineering and Technology 2008
the average of x, one gets

P(X ! ~X ) ¼
1

p
E

ð1
0

exp �(t2 þ 1)(Es=4N0)
Pnr

l¼1 HlDD
HHH

l

h i
t2 þ 1

dt

2
4

3
5 (10)

We can simplify the above expression further using the results
in [15]. For a complex circularly distributed Gaussian
random row vector z with mean m and covariance matrix
sz
2 ¼ E[zz�]2 mm�, and a Hermitian matrix M, we have

E exp �zM z�ð Þ
T

� �h i
¼

exp �mM I þ s2
zM

� ��1
m�
ð Þ

T
h i

det I þ s2
zM

� �
(11)

where I is an identity matrix. If we Apply (11) to solve (10)
we get (12) since z ¼ Hl, M ¼ 2(t2þ 1) . Es/4N0

. DDH

(DDH is a diagonal matrix and (t2þ 1) . Es/4N0 is
constant for a given SNR, thus making DDH a Hermitian
matrix), m ¼ 0 (Hl has Rayleigh distribution) and
sz
2 ¼ sHl

2 ¼ Int.

P X ! ~X
� �

¼
1

pð1
0

1

t2 þ 1

Ynr
l¼1

1

det I nt þ (Es=4N0)DD
H(t2 þ 1)

h i
l

dt (12)

We can approximate the above expression (12) with the
Gauss–Chebyshev Quadrature formula and details are
given in the Appendix 1 leading to the following

P(X ! ~X ) ¼
1

2k

Xk
i¼1

Ynr
l¼1

1

det [I nt þ (Es=4N0)DD
H

sec2 ((2i � 1)p=4k)]l

þ Rk

(13)

The term k is a small positive integer. As the term k increases,
the remainder term Rk becomes negligible.

For slow fading (quasi-static) case, the channel
coefficients are assumed to be constant for the entire frame
duration, but varies from frame to frame, (13) therefore
result in

P(X ! ~X ) ¼
1

2k

Xk
i¼1

Ynr
l¼1

�
1

det I nt þ
Es
4N0

PN
n¼1 DnD

H
n sec2 ((2i � 1)p=4k)

h i
l

þ Rk

(14)
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The above method can be easily extended to a fast fading
channel, but we will not discuss it here.

3.2 Numerical examples

As an example, we consider the rate r ¼ 1 BPSK 2-state code
[5, Fig. 1], whose trellis diagram is illustrated in Fig. 1, where
two sets, each containing two pairs of BPSK symbols, are
assigned to each state, that is, there is a pair of parallel path
between each pair of states. The labelling (s, l )/A(xi, xj, u)
along each branch of the trellis refers to the pair of input
BPSK symbols (s, l ) and the corresponding output symbol
function A(xi, xj, u) using (1) to generate the orthogonal
matrix.

First we consider the parallel paths, that is, N ¼ 1,
evaluating (6), the codeword matrix is given by

D1 ¼
2 2
�2 2

� �
; D1D

H
1 ¼

8 0
0 8

� �
(15)

Also we consider an error event path of length N ¼ 2 with
respect to the all zero path as the correct one. From the
trellis diagram we have that x(1)1 ¼ x(1)2 ¼ x(2)1 ¼ x(2)2 ¼ þ1,
~x(1)2 ¼ ~x(2)1 ¼ �1, u(1) ¼ ũ

(1)
¼ u(2) ¼ 0 and ũ

(2)
¼ p.

Evaluating the elements of the matrix in (6), D1 and D2,
gives

D1 ¼
0 �2

2 0

� �
; D1D

H
1 ¼

4 0

0 4

� �

D2 ¼
0 �2

0 2

� �
; D2D

H
2 ¼

4 �4

�4 4

� �
(16)

We also consider an error event of length 3 with respect to
the all zero path as the correct one. From the trellis
diagram we have

x(1)1 ¼ x(1)2 ¼ x(2)1 ¼ x(2)2 ¼ x(3)1 ¼ x(3)2 ¼ ~x(1)1 ¼ ~x(3)2 ¼ þ1,

~x(1)2 ¼ ~x(2)1 ¼ ~x(2)2 ¼ ~x(3)1 ¼ �1

u(1) ¼ ũ
(1)

¼ u(2) ¼ u(3) ¼ 0 and ũ
(2)

¼ ũ
(3)

¼ p

Figure 1 Trellis diagram for rate 1, two-state BPSK HR-
STTCM
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Evaluating the elements of the matrix (6), D1, D2 and D3,
gives

D1 ¼
0 �2

2 0

� �
; D1D

H
1 ¼

4 0

0 4

� �

D2 ¼
0 0

2 2

� �
; D2D

H
2 ¼

0 0

0 8

� �

D3 ¼
0 �2

0 2

� �
; D3D

H
3 ¼

4 �4

�4 4

� �
(17)

Substituting the codeword matrix obtained in (15)–(17) into
(14), we can obtain the closed form expression for different
error events in a slow fading channel.

