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Abstract
We analyse the effect of speech rate variation on Afrikaans
phone stability from an acoustic perspective. Specifically we
introduce two techniques for the acoustic analysis of speech
rate variation, apply these techniques to an Afrikaans speech
recognition corpus containing extensive speech variation, and
demonstrate how these techniques can be used to better under-
stand the performance of a speech recognition system trained
on such data.

1. Introduction
Typically there are various sources of variation present in the
acoustic training data that are used when building an automatic
speech recognition (ASR) system. Sources of variation include
dialect differences, speaker differences, channel effects such as
bandwidth and background noise, speaking style and vocabu-
lary used. One such source of variation that has received some
attention in literature is speech rate variation [1]. In this paper
we investigate the effect of speech rate variation on Afrikaans
phone realisation. Specifically we aim to answer the following
questions:

1. How stable are the different Afrikaans phones with re-
gard to speech rate variation?

2. Which techniques can assist us in analysing such phone
variability?

3. Can these techniques assist us in understanding and ex-
plaining ASR performance?

While literature exists that addresses the effect of speech rate
variability on phone duration [2], we are specifically interested
in the effect of speech rate variability on phone acoustics.

The remainder of this paper is structured as follows: In sec-
tion 2 we provide some general background with regard to the
analysis techniques used. Section 3 contains a description of
our experimental setup, while section 4 contains a discussion of
the specific analysis techniques used and the results obtained.
Section 5 summarises the main conclusions of the study and
describes possible future work.

2. Background
Two of the tools used extensively in our analysis are (1) the
Bhattacharyya distance [3], a distance measure defined between
two Gaussian distributions, and (2) speaker space correlation
matrices, a measure of the amount of cross-speaker correlation
across phones.

2.1. The Bhattacharyya distance

Many texts on statistical pattern recognition cover the Bhat-
tacharyya distance. This is a useful measure to compare how
far two Gaussian distributions are apart. If we define the fol-
lowing notations [4]:

ωi : class i = 1, 2

Mi : mean vector of class ωi

Σi : covariance matrix of class ωi

then the Bhattacharyya distance, Dbhat, is defined as:
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The equation consists of two parts that give separability due to
the difference between class means and the difference between
class covariance matrices respectively [4].

2.2. Speaker space correlation matrices

Speaker space correlation matrices provide a measure of the
amount of cross-speaker correlation across phones. The eigen-
vector decomposition of the speaker space correlation matrix
has been shown to be useful in normalising speech (perform-
ing speaker normalisation) prior to speech recognition system
training [5].

Speaker space correlation matrices as defined in [5] are con-
structed by extracting feature vectors (such as Mel-Frequency
Cepstral Coefficient (MFCC) observations or formant frequen-
cies) according to phone identities, and generating a single
mean value per feature per speaker per phone. For every speaker
an m x d-dimensional vector is constructed for the m observed
phones and d-dimensional feature vector.

The vectors of phones being investigated are then concate-
nated in the same sequence for each speaker, which results in a
matrix of speaker vectors. If the correlation values are given by:

ρXY =
Cov(X, Y )

σXσY
(2)

where Cov(X, Y ) = E[(X − µX)(Y − µY )] (3)

and σX indicates the standard deviation of X and µX the mean
of X , then by calculating the correlation matrix of the matrix
of speaker vectors we end up with a speaker space correlation
matrix.

The means of the feature vector of a specific context
(phone) varies with a certain pattern between different speakers.



Speaker space correlation matrices thus describe the similarity
of these variations across contexts.

3. Experimental setup

We use two acoustic analysis techniques and the results of a set
of speech recognition experiments to perform our analysis. In
this section we briefly describe the data set and speech features
used, as well as the basic construction of the speech recognition
system.

3.1. Data set

The data set utilised during this study was custom-developed
by North-West University. This corpus contains transcribed
read speech with samples of both slow and fast speech for each
speaker. The set of Afrikaans data that we analyse contains 127
speakers and consists of two and a half hours of 16 bit data with
a sample rate of 22 kHz. It is not the full corpus which contains
130 speakers and consists of three and a half hours of data. Due
to transcription errors, pronunciation errors and two low qual-
ity speakers one hour of data were not used. Durations for the
slow and fast data sets are approximately one and a half hours
and one hour respectively. This is a limited resource as far as
speech recognition is concerned.

3.2. Speech features

Mel-Frequency Cepstral Coefficients (MFCCs) are used as
speech features during the analysis. These coefficients are cal-
culated from the spectrum of the speech signal. From the Dis-
crete Fourier Transform (DFT) of the signal, a filter-bank con-
taining triangular filters is used to compute the average of the
spectrum around the center frequency of each filter. These fil-
ters have increasing bandwidth and are spaced along the mel-
scale. MFCCs are then defined as the discrete cosine transform
of the log filter-bank amplitudes [6].

