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Abstract. The research objective was to determine robust hyperspectral predictors for monitoring 15 
grass/herb biomass production on a yearly basis in the Majella National Park, Italy. HyMap images 16 
were acquired over the study area on 15 July 2004 and 4 July 2005. The robustness of vegetation 17 
indices and red-edge positions (REP) were assessed by: (i) comparing the consistency of the 18 
relationships between green grass/herb biomass and the spectral predictors for both years and (ii) 19 
assessing the predictive capabilities of linear regression models developed for 2004 in  predicting 20 
the biomass of 2005 and vice versa. Frequently used normalised difference vegetation indices 21 
(NDVI) computed from red (665-680 nm) and near-infrared bands, modified soil adjusted index 22 
(MSAVI), soil adjusted and atmospherically resistant index (SARVI) and water difference 23 
vegetation index (NDWI) were highly correlated with biomass (R2 ≥ 0.50) only for 2004 when the 24 
vegetation was in the early stages of senescence. Although high correlations (R2 ≥ 0.50) were 25 
observed for NDVI involving far-red bands at 725 and 786 nm for 2004 and 2005, the predictive 26 
regression model for each year produced a high prediction error for the biomass of the other year. 27 
Conversely, predictive models derived from REPs computed by the three-point Lagrangian 28 
interpolation and linear extrapolation methods for 2004 yielded a lower prediction error for the 29 
biomass of 2005, and vice versa, indicating these approaches are more robust than NDVI. The 30 
results of this study are important for selecting hyperspectral predictors for monitoring annual 31 
changes in grass/herb biomass production in the Mediterranean mountain ecosystems.  32 
 33 
1. Introduction 34 
 35 

Monitoring grass biomass through time can provide important information about the stability of 36 
natural ecosystems and whether significant changes are taking place (Jensen, 2000). This could be 37 
relevant particularly in mountain environments because of the sensitivity of these systems to 38 
climate change. Remote sensing techniques have been widely used to model the spatial and 39 
temporal variability of grass biomass over large areas (Richardson et al. 1982, Everitt et al. 1989, 40 
Anderson et al. 1993, Wylie et al. 2002, Lu, 2006).    41 

There are major limitations with the normalised difference vegetation index (NDVI) despite its 42 
wide application for modelling the spatio-temporal variations of biomass. NDVI (Rouse et al. 43 
1974) is commonly computed from canopy reflectance in the red and near-infrared (NIR) using 44 
broad-band imagery such as NOAA advanced very high resolution radiometer (AVHRR). Several 45 
studies show that broad-band NDVI can be unstable, varying with soil colour, canopy structure, 46 
leaf optical properties and atmospheric conditions (Huete and Jackson, 1988, Middleton, 1991, 47 
Kaufman and Tanré, 1992, Qi et al. 1995, Todd et al. 1998). It has also been demonstrated that 48 
empirical models derived from NDVI are highly site and sensor specific and therefore unsuitable 49 
for application to large areas or in different seasons (Curran, 1994; Gobron et al. 1997). 50 
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Furthermore, broad-band NDVIs asymptotically approach a saturation level after a certain biomass 51 
or leaf area index (Sellers, 1985, Gao et al. 2000). Broad-band NDVIs use average spectral 52 
information over broad-band widths resulting in loss of critical information available in specific 53 
narrow-bands (Blackburn, 1998, Thenkabail et al. 2000).  54 

Recent developments in hyperspectral remote sensing have provided additional bands (narrow-55 
bands) within the red-NIR transition that have been utilised to improve grass biomass estimation. 56 
For example, Mutanga and Skidmore (2004) show that NDVI computed from 746 and 755 nm 57 
solves the saturation problem of estimating grass biomass at high canopy cover. Another 58 
hyperspectral predictor that has been assessed for grass biomass estimation is the wavelength of 59 
maximum slope in the red-NIR region, termed the red-edge position (REP) (e.g. Gilabert et al. 60 
1996, Mutanga and Skidmore,2004, Cho et al, in press). An advantage of the REP over the NDVI is 61 
that it is less sensitive to varying soil and atmospheric conditions, and sensor view angle (Curran et 62 
al. 1995, Blackburn and Pitman, 1999, Clevers et al. 2001). Many recent studies assessing the 63 
utility of hyperspectral predictors for estimating grass biomass have focused on single crops or 64 
species canopies (Thenkabail et al. 2000, Hansen and Schjoerring 2003, Mutanga and Skidmore 65 
2004). The utility of hyperspectral predictors for estimating or monitoring biomass in natural grass 66 
and/or herb communities remains to be established.  67 

The Mediterranean mountain grasslands in the region of Abruzzo, Italy consist of mixed 68 
grass/herb communities (Conti, 1998). These systems attain peak biomass in summer. But the hot 69 
summer climate, and variable cloud presence and precipitation in the region imply that the 70 
vegetation and atmospheric conditions are not stable. A major challenge in remote sensing of 71 
vegetation is the transferability of models developed at one time/place to another (Woodcock et al. 72 
2001, Foody et al. 2003, Lu 2006). The monitoring of peak grass/herb biomass on an annual basis 73 
would require that the relationship between biomass and the spectral predictor remains stable for 74 
different summer atmospheric and vegetation conditions.  75 

Thus, the research objective was to determine stable or robust hyperspectral predictors for 76 
estimating biomass production in Mediterranean mountain grasslands on a yearly basis. HyMap 77 
data was acquired in the study area, the Majella National Park, Italy in early and mid July 2004 and 78 
2005, respectively. The robustness of vegetation indices and REP for monitoring grass/herb 79 
biomass was determined by: (i) comparing the consistency of the linear relations between biomass 80 
and hyperspectral predictors for 2004 and 2005 and (ii) assessing the predictive capabilities of 81 
empirical models developed for 2004 in predicting the biomass of 2005 and vice versa.   82 