3.3 Numerical result and discussion

In this section we provide numerical results for the closed
form PEP enumerated in the previous sections. For our
result, we assume that k ¼ 2 and nr ¼ 1. Fig. 2 shows the
PEP for slow fading (quasi-static) channel for N ¼ 1, 2
and 3. The PEP at N ¼ 2 is the worst case for slow fading
channel.

4 Evaluation of average bit error
probability
In this section, we use the PEPs previously derived to
evaluate the average BEP that is, Pb(E), based on
accounting only for error events of length N.

Transfer function method [16] is a technique, which
makes use of a code’s state diagram to obtain error rate
performance of trellis-based codes. This method takes into
account error event of all lengths. In [11] as estimation of
BEP was obtained through accounting for error event paths

Figure 2 PEP performance of rate 1, two-state BPSK HR-
STTCM over quasi-static fading Rayleigh Channel; one
receive antenna
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of length to a pre-determined specific value using

Pb Eð Þ �
1

g

X
X= ~X

q X ! ~X
� �

P X ! ~X
� �

(18)

where g is the number of input bits per trellis transition and
q(X ! ~X ) the number of bit errors associated with each
error event.

Assuming transmission of the all zeros sequence, then for
the two-state HR-STTCM in Fig. 1, there is a single error
event path of length 1, four error event paths of length 2 and
eight error event paths of length 3. The single error event has
PEP1 obtain when N ¼ 1 whereas the four error event paths
of length 2 all have PEPII and the eight error event paths of
length 3 all have PEPIII. The PEPI contributes one bit error,
whereas the four paths of PEPII contribute a total of 12 bit
errors and finally the eight paths of PEPIII contribute a total
of 28 bit errors.

The average BEP when considering error event paths of 1,
2 and 3 is given by Pb1, Pb2 and Pb3, respectively.

Pb1 ’
1

2
(PEPI) (19)

Pb2 ’
1

2
(PEPI þ 12 � PEPII) (20)

Pb3 ’
1

2
(PEPI þ 12 � PEPII þ 28 � PEPIII) (21)

Fig. 3 shows the average BEP of the code for slow fading
channels. In the figure, the approximate average BEP
performances are plotted accounting for error event lengths
1, 2, 3 which are based on (19)–(21). From the plot, we
can observe that considering error events length up to 3 is
sufficient for calculating the average BEP for slow fading

Figure 3 Average BEP of rate 1, two-state BPSK HR-STTCM
over quasi-static fading Channel with one receive antenna
he Institution of Engineering and Technology 2008
channels as can be seen by a comparison with the
simulated results provided for the true BEP. Each frame
consists of 256 bits in the simulated BEP. This slower
convergence of the PEP to the average BEP as a function
of the length of paths considering for slow fading is
consistent with a similar observation made [12] for
orthogonal space–time trellis codes.

5 Conclusion
In this paper, we have derived the closed form expressions of
the pairwise error probability of HT-STTCM using the
orthogonal transmission matrix. We later used the PEP
obtained to estimate the average BEP. The Gauss–
Chebyshev Quadrature method used proved to be accurate
and made the derivation of the closed form PEP easily
obtainable. The method used here proved to be less
complex than the others presented in the literature.
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7 Appendix
Here, the approximation in (12) is developed along with
some error bounds. Consider the integral

I ¼
1

p

ð1
0

1

t2 þ 1
f (t2 þ 1)dt (22)

Substituting y ¼ 1/t2þ 1 into (22), (22) becomes

I ¼
1

2p

ð1
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y 1� y
� �q f (1=y)dy (23)
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Equation (23) is of the form of an orthogonal polynomial in
[14, 25.4.38] and Gauss–Chebyshev quadrature formula of
first kind can be applied to solve it.

ð1
�1

f (u)ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p du ¼
Xk
i¼1

wi f (ui)þ Rk (24)

ui ¼ cos
(2i � 1)p

2k

wi ¼
p

k

Rk � max
�1.u.þ1

p

(2k)!22k�1
j f 2k(u)j

The expression in (23) can be reduced to (24), if we express
2y2 1 ¼ u

2y � 1 ¼ cos
(2i � 1)p

2k

2y ¼ cos
(2i � 1)p

2k
þ 1

(25)

Using trigonometric function in (26), y can be expressed as
(27).

cosm ¼ cos
m

2
þ
m

2

� �
¼ cos2

m

2
� sin2

m

2
(26)

y ¼ cos2
(2i � 1)p

4k

1=y ¼ sec2
(2i � 1)p

4k
(27)

Accordingly one has that

I ¼
Xk
i¼1

wi f (ui) ¼
1

2k

Xk
i¼1

f sec2
(2i � 1)p

4k

� �
(28)
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