We use only the first 13 MFCC coefficients and include
delta and acceleration coefficients in some of the analyses. The
delta and acceleration coefficients are calculated by taking the
first and second derivatives of MFCC 0 - 12 (0 being a repre-
sentation of total spectral energy) [7], resulting in a total of 39
coefficients used. We use a frame size of 25ms and an overlap
of 15ms, resulting in one observation every 10ms.

3.3. Speech recognition system

We build a Hidden Markov Model (HMM)-based speech recog-
nition system, using the toolkit HTK [7], Gaussian mixtures
to model observation probabilities, a 3-state left-to-right HMM
per phone. For different purposes we build a monophone sys-
tem, a single-mixture triphone based system and a 17-mixture
triphone-based system.

Different speech recognition systems are constructed dur-
ing the analysis: a system built using only a portion of the slow
speech (S), only a portion of the fast speech (F) or a portion of
all available data (A). The various train and test data sets are
randomly selected to consist of 90% and 10% of the above data
sets. In the case of slow data, the training set used for ASR ex-
periments were further limited to be of the same duration as the
fast data training set.

4. Analysis and results
In this section we describe the different analysis techniques
used: (1) an initial duration analysis of the data set in order to
ensure that significant speech rate differences do indeed exist,
(2) acoustic analysis of the data according to distance measures,
(3) acoustic analysis of the data according to speaker space cor-
relation, and (4) an analysis of speech recognition performance.

4.1. Duration analysis

In order to do a first analysis of the durations of each phone,
we perform a forced alignment using the best available speech
recognition system (A) and the known transcriptions. For each
phone we calculate the average duration across all speakers for
both the fast and slow speech respectively.

Table 1 lists the difference in the average phone durations
between the slow and fast data sets for the phones considered.
The actual phone duration times are derived from the average
amount of MFCC observations allocated to the particular phone
for that dataset. Given the fact that one MFCC observation has
a length of 10 ms, it can be seen that the average differences
between phones of the fast and slow data range between 2 and
20 ms.

Phone Duration difference (10ms)
a: 2.035
e: 1.971
s 1.529
x 1.322
f 1.305
p 1.259
ey 1.240
o: 1.145
k 1.020
ao 0.991
t 0.926

ah 0.917
eh 0.892
m 0.888
v 0.805
n 0.768
b 0.723
iy 0.670
h 0.629
l 0.586
r 0.578

ax 0.488
d 0.255

Table 1: Average phone duration difference between fast and
slow data

As can be expected, the difference in phone length is also
visible through the transition probabilities of the HMMs. For
example, for a monophone such as /a:/ that has a lengthened
duration for slow speed rates, the probability of remaining in a
given state is 0.59, 0.80 and 0.61 for states 1, 2 and 3 respec-
tively when trained on fast data, and 0.65, 0.84 and 0.68 for
states 1, 2 and 3 respectively, when trained on slow data. In this
way the HMM provides an automatic compensation mechanism
for the difference in duration between the two models.



4.2. Distance measures between acoustic models

A logical place to look for variations that occur in data is to look
at the acoustic models themselves. The single-mixture HMMs
we use all consist of three emitting states, each containing one
Gaussian distribution to model the acoustics of that state. Us-
ing the Bhattacharyya distance as distance measure to compare
the distributions between similar states of models, enables us to
determine how similar two models trained on different data sets
are. As the data set is fairly limited, we constrain this analysis
to single-mixture monophone models.

4.2.1. Defining confidence intervals

When comparing two acoustic models of different data sets, it
is important to consider the amount of training data that resulted
in the estimation of the model. The Bhattacharyya distance be-
tween two acoustic models trained on different data sets results
in part from the fact that the distributions themselves are differ-
ent for poorly estimated and well estimated models. This effect
will decrease as more data is used and will disappear when suf-
ficient data results in accurate density estimation.

In order to correctly interpret comparative results we use the
following process to define confidence intervals for our results:
Firstly, the total amount of phone occurrences for every phone
found in the data is measured. From these values we select a
phone that occurs very frequently (over 10 000 occurrences in
the training data) in order to ensure an accurate estimation of the
acoustic model for that particular phone. We also ensure that
the Bhattacharyya distance between two sufficiently estimated
models of different datasets (such as F and S) for this phone is
small compared to the other phones found in the data. This is a
good indication that other variations in the data does not have a
big effect on the chosen phone. The Afrikaans phone we choose
is the short vowel /ax/ as found in the Afrikaans pronunciation
of ‘kind’ (/k ax n t/, ‘child’ in English).