 83 
2. Material and methods 84 
 85 
2.1. The study area 86 
 87 

The study site is located in Majella National Park, Italy (latitude 41o52' to 42o14'N, longitude 88 
13o50' to 13o14'E), which covers an area of 74095 ha. The park extends into the southern part of 89 
Abruzzo, at a distance of 40 km from the Adriatic Sea. This region is situated in the massifs of the 90 
Apennines (Conti, 1998). The park is characterised by several mountain peaks, the highest being 91 
Mount Amaro (2794 m).  92 

More specifically, the study site (latitude 41o49’ to 42o14’N, longitude 13o57’ to 14o6’E) is 93 
situated between Mounts Majella and Morrone to the east and west, respectively. It covers an area 94 
of 40 km by 5.5 km. Gallego Fernández et al. (2004) argue that plant community dynamics in 95 
Mediterranean basin ecosystems are driven mainly by alternating episodes of human intervention 96 
and land abandonment. For example, abandoned settlement and agricultural areas in Majella are 97 
returning to oak (Quercus pubescens) woodlands at the lower altitude (400 m to 600 m) and beech 98 
(Fagus sylvatica) forest at the higher altitude (1200 m to 1800 m). Between these two formations is 99 
a landscape composed of shrubby bushes, patches of grass/herb vegetation, and bare rock outcrops. 100 
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The dominant grass species include Brachypodium genuense, Briza media, Bromus erectus and 101 
Festuca sp. Herbs include Helichrysum italicum, Galium verum, Trifolium pratense, Plantago 102 
lanceolata,  Sanguisorba officinalis and Ononis spinosa. 103 

 104 
2.2. Field data collection  105 
 106 
Two field campaigns to collect grass/herb biomass data were carried out in the summers of 2004 107 
(28 June to July 16) and 2005 (16 to 29 June). Random sampling with clustering was adopted in the 108 
study because of the difficult nature of the terrain. That is, twenty-five coordinate points were 109 
randomly generated with ArcGIS software from four phytosociological classes (semi-110 
natural/farmlands, grazed/periodically flooded areas, open garrigue and abandoned farmlands): 111 
eight plots in the semi-natural/farmlands/abandoned farmlands, five plots in the open garrigues and 112 
twelve plots in the grazed/periodically flooded areas. The number of samples per vegetation class 113 
was proportional to the size of the class. To each plot, an extra plot was sampled about 150m away 114 
in a randomly chosen direction.  The direction of the extra plot was randomly selected by throwing 115 
a piece of rock. Using a GPS, plots of 30 m by 30 m were located in the field. The plot size of 30m 116 
by 30m was deemed appropriate for the study area because of the spatial heterogeneity in 117 
vegetation types with autocorrelation distances of less than 50m. This fact notwithstanding, some 118 
plots fell within mixed grass/shrubby areas and such plots were sampled only when there was a 119 
patch of more than 20% of homogeneous and continuous fresh grass/herb cover. Twenty percent 120 
was chosen as the minimum area in such cases given that such an area could be conveniently 121 
captured within the HyMap image (spatial resolution of 4m). In general all plots were located in 122 
relatively homogenous areas in terms of grass/herb type and biomass. A total of 47 plots were 123 
sampled.  All field sample plots were aligned in the direction of the flight line. 124 

Above-ground biomass was clipped within five randomly selected subplots (1 m by 0.5 m) from 125 
each plot. All dry material was removed from the clipped plants before measuring the green 126 
biomass. Average green biomass per plot was calculated from the five subplot measurements.  127 
 128 
2.3. Image acquisition and pre-processing 129 
 130 

Airborne HyMap data of the study site were obtained on 15 July 2004 and 4 July 2005. The 131 
vegetation was greener in 2005 than in 2004 at the time of image acquisition. In addition, some 132 
parts of the study area were covered by clouds in 2005. The flights were carried out by DLR, 133 
Germany's Aerospace Research Centre and Space Agency. The HyMap sensor comprised 128 134 
wavebands, operating over the wavelength range 436 nm to 2485 nm, with average spectral 135 
resolutions of 15 nm (436 nm to 1313 nm), 13 nm (1409 nm to 1800 nm) and 17 nm (1953 nm to 136 
2485 nm). The spatial resolution of the data was 4 m. The data was collected at solar noon. The 137 
specific study site was covered by four image strips, each covering an area of about 40 km by 138 
2.3 km. The solar zenith and azimuth angles for the image strips range between 30-33.7o and 111.5-139 
121o, respectively.  140 

The 2004 and 2005 image strips were atmospherically corrected by DLR. But only the 2005 141 
images were geometrically corrected by DLR. The on-board navigation system used for geometric 142 
correction was a C-MIGITS II (Miniature Integrated GPS/INS Tactical System) system, which has 143 
a dx-dy accuracy of 2.5m and dz accuracy of 3m. The 2004 images strips were geometrically 144 
corrected from the 2005 images using image-to-image registration. The atmospheric correction was 145 
carried out using ATCOR4-r (Atmospheric/Topographic Correction-rugged terrain). ATCOR4 is 146 
based on MODTRAN-4 radiative transfer code (Richter and Schlapfer, 2002). However, there were 147 
differences between the reflectance of similar pixels in the overlapping sections between image 148 
strips for the 2005 image. We performed spectral calibration, using a reference image strip to 149 
mitigate the disparities. For example, image spectra collected from strip 2 (the reference strip) were 150 
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used to correct its overlapping neighbours (strips 1 and 3). Ten pairs of spectra were collected from 151 
corresponding targets in the overlapping sections between strips 1 and 2 to correct strip 1 and 152 
another ten pairs between strips 2 and 3 to correct strip 3. The spectra were collected from targets 153 
such as roads, agricultural fields, quarry fields, and dense beech forest pixels. The spectra were then 154 
used to develop linear regression functions for each band. Using the regression functions, strips 1 155 
and 3 were then adjusted to have a spectral response similar to that of strip 2. The same process was 156 
carried out using corrected strip 3 as the reference image to correct strip 4. The entire process was 157 
conducted using the empirical line tool in Environment for Visualising Images (ENVI 4.2) software 158 
(Research System, Inc.).  159 
 160 
2.4. Collecting image spectra for grass/herb plots 161 
 162 

Grass/herb areas were extracted from the image strips in order to eliminate mixed grass/shrubs 163 
and or tree pixels. First, an NDVI image involving bands at 665 nm and 831 nm was computed for 164 
each image strip using the ENVI 4.2 software. A point map of the grass/herb plots was then overlaid 165 
on the NDVI images. Pixels of pure grass/herb plots were used to determine minimum and 166 
maximum NDVI threshold values for grass/herbs. Next, a grass/herb region-of-interest map was 167 
created using the NDVI threshold values. Subsequently, the region-of-interest map was used to 168 
subset grass/herb areas from the image. All other pixels were masked out.  169 

A 7 by 7 pixels window (i.e. 28m × 28m) was used to collect grass/herb image spectra from each 170 
sample plot in order to avoid including pixels located outside the plot (30 m × 30 m). The spectra 171 
were collected and averaged. The spectra of five out of the 47 plots were not extracted from the 172 
2005 image strips because the plots were located in portions covered by clouds.  173 
 174 
2.5. Data analysis 175 
 176 
2.5.1. Spectral predictors  177 

Two types of spectral predictors were adopted in this study: 178 
 179 
[Insert Table 1] 180 
 181 
(a) Vegetation indices  182 

Four vegetation indices were used in the study: Narrow-band NDVI calculated from all 183 
combinations of red or far-red (600 to 740 nm) and NIR (756 to 1000 nm) bands, Modified soil 184 
adjusted vegetation index (MSAVI), soil and atmospherically resistant vegetation index (SARVI) 185 
and normalised difference water index (NDWI). The indices are presented in Table 1. Mutanga and 186 
Skidmore (2004) showed that widely used vegetation indices such as NDVI and transformed 187 
vegetation index (TVI) produce similar accuracies for grass biomass estimation. TVI was therefore 188 
not applied in this study.  189 
 190 
(b)  Red-edge position (REP) 191 

Red-edge positions were extracted by three simple methods; the linear four-point interpolation 192 
(Guyot and Baret, 1988), three-point Lagrangian interpolation (Dawson and Curran, 1998) and the 193 
linear extrapolation (Cho and Skidmore, 2006) methods.  194 
 195 
(i) Linear four-point  interpolation method 196 
 197 

The linear four-point interpolation method (Guyot and Baret, 1988) assumes that the reflectance 198 
curve at the red edge can be simplified to a straight line centred near the midpoint between the 199 
reflectance in the NIR at about 780 nm and the reflectance minimum of the chlorophyll absorption 200 
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feature at about 670 nm. It uses four wavebands, 670, 700, 740 and 780 nm i.e. 665, 695, 740 and 201 
786 for the HyMap spectrum. The REP is then determined by using a two-step calculation 202 
procedure.  203 
 204 
Calculation of the reflectance at the inflexion point (Rre): 205 
 206 

 ( )/2786665re RRR +=  (1) 207 
 208 
where R is the reflectance at a specified wavelength (e.g. 665 nm). 209 
 210 
Calculation of the red edge wavelength or red edge position (REP): 211 

 212 
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   214 
695 and 45 are constants resulting from interpolation in the 695-740 nm interval.  215 
 216 
(ii) Three-point Lagrangian interpolation method 217 
 218 

The three-point Lagrangian interpolation technique (Dawson and Curran, 1998) is designed to 219 
locate REP in spectra that have been sampled coarsely. Lagrangian interpolation is applied to the 220 
first derivative of the reflectance spectrum which is computed as follows:  221 
 222 

D(λi) = (Rλ(j+1) – Rλ(j))/∆ λ         (3) 223 
 224 
where D(λi) is the first derivative reflectance at a wavelength i, midpoint between wavebands j and 225 
j+1, Rλ(j) is the reflectance at the j waveband, Rλ(j+1) is the reflectance at the j+1 waveband, and 226 
∆ λ is the difference in wavelengths between j and j+1. 227 

The value of the first derivative at any wavelength (i.e. estimated value) will be Dλ. The 228 
Lagrangian interpolation technique for three known bands is given by  229 

 230 
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 232 
The band having the maximum first derivative will be λi, with λi-1 and λi+1 representing the two 233 

bands on either side of the maximum derivative. To determine the REP, a second derivation on Eq. 234 
4 is performed and resolved for when the second derivative is zero. i.e.  235 
 236 
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 240 
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 242 
[Insert Fig. 1] 243 
 244 

(iii) Linear extrapolation technique 245 
 246 

The linear extrapolation technique (Cho and Skidmore, 2006) is designed to track changes near 247 
chlorophyll sensitive peaks in the first derivative (D) of the red edge i.e. around 700 and 725 nm 248 
(Horler et al. 1983). The REP is calculated as the wavelength at the intersection of two straight 249 
lines (Eq. 7 & 8) extrapolated through two points on the far-red flank and two points on NIR flank 250 
of first derivative reflectance spectrum. For example, for the HyMap derivative spectra used in this 251 
study, the lines were extrapolated through derivative bands at 672 and 703 nm for the far-red line 252 
and 732 and 778 nm for the NIR line (Fig. 1).  253 
 254 