We then construct training subsets from the full training set
containing an increasing number of occurrences of the phone
in question. For each training subset we estimate a separate
model. Models are thus estimated for phone counts of /ax/ from
10 up to 10 000 occurrences. For each of these models the
Bhattacharyya distances with a well estimated model are de-
termined.

Confidence intervals can be described as the accuracy of
the estimation of a model at a particular phone occurrence as
a function of the total deviation (worst case scenario) observed.
By taking the distance value of the most poorly estimated model
of our selected phone /ax/ as the maximum variance, each of
the other distance values can be expressed as a percentage of
the maximum deviation, resulting in a the confidence intervals
listed in Table 2.

4.2.2. Grouping of phones based on Bhattacharyya distance

Not all Afrikaans phones were sufficiently covered by the lim-
ited amount of training data. It was thus unavoidable that some
acoustic models were not estimated well. By comparing the
distance between models found in Table 3 with the confidence
interval values of Table 2, it is easy to see that the phones cannot
be classified when model estimations is performed on less than
850 occurrences. As a result all phones occurring less than 850
times for the test being performed were omitted.

We are left with 23 phones that can further be divided in two
sets. One for phone occurrences below and above 2000 respec-
tively. By doing this we end up with two groups of phones that

Mean Bhattacharyya Percentage of max Occurrences
1.793 100.00 10
0.660 36.80 50
0.443 24.73 100
0.169 9.44 200
0.094 5.25 500
0.027 1.51 700
0.037 2.05 850
0.025 1.40 1000
0.011 0.59 2000
0.002 0.13 5000
0.000 0.00 10000

Table 2: Bhattacharyya distance between /ax/ model for all slow
data and partially estimated slow model with selected counts

can be classified according to their acoustic distances within a
confidence interval of 2% and 0.59% of the expected maximum
deviation respectively.

This grouping being applied to the phones found in Table
3, the Bhattacharyya distance values can now be used to com-
pare the acoustics of two speech recognition models. The val-
ues represent the average (across the three emitting states) of
the Bhattacharyya distances between the models for the same
phone trained on a selected fast and slow dataset of same dura-
tion 3.3.

Phone AVG Bhat distance Occurrence
iy 0.068 2025
l 0.061 2185
n 0.060 3895
k 0.059 2047
d 0.058 2592
s 0.054 3562
t 0.053 3989

ax 0.044 6162
ah 0.044 2326
r 0.031 3660

eh 0.141 1397
ao 0.137 1565
e: 0.102 1024
ey 0.085 1040
v 0.071 1183
a: 0.064 1567
m 0.057 1569
f 0.054 1625
h 0.045 1313
x 0.037 1744

Table 3: Average Bhattacharyya distance between models for
fast and slow data

It is interesting to note that the size of the acoustic differ-
ence observed does not correlate strongly with the observed
changes in duration (as listed in Table 1), but rather seem to
correlate fairly well with the place of articulation.

Overall sounds that require the most effort to pronounce
correctly are affected most. By this effort we refer to sounds
that are pronounced with a raised tongue, rounding or widening
and phones requiring transitions such as diphthongs [8]. Table
4 summarizes these difficulties for all the vowels in Table 3.



Phone Rounding Tongue raised Change
eh Wide Medium No
ao Rounded Medium No
e: Wide High - Medium Yes
ey Neutral Medium - High Yes
iy Wide High No
a: Neutral Low No
o: Rounded Low No
ax Neutral Medium No
ah Neutral Low No

Table 4: Pronunciation difficulties of vowels ordered according
to difficulty (starting with the most difficult)

4.3. Speaker space correlation

Next, we analyse the data according to speaker space correla-
tion. We only use the first 13 coefficients to construct speaker
space correlation matrices. For each sound file the MFCC ob-
servations (13 dimensional vectors) are extracted and grouped
according to phone pronunciations using our optimal speech
recognition system (A) and forced alignment.

We now create a new speaker space correlation matrix
structure consisting of four phone averages per speaker instead
of the normal one. This is done by taking the same fast and
slow data sets used to train the acoustic models and obtaining
separate means for the fast and slow data respectively. In ad-
dition, each data set is split into two random sets of equal size,
resulting in two means for each slow feature vector as well as
two means for each fast feature vector (per phone). The mean
vectors of these four representatives of the same phone (two fast
and two slow) are then concatenated for every speaker. We cal-
culate the correlation matrix of the matrix of speaker vectors
(according to section 2.2) as shown for the phone /ax/ in Figure
1. The phone labels /ax/,/ax2/,/ax F/,/ax2 F/ indicate the order
that the mean vectors of each phone have been added for the
slow, second slow, fast and second fast phones respectively.