Far-red line: D = m1λ + c1         (7) 255 
 256 

NIR line: D = m2λ + c2          (8) 257 
 258 
where m and c represent the slope and intercept of the straight lines; m1 and c1for the far-red line 259 
and m2 and c2 for the NIR line.  At the intersection, the two lines have equal λ and D values. 260 
Therefore, the REP, which is the λ at the intersection, is given by: 261 
 262 

( )mm
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21
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−
−−

=                      (9) 263 

 264 
where  265 

 266 
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 270 
70317031 λmDc −=           (12) 271 

 272 
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 274 
2.5.2. Assessing the robustness of hyperspectral predictors for monitoring grass/herb biomass 275 

The robustness of the various spectral predictors for monitoring grass biomass was determined in 276 
two ways:   277 
 278 

i the consistency of the linear regression models between biomass and the spectral predictors 279 
were compared for both 2004 and 2005. The explained variance (coefficient of 280 
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determination or R2) and prediction errors (the root mean square errors of leave-one-out 281 
cross-validation (RMSECV)) were used for the comparison (Geladi and Kowalski, 1986). 282 

ii regression models developed for 2004 were used to predict the biomass of 2005 and vice 283 
versa. The performances of the various models for predicting either the next or previous 284 
years’ biomass were compared using the standard errors of prediction (RMSE).   285 

 286 
 287 
[Insert Table 2] 288 
[Insert Fig. 2] 289 
 290 
3. Results  291 
 292 
3.1. Spectral and green grass/herb biomass characteristics for 2004 and 2005 293 
 294 

The visible (450-700 nm), NIR (700-1300) and SWIR (1300-2500) reflectances were higher for 295 
2004 than 2005 (Fig. 2). These results are consistent with changes that occur when vegetation loses 296 
pigmentation and water (Knipling, 1970), e.g. during the early stages of senescence. Furthermore, 297 
compared with 2005, the 2004 reflectance spectra showed higher variability (standard deviations) 298 
in the chlorophyll (600-700), and leaf/atmospheric water absorption (1450 and 1940 nm) bands 299 
(Curran, 1989).  300 

The descriptive statistics for the green grass/herb biomass of 2004 and 2005 are presented in 301 
Table 2; the data distributions are assumed normal under the central limit theory. We used the 2-302 
Sample Student’s t-test to compute the confidence interval and perform a hypothesis test for the 303 
difference between the means of the biomass of 2004 and 2005. The null hypothesis was H0: µ1-µ2 304 
= 0 versus the alternative hypothesis H1: µ1-µ2 ≠ 0, where µ1 and µ2 are the mean biomass of 2004 305 
and 2005, respectively. The confidence interval (CI) for the difference in the means at 95% was -306 
161, 149 g m-2. The means were not significantly different at p<0.05. The annual variation in 307 
biomass calculated as the root of the mean square difference between the biomass of various plots 308 
for the two years was 334 g m-2. 309 

 310 
 311 
[Insert Tables 3 and 4] 312 
 313 
3.2. Predictive performance of vegetation indices  314 
 315 

The linear regression between grass/herb biomass and NDVIs computed from all combinations 316 
of wavebands between the NIR (756 to 1000 nm) and red or far-red (600 to 740 nm) produced 317 
different patterns for 2004 and 2005 (Fig. 3):  318 
 319 

i in general, more combinations, i.e. 152 out of a total of 180 combinations yielded high 320 
coefficients of determination (R2 ≥ 0.50) for 2004 compared with 2005 (35 combinations)  321 

ii the best five combinations for 2004 involved NIR bands and the red band at 695 nm, while for 322 
2005, the best five combinations involved NIR bands and red-edge bands located at the longer 323 
wavelength end between 725 - 740 nm (Table 3) 324 

iii the best five combinations for both 2004 and 2005 involved NIR bands located at the upper 325 
limit of the red edge (786 - 801 nm) and red-edge bands located mid-way along the red-edge 326 
slope (725 - 740 nm) (Table 4)  327 

iv the more traditional NDVI band combinations involving NIR and red wavelengths around the 328 
chlorophyll absorption centre (660-680 nm) performed poorly for 2005 biomass estimation.  329 

v The best five NDVI band combinations for 2005 are higher than those of 2004 (Table 3). 330 
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 331 
A comparative analysis of the predictive performance of the NDVI involving analogous Landsat 332 

TM bands (831 & 665 nm), best NDVI for 2004, best NDVI for 2005, overall best NDVI (786 & 333 
725 nm), MSAVI, SARVI and NDWI is presented in Table 5. The MSAVI and SARVI provided 334 
an insignificant improvement over NDVI computed from red and NIR bands. NDWI produced a 335 
higher correlation for 2004 than 2005. Although NDVI (786 & 725 nm) and NDVI (786 & 740 nm) 336 
showed high correlations (R2 ≥ 0.50) and low RMSECV for both 2004 and 2005, they showed 337 
higher prediction errors for the following or previous years’ biomass.  338 
 339 
[Insert Fig. 3] 340 
 341 
[Insert Table 5) 342 
 343 
3.3. Predictive performance of the red-edge position 344 
 345 

Among the REP methods, only REPs extracted by the Lagrangian and linear extrapolation 346 
methods were highly correlated (R2 ≥ 0.50) with biomass for 2004 and 2005. Nevertheless, REPs 347 
extracted by the linear interpolation method yielded the highest correlation (R2 = 0.62) and lowest 348 
RMSECV (239 g m-2) for 2005 when the vegetation was fresher. Compared with regression models 349 
developed using the best overall NDVI (786 & 725), the Lagrangian and linear extrapolation REP 350 
models for each year produced higher accuracies for grass/herb biomass prediction for the other 351 
year (Table 5 and Fig. 4). Figure 4 shows the predicted grass/herb biomass for a subset area of the 352 
2005 image based on linear regression models derived from the best overall NDVI (786 & 725) and 353 
linear extrapolation REP for 2004 and 2005. This subset area represents the largest patch of 354 
grassland within the study area. The prediction has been applied on the original 4m pixel image 355 
given that resampling to the field plot size (30m) did not significantly change the results. This was 356 
expected because each plot was located in a relatively homogenous grass patch. It could be 357 
observed that the predicted maps based on the REP models showed higher similarities compared 358 
with the NDVI models.   359 
 360 
[Insert Fig. 4] 361 
 362 
4. Discussion 363 
 364 

The present study evaluates the robustness or stability of hyperspectral predictors for estimating 365 
grass/herb biomass between two consecutive yearly hyperspectral images. HyMap data was 366 
acquired in the study area, the Majella National Park, Italy on 4 and 15 July 2004 and 2005, 367 
respectively. The spectral analyses of grass/herb plots (Fig. 2) seem to suggest that the vegetation 368 
and atmospheric conditions were different.  However, no significant difference was found between 369 
the means of green grass/herb biomass for 2004 and 2005.  370 

This study shows that frequently used NDVIs computed from canopy reflectance in the red (665-371 
680 nm) and near-infrared bands, MSAVI, SARVI and NDWI are not reliable predictors of 372 
grass/herb biomass on a yearly basis. The above indices were highly correlated (R2 ≥ 0.50) with 373 
biomass only for 2004 when the vegetation was in the early stages of senescence. The greener 374 
vegetation of 2005 may have caused the saturation of traditional vegetation indices involving NIR 375 
bands and red bands between 670-690 (Mutanga and Skidmore, 2004). Conversely, the results do 376 
support the growing body of evidence which shows that narrow-bands in the red-edge are more 377 
consistent predictors of plant biophysical parameters (Thenkabail et al. 2000, Gupta et al. 2003, 378 
Hansen and Schjoerring 2003, Mutanga and Skidmore 2004). However, the linear regression 379 
models derived from the best overall NDVI involving narrow-bands at 786 and 725 nm were year-380 
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specific because the models for one year poorly predicted the biomass of another year. Differences 381 
in phenological and atmospheric conditions between 2004 and 2005 might have affected the 382 
stability or robustness of the empirically derived NDVI models. It has been shown in several other 383 
studies that empirical models derived from vegetation indices are highly site and sensor specific 384 
and unsuitable for application to large areas or in different seasons (e.g. Curran, 1994; Gobron et al. 385 
1997).  386 

The results of this study show that REPs extracted by the Lagrangian and linear extrapolation 387 
methods correlated highly (R2 ≥ 0.50) with green grass/herb biomass for both 2004 and 2005. 388 
Interestingly, the Lagrangian and linear extrapolation REP models for one year predicted the 389 
biomass of the other year with higher accuracies compared with the linear interpolation REP and 390 
NDVI (786 & 725 nm) regression models. Differences in phenological and atmospheric conditions 391 
might have only a minor effect on the relationship between biomass and the Lagrangian or linear 392 
extrapolation REP compared with the linear interpolation REP. In fact, Clevers et al. (2001) 393 
demonstrated that the REPs are least sensitive to atmospheric and soil conditions. This may apply 394 
particularly to the Lagrangian and linear extrapolation REPs which are computed from derivative 395 
spectra. Derivative analysis enhances absorption features and suppresses contributions of non-396 
vegetative reflectance components (Boochs et al., 1990; Curran et al., 1991). The applicability of 397 
the Lagrangian and linear extrapolation REP regression models for different Mediterranean 398 
mountain grassland habitats and/or sensor types needs to be established.   399 

In summary, the determination of spectral predictors that produce consistent correlations with 400 
peak grass/herb biomass for slightly different phenological and atmospheric conditions could be 401 
useful for monitoring annual changes in biomass production. These results are particularly crucial 402 
for the Mediterranean mountain landscape because of the unstable summer climate in this region, 403 
which makes it difficult to obtain cloud- or haze-free images at a desired phenological stage. 404 
Moreover, the robustness of regression models derived from the Lagrangian and linear 405 
extrapolation REPs, means that more reliable estimates of biomass can be obtained for a new 406 
HyMap image for which field-measured biomass data is unavailable. However, the results of this 407 
initial study on the robustness of hyperspectral indices in time/space are not conclusive as the study 408 
is based on only two consecutive years. Measurement for many more years shall be needed to draw 409 
more solid conclusion about the robustness of vegetation indices in time/space.     410 

 411 
5. Summary and conclusions 412 
 413 

The robustness of hyperspectral predictors for estimating green grass/herb biomass in the Majella 414 
National Park, Italy on a yearly basis were assessed in terms of (i) the consistency of the 415 
relationships between biomass and the spectral predictors and (ii) the capability of empirical 416 
models developed for 2004 to predict the biomass of 2005 and vice versa.   417 

We conclude that the relationships between green grass/herb biomass and frequently used NDVIs 418 
computed from canopy reflectance in the red (665-680 nm) and near-infrared bands, MSAVI, 419 
SARVI and NDWI are not consistent from one year to the other. However, NDVI involving 420 
wavebands at 725 and 786 nm, or REPs extracted by the three-point Lagrangian interpolation and 421 
linear extrapolation techniques, produced high correlation (R2 ≥ 0.50) for both 2004 and 2005. 422 
However, the regression models based on REPs extracted by the Lagrangian and linear 423 
extrapolation methods for each year produced more reliable estimates of biomass for the other year.  424 