From the correlation matrix it is possible to extract sub-
matrices for every combination of the two fast and slow phones.
Each of the diagonal elements of these sub-matrices then rep-
resent the correlation between the means of the same MFCC
coefficient across speaker space for the particular combina-
tion. These diagonal elements are referred to as ‘strip corre-
lations’ [5].

4.3.1. Evaluating differences in correlation

Comparison of the strip correlations yield interesting results.
When we group the values of the strips for phone combina-
tions slow-slow (SS), fast-fast (FF) and slow-fast (SF), Table
5 clearly shows stronger correlations for the SS and FF com-
binations than for the SF combination. This is the case for al-
most all of the selected set of 23 phones. This result indicates
that there is stronger cross-speaker correlation across the same
speech rate, than between different speech rates.

Table 6 shows the same experiment, but now two phones
at a time are compared across speaker space. The comparative
values for three short vowels and two very similar consonants is
shown. As is expected, it can be seen that the values are signifi-
cantly lower than the values where the same phone is compared
with itself. Note that the difference caused by speech rate vari-
ation is still apparent in the SF column.

Figure 1: Speaker space correlation matrix comparing four
phones

4.4. Implications for speech recognition

We are interested in determining whether the analysis described
in the preceding section sheds light on the confusion results ob-
served. In order to analyse speech recognition performance, we
analyse the phone confusion matrices. Such a matrix consists
of a row for each phone occurring in the true transcriptions and
a column for each model used during recognition. Each matrix
entry contains a count that corresponds to the number of times
that a particular phone was recognized by a particular model.
When a transcribed phone is recognized as being closer to a
different model than intended, a phone confusion (recognition
error) occurs. From this it is possible to classify the phones ac-
cording to how well they are recognized. When the testing data
has a different speech rate than the training data, the recognition
accuracies of phones may be affected. While confusion matri-
ces are reported on according to monophones, actual recogni-
tion (when generating the confusion matrices) utilises the most
accurate triphone-based system.

4.4.1. Defining confidence intervals

As before, it is important to determine when results are signif-
icant given the issue of data scarcity. We define a confidence
interval according to the expected variation of the mean of n
measurements (σn) where:

σn(phone) =
σ√
n
'
r

p(1− p)

n
where, p =

correct

n
(4)

and σ is the standard deviation of the measurement.

4.4.2. Evaluating ASR performance

We first evaluate overall performance on the three systems built
when recognising either slow or fast data. Phone recognition
results are listed in table 7 when recognising a 5000-word vo-
cabulary using a flat word model (no statistical language model
used to guide recognition).

It is clear that overall results improve with additional train-
ing data, and that slow and fast testing data do not provide better
accuracy on systems trained only on slow or fast training data.

We are specifically interested in the difference in confusion
when slow data is recognised on the best performing system AS



Phone SS FF SF
iy 0.820 0.815 0.776
l 0.697 0.696 0.685
n 0.904 0.903 0.863
k 0.616 0.615 0.587
d 0.732 0.744 0.690
s 0.889 0.888 0.816
t 0.777 0.758 0.704

ax 0.918 0.927 0.873
ah 0.863 0.837 0.820
r 0.811 0.817 0.757

eh 0.796 0.803 0.765
ao 0.749 0.761 0.737
e: 0.822 0.813 0.794
ey 0.823 0.801 0.785
p 0.440 0.396 0.440
v 0.649 0.602 0.596
a: 0.850 0.803 0.798
b 0.560 0.614 0.581
o: 0.735 0.734 0.729
m 0.797 0.841 0.803
f 0.804 0.829 0.732
h 0.548 0.621 0.595
x 0.741 0.706 0.670

Table 5: Strip correlations between SS FF and SF of the same
phone

Phone SS FF SF
ah eh 0.587 0.604 0.558
ao eh 0.605 0.602 0.569
ax ah 0.780 0.782 0.734
ax ao 0.670 0.673 0.625
ax eh 0.698 0.721 0.670

d t 0.627 0.636 0.558
t s 0.647 0.641 0.580

Table 6: Strip correlations between SS FF and SF of different
phones

versus when slow data is compared on the most mismatched
system FS and similarly the difference in confusion when fast
data is recognised on the best performing system AF versus
when fast data is compared on the most mismatched system SF .
Here XY indicate training on system X and testing with data
from Y . We then calculate these differences as: D1 = AF−SF

and D2 = AS − FS where AF , AS , SF and FS are the con-
fusion matrices of that particular testcase, expressed in percent-
ages.