The results of this study could be useful for selecting hyperspectral predictors for monitoring 425 
annual changes in grass/herb biomass production across other Mediterranean mountain ecosystems.   426 
 427 
Acknowledgements  428 
 429 



 10

The International Institute for Geo-Information Science and Earth Observation (ITC) provided 430 
financial support for this study. We also extend our gratitude to the management of Majella 431 
National Park, Italy, and particularly to Dr Theodoro Andrisano.  432 
 433 
References 434 
 435 
ANDERSON, G.L., HANSON, J.D. and HAAS, R.H., 1993, Evaluating Landsat Thematic Mapper 436 

derived vegetation indices for estimating above-ground biomass on semiarid rangelands. 437 
Remote Sensing of Environment, 45(2): 165-175. 438 

BLACKBURN, G.A., 1998, Quantifying chlorophylls and caroteniods at leaf and canopy scales: 439 
An evaluation of some hyperspectral approaches. Remote Sensing of Environment, 66: 273-440 
285. 441 

BLACKBURN, G.A. and PITMAN, J.I., 1999. Biophysical controls on the directional spectral 442 
reflectance properties of bracken (Pteridium aquilinum) canopies: results of a field experiment. 443 
International Journal of Remote Sensing, 20(11): 2265-2282. 444 

BOOCHS, F., KUPFER, G., DOCKTER, K. and KUHBAUCH, W., 1990, Shape of the red-edge as 445 
vitality indicator for plants. International Journal of Remote Sensing, 11(10): 1741-1753. 446 

CHO, M.A. and SKIDMORE, A.K., 2006, A new technique for extracting the red edge position 447 
from hyperspectral data: The linear extrapolation method. Remote Sensing of Environment, 448 
101(2): 181-193. 449 

CHO, M.A., SKIDMORE, A.K., CHO, M.A., SKIDMORE, A.K., CORSI, F. van WIEREN, S.E. 450 
and SOBHAN, I. (in press). Estimation of green grass/herb biomass from airborne 451 
hyperspectral imagery using spectral indices and partial least squares regression. International 452 
Journal of Applied Earth Observation and Geoinformation  453 

CLEVERS, J.G.P.W., DE JONG, S.M., EPEMA, G.F., VAN DER MEER F., BAKKER, W.H., 454 
SKIDMORE, A.K., and ADDINK, E.A., 2001, MERIS and the red-edge position. JAG, 3(4): 455 
313-319. 456 

CONTI, F., 1998, Flora D'Abruzzo: An annotated checklist of the flora of the Abruzzo. Herbarium 457 
Mediterraneum Panormitanum, Palermo, Italy. 458 

CURRAN, P.J., 1989, Remote sensing of foliar chemistry. Remote Sensing of Environment, 30(3): 459 
271-278. 460 

CURRAN, P.J., 1994, Imaging spectrometry. Progress in Physical Geography, 18(2): 247– 266. 461 
CURRAN, P.J., DUNGAN, J.L., MACLER, B.A. and PLUMMER, S.E., 1991. The effect of a red 462 

leaf pigment on the relationship between red edge and chlorophyll concentration. Remote 463 
Sensing of Environment, 35: 69-76. 464 

CURRAN, P.J., WINDHAM, W.R. and GHOLZ, H.L., 1995, Exploring the relationship between 465 
reflectance red edge and chlorophyll concentration in slash pine leaves. Tree Physiology, 15: 466 
203-206. 467 

DAWSON, T.P. and CURRAN, P.J., 1998, A new technique for interpolating red edge position. 468 
International Journal of Remote Sensing, 19(11): 2133-2139. 469 

EVERITT, J.H., ESCOBAR, D.E. and RICHARDSON, A.J., 1989, Estimating grassland 470 
phytomass production with near-infrared and mid-infrared spectral variables. Remote Sensing 471 
of Environment, 30(3): 257-261. 472 

FOODY, G.M., BOYD, D.S. and CUTLER, M.E.J. (2003) Predictive relations of tropical forest 473 
biomass from Landsat TM data and their transferability between regions, Remote Sensing of 474 
Environment 85, 463-474.  475 

GALLEGO FERNÁNDEZ, J.B., GARCÍA MORA, M.R. and GARCÍA NOVO, F., 2004, 476 
Vegetation dynamics of Mediterranean shrublands in former cultural landscape at Grazalema 477 
Mountains, South Spain. Plant Ecology, 172(1): 83-94. 478 



 11

GAO, B., 1996, NDWI - A normalized difference water index for remote sensing of vegetation 479 
water from space. Remote Sensing of Environment, 58(3): 257-266. 480 

GAO, X., HUETE, A.R., NI, W. and MIURA, T., 2000, Optical-biophysical relationships of 481 
vegetation spectra without background contamination. Remote Sensing of Environment, 74: 482 
609-620. 483 

GELADI, P. and KOWALSKI, B.R., 1986. Partial least-squares regression: a tutorial. Analytica 484 
Chimica Acta, 185: 1-17. 485 

GILABERT, M.A., GANDIA, S. and MELIA, J., 1996. Analyses of spectral-biophysical 486 
relationships for a corn canopy. Remote Sensing of Environment, 55(1): 11-20. 487 

GOBRON, N., PINTY, B. and VERSTRAETE, M.M., 1997, Theoretical limits to the estimation of 488 
the leaf area  index on the basis of visible and near-infrared remote sensing data. IEEE 489 
Transactions on Geoscience and Remote Sensing, 35(6): 1438– 1445. 490 

GUPTA, R.K., VIJAYAN, D. and PRASAD, T.S., 2003, Comparative analysis of red-edge 491 
hyperspectral indices. Advance Space Research, 32(11): 2217-2222. 492 

GUYOT, G. and BARET, F., 1988, Utilisation de la haute résolution spectrale pour suivre l'état des 493 
couverts végétaux, Proceedings of the 4th International colloquium on spectral signatures of 494 
objects in remote sensing. ESA SP-287, Assois, France, pp. 279-286. 495 

HANSEN, P.M. and SCHJOERRING, J.K., 2003, Reflectance measurement of canopy biomass 496 
and nitrogen status in wheat crops using normalized difference vegetation indices and partial 497 
least squares regression. Remote Sensing of Environment, 86: 542-553. 498 

HORLER, D.N.H., DOCKRAY, M. and BARBER, J., 1983, The red edge of plant leaf reflectance. 499 
International Journal of Remote Sensing, 4(2): 273-288. 500 

HUETE, A.R. and JACKSON, R.D., 1988, Soil and atmosphere influences on the spectra of partial 501 
canopies. Remote Sensing of Environment, 25(1): 89-105. 502 

JENSEN, J.R., 2000, Remote sensing of the environment: an earth resource perspective. Prentice 503 
Hall series in Geographic Information Science. Prentice Hall, New Jersey, 544 pp. 504 

KAUFMAN, Y.J. and TANRÉ, D., 1992, Atmospherically resistant vegetation index (ARVI) for 505 
EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 261-270. 506 

KNIPLING, E.B., 1970, Physical and physiological basis for the reflectance of visible and near-507 
infrared radiation from vegetation. Remote Sensing of Environment, 1: 155-159. 508 

LU, D., 2006, The potential and challenge of remote sensing-based biomass estimation. 509 
International Journal of Remote Sensing 27(7):1297-1328.  510 

MIDDLETON, E.M., 1991. Solar zenith angle effects on vegetation indices in tallgrass prairie. 511 
Remote Sensing of Environment, 38(1): 45-62. 512 

MUTANGA, O. and SKIDMORE, A.K., 2004, Narrow band vegetation indices overcome the 513 
saturation problem in biomass estimation. International Journal of Remote Sensing, 25: 1-16. 514 

QI, J., CABOT, F., MORAN, M.S. and DEDIEU, G., 1995, Biophysical parameter estimations 515 
using multidirectional spectral measurements. Remote Sensing of Environment, 54(1): 71-83. 516 

RICHARDSON, A.J., WIEGAND, C.L., ARKIN, G.F., NIXON, P.R. and GERBERMANN, A.H., 517 
1982, Remotely-sensed spectral indicators of sorghum development and their use in growth 518 
modeling. Agricultural Meteorology, 26(1): 11-23. 519 

RICHTER, R. and SCHLAPFER, D., 2002, Geo-atmospheric processing of airborne imaging 520 
spectrometry data. Part 2: atmospheric/topographic correction. International Journal of Remote 521 
Sensing, 23:2631-2649 522 

ROUSE, J.W., HAAS, R.H., SCHELL, J.A., DEERING, D.W. and HARLAN, J.C., 1974, 523 
Monitoring the vernal advancement and retrogradation of natural vegetation, NASA/GSFC, 524 
Type III Final Report, M.D. Greenbelt, pp. 371. 525 

SELLERS, P.J., 1985, Canopy reflectance, photosynthesis and transpiration. International Journal 526 
of Remote Sensing, 6(8): 1335-1372. 527 



 12

THENKABAIL, P.S., SMITH, R.B. and DE PAUW, E., 2000, Hyperspectral vegetation indices 528 
and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 529 
71: 158-182. 530 

TODD, S.W., HOFFER, R.M. and MILCHUNAS, D.G., 1998, Biomass estimation on grazed and 531 
ungrazed rangelands using spectral indices. International Journal of Remote Sensing, 19(3): 532 
427-438. 533 

WOODCOCK, C.E., MACOMBER, S.A., PAX-LENNEY, M. and COHEN, W.B., 2001, 534 
Monitoring large areas for forest change using Landsat: generalisation across space, time and 535 
Landsat sensors, Remote Sensing of Environment 78, 194–203. 536 

WYLIE, B.K., MEYER, D.J., TIESZEN, L.L. and MANNEL, S., 2002, Satellite mapping of 537 
surface biophysical parameters at the biome scale over the North American grasslands:  A case 538 
study. Remote Sensing of Environment, 79(2-3): 266-278. 539 



 13

 540 
 541 
 542 
Table 1 543 
Summary of vegetation indices analysed in this study. Rblue, Rred and RNIR denote reflectances in the 544 
blue, red and NIR, respectively.  545 
Index Formula  Description References (e.g.) 
NDVI (RNIR - Rred)/(RNIR + Rred) 

 
 

Normalised difference vegetation 
index. Related to changes in 
amount of green biomass and 
pigment content. 

Rouse et al. 1974 

MSAVI ( ) ( )

2

81212 2
redNIRNIRNIR RRRR −−+−+

 

 

Modified soil adjusted vegetation 
index minimises soil influences 
on canopy spectra. Red and NIR 
bands at 665 nm  and 831 nm, 
respectively. 

Huete 1988, Qi et 
al. 1994. 

SARVI Rrb = Rred - γ(Rblue - Rred)  
The subscripts r and b denote the red 
and blue bands, respectively. γ denotes 
the atmospheric aerosol correction 
function.  
SARVI = (RNIR  - Rrb)/(RNIR  - Rrb + L) 
L = soil adjustment factor  
 

Soil adjusted and atmospherically 
resistant vegetation index. Blue 
and red bands at 482 and 665 nm, 
respectively. 
γ = 0.9, L = 0.5 
 
 

Kaufman and 
Tanre 1992, 
Huete et al. 1994. 