Confidence intervals were calculated for all the phones of
every confusion matrix. Only phones that have smaller confi-
dence intervals than accuracy differences can be considered.

When evaluating the results for the phones in Tables 8 and
9 it is clear that less phone comparison results are significant
(distances greater than confidence intervals) for the D2 case.
This is due to the fact that less phones can be realized within the
same time duration for the slow data testset. As can be inferred
from Equation 4, when dividing by a smaller n, the confidence
intervals get bigger.

As it turns out the distances between the same phones of the
AF and SF test case are greater than the distances between the

Training Testset S Testset F
S 69.63% 67.58%
F 71.86% 65.70%
A 76.76% 74.65%

Table 7: Phone recognition results for combinations of speech
recognition datasets

Figure 2: Bar chart of the Bhattacharyya distances and the con-
fusability of the phones selected

same phones for the AS and FS test case. Looking at Table 7,
we see that this results correlate well, as the phone recognition
results for the SF case are indeed worse than the FS case.

Figure 2 shows the Bhattacharyya distances found in Table
3 compared to the level of confusability of the phones for the
phone recognition results of the D1 case as in Table 8. Nor-
malization of the Bhattacharyya distances can be done to com-
pensate for the estimation differences of the models due to the
amount of phone occurances found in the datasets. A common
operating point for every phone, of say 2000 phone occurances,
can then be estimated for both the (S) and the (F) datasets.
When this is done it is clear that the goodness of model esti-
mation still plays the larger role in the phone recognition results
for the investigated datasets.

5. Conclusion
This paper produces initial results with regard to speech rate
variation in Afrikaans. While more conclusive results with re-
gard to speech rate variability would require analysis on a larger
corpus, we note the following:

1. The correlation between phone duration change and
acoustic change (due to speech rate variation) is weak.

2. We found that phone acoustics are affected differently
for each particular phone in question.

3. There is an interesting relationship between the amount
of acoustic change (between slow and fast realization of
the same phone) and the difficulty of pronouncing the
phone using measures such as place of articulation and
rounding.

4. The Bhattacharyya distance between single mixture
monophones of slow and fast speech provides some indi-
cation of the expected phone confusebility as measured
by a speech recognition system.



Phone % Correct Difference Conf 1 Conf 2
ay 57.14 0.429 0.187 0.132
eu 66.67 0.333 0.111 0.111
u 70.49 0.164 0.058 0.064

ng 87.65 0.123 0.037 0.048
h 58.47 0.093 0.032 0.033
m 84.25 0.075 0.021 0.025
ah 86.65 0.071 0.017 0.021
t 86.76 0.066 0.013 0.015
k 91.80 0.050 0.014 0.017
ao 84.27 0.049 0.022 0.024
a: 87.50 0.045 0.020 0.023
l 88.95 0.043 0.016 0.019

ax 85.19 0.042 0.011 0.012
iy 78.64 0.041 0.020 0.021
r 92.21 0.036 0.011 0.013
n 86.95 0.035 0.013 0.014

Table 9: Difference D2 of AS and FS and % of correct recog-
nitions measured on the best model

Phone % Correct Difference Conf 1 Conf 2
oei 83.33 0.667 0.152 0.152
g 83.33 0.583 0.152 0.217
u: 84.62 0.385 0.100 0.138
y 66.67 0.333 0.136 0.136

ow 58.54 0.293 0.077 0.071
ui 83.34 0.267 0.068 0.090
h 55.97 0.138 0.039 0.039
a: 82.46 0.117 0.029 0.035
b 86.87 0.111 0.034 0.043
m 81.52 0.098 0.029 0.033
e: 82.76 0.086 0.035 0.041
ao 82.42 0.085 0.030 0.034
r 84.36 0.074 0.018 0.021
t 86.08 0.065 0.017 0.019

iy 73.52 0.063 0.028 0.030
d 70.92 0.062 0.026 0.027
n 86.21 0.061 0.016 0.019
l 83.76 0.056 0.024 0.027
k 86.18 0.055 0.023 0.027
ax 83.12 0.031 0.014 0.015

Table 8: Difference D1 of AF and SF and % of correct recog-
nitions measured on the best model

5. Speaker space correlation matrix analysis provides a per-
spective on the effect of speech rate change relative to the
acoustic differences that normally exist between closely
related phones.

Further work includes refining and extending the tech-
niques introduced here to analyse other forms of variation in
speech, including cross-language acoustic variation.
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