NDWI (R860 − R1240) / (R860 + R1240 Normalised difference water 
index is sensitive to changes in 
liquid water content of vegetation 
canopies. Gao (1996) showed that 
NDWI is less sensitive to 
atmospheric effects than NDVI 
 

Gao 1996.  

 546 
 547 
 548 
Table 2 549 
Green grass/herb biomass data for 2004 and 2005 collected in Majella National Park, Italy  550 
year N Mean  

(g m-2) 
SD Minimum Maximum 

June/July 2004 47 768 366 200 1750 
June 2005 42 774 369 210 2010 
N = number of samples, SD = standard deviation 551 
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 552 
Table 3 553 
Best NDVI combinations for predicting grass/herb biomass in the Majella National Park, Italy for 554 
2004 and 2005. R2 = coefficient of determination. 555 
Near-infrared  
wavelength 
(nm) 

Red or far-red 
 wavelength 
(nm) 

R2 

2004 HyMap 
image 

  

786 695 0.56 
801 695 0.56 
771 695 0.56 
756 695 0.56 
816 695 0.56 
   
2005 HyMap 
image 

  

786 740 0.64 
801 740 0.64 
771 740 0.62 
756 740 0.62 
879 725 0.62 
 556 
 557 
Table 4 558 
Overall best NDVI combinations for predicting grass/herb biomass in the Majella National Park, 559 
Italy for both 2004 and 2005. They are classified according to decreasing difference in the 560 
coefficients of determination (R2) between 2004 and 2005 for combinations that yielded high 561 
correlations (R2 ≥ 50) for both years.  562 

R2 Near-infrared  
wavelength (nm) 

Red or far-red 
 wavelength (nm) 2004 2005 

786 725 0.55 0.58 
801 725 0.54 0.59 
756 740 0.51 0.62 
771 740 0.51 0.62 
786 740 0.50 0.64 
 563 
 564 
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 565 
 566 
Table 5 567 
A comparative analysis of the performance of vegetation indices and red-edge position (REP) 568 
extracted by three methods for predicting grass/herb biomass using HyMap images. The images 569 
were acquired over Majella National Park, Italy in the summers of 2004 and 2005. R2 and 570 
RMSECV denote the coefficient of determination and the root mean square error of leave-one-out 571 
cross validation, respectively. 572 
2004 HyMap image Linear regression model R2 RMSECV 

(g m-2) 
Prediction error 
(RMSE) based on 
2005 model  

NDVI (831 & 665 nm) - 758.8 + 2328.7 NDVI 0.55 255 301 
NDVI(786 & 695 nm) - 455.7 + 2326.6 NDVI 0.56 252 298 
NDVI (786 & 740 nm) - 425 + 17522 NDVI 0.50 264 273 
NDVI (786 & 725 nm)  - 205.1 + 5786.8 NDVI 0.55 252 294 
MSAVI - 1791.5 + 1627.5 MSAVI 0.54 258 304 
SARVI - 283.2 + 1847.6 SARVI 0.55 255 290 
NDWI  804.69 + 5729.6 NDWI 0.55 251 389 
REP (linear interpolation) - 146667 + 205131 REP 0.47 272 352 
REP (three-point Lagrangian 
interpolation) 

- 52499 + 74475 REP 0.50 265 266 

REP (linear extrapolation) - 27980 + 40498 REP 0.53 258 279 

     
2005 HyMap image 
 

Linear regression model R2 RMSECV Prediction error 
(RMSE) based on 
2004 model 

NDVI (831 & 665 nm) - 744 + 2040.4 NDVI 0.32 319 361 
NDVI(786 & 695 nm) - 523 + 2121 NDVI 0.38 306 346 
NDVI (786 & 740 nm) - 697 + 20149 NDVI 0.64 231 349 
NDVI (786 & 725 nm)  - 470.2 + 6393.5 NDVI 0.58 253 280 
MSAVI - 1703.4 + 1458.6 MSAVI 0.30 325 365 
SARVI - 270.5 + 1556.4 SARVI 0.31 322 356 
NDWI  496.6 + 4866.4 NDWI 0.49 280 444 
REP (linear interpolation) - 181974+ 254570 REP 0.62 239 295 
REP (three-point Lagrangian 
interpolation) 

- 51651 + 73184 REP 0.56 258 254 

REP (linear extrapolation) - 33500 + 48110 REP 0.58 252 258 
Note: All the relations were statistically significant at p<0.05 573 
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 575 
  576 
Figure 1. First derivative spectra of 2005 sample plots showing bands used in the calculation of red-577 
edge positions by the linear extrapolation method.   578 
 579 
 580 
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 581 
Figure 2. Mean reflectance spectra (a) and their corresponding standard deviations (b) for 582 
grass/herb plots extracted from HyMap images acquired over Majella National Park, Italy in mid 583 
and early July 2004 and 2005, respectively. 584 
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 585 
 586 
Figure 3. Contour plots showing the sensitivity (based on the coefficient of determination i.e. R2) of 587 
the relations between Majella green grass/herb biomass and NDVIs calculated from all 588 
combinations of near-infrared (756 to 1000 nm) and red or far-red (600 to 740 nm) bands for (a) 589 
2004 and (b) 2005 HyMap images.  590 
 591 
 592 
 593 
 594 
 595 
 596 
 597 
 598 
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 599 

 600 
 601 
Figure 4. Predicted green grass/herb biomass for a subset area of the 2005 HyMap image based on 602 
(i) 2005 and (ii) 2004 regression models for (a) NDVI (786 & 725 nm) and (b) red-edge position 603 
extracted by the linear extrapolation method.  (c) Histogram showing the differences between (i) 604 
and (ii), i.e. number of pixels against difference in biomass.  605 
 606 
 607 
 608 


