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Abstract-The “solution” of the Simultaneous Localisation and
Mapping (SLAM) problem has been one of the notablsuccesses of
the robotics community. SLAM has been formulated ad solved as a
theoretical problem in a number of different forms. SLAM has also
been implemented in a number of different domainsrbm indoor
robots to outdoor, underwater, and airborne systems At a
theoretical and conceptual level, SLAM can now beansidered a
solved problem. However, substantial issues remaim practically
realizing more general SLAM solutions and notablym building and
using perceptually rich maps as part of a SLAM algathm. This
paper describes the Autonomous Underwater Vehicle AUV)
kinematic and sensor models, it overviews the basitheoretical
solution to the Extended Kalman Filter (EKF) SLAM problem, it
also describes the way-point guidance based on Lié Sight (LOS).
In this paper, it has been shown through Matlab siralation that the
vehicle is able to localize its position using feates that it observes
in the environment and at the same time map thosesétures. The
vehicle is expected to follow a pre-defined sinustal path.
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l. INTRODUCTION

SLAM is the generalised navigation problem. It agki is
possible for a robot, starting with no prior infation, to move
through its environment and build a consistent mofthe entire
environment. Additionally the vehicle must be abbeuse the
map to navigate and hence plan and control itedtajy during
the mapping process. The applications of a robgialia of
navigating, with no prior map, are diverse indeBdmains in
which 'man in the loop' systems are impracticatlifficult such
as sub-sea surveys and disaster zones are obvémasdates.
Beyond these, the sheer increase in autonomy thatdwesult
from reliable, robust navigation in large dynamiwieonments is
simply enormous. Autonomous navigation has beeractive
area of research for many years [1].

In many applications the environment is unknownprori
maps are usually costly to obtain, inaccurate, imgete, out of
date and they limit the robot to that particulaviemnment [2].

The “solution” of the SLAM problem has been onetbé
notable successes of the robotics community. SLAAd heen
formulated and solved as a theoretical problem mumber of
different forms. SLAM has also been implementedinumber
of different domains from indoor robots to outdoonderwater,
and airborne systems. At a theoretical and coneéptvel,
SLAM can now be considered a solved problem. Howeve
substantial issues remain in practically realizmgre general
SLAM solutions and notably in building and using qaptually
rich maps as part of a SLAM algorithm [3].

Many land-based robots use Global Positioning 8ygtePS)
or maps of the environment to provide accuratetjposupdates,
a robot navigating underwater does not have adcetiss type
of information. In typical underwater scientific $sions, a-priori
maps are seldom available.

This paper describes the AUV kinematic model, rangaring
sensor models and their uncertainties. It overvighe basic
theoretical solution to the EKF-SLAM problem. Isaldescribes
the way-point guidance mechanism based on Linaghft $LOS).
Simulation results using Matlab are presented.

The paper is structured as follows: Section licdegs the
vehicle kinematic model and the sensor models. i@edil
details the theoretical aspects of EKF-SLAM solutiSection IV
describes the way-point guidance mechanism basednen of
Sight (LOS). Section V presents a discussion of dineulation
results and the conclusions are found in Section VI



II.  VEHICLE AND SENSORMODELS 0, and g, are noises in the velocity and desired heading
A Kinematic Modd of thevehide Y 4 (K) respectively.y; (K) is the process noise.
Modeling of the kinematic states involves thadst of the
geometrical aspects of motion. The motion of thieiale through
the environment can be modeled through the follgwdiscrete gy,
time non-linear kinematic model:

yvi(K)=|o, ©9)
X, (k) = f(X,(k-D,u(k),k). (1) gy,
Thus X, (k) is given by: The strength of control noise (covariance) is thiwen by:
x,(K) = x, (k1) +VOT cosf, (k -1)). @) Q, =diaglo?a? |. (10)
y"(k) - y"(k —h+VOT Sin(wd (k=1)). 3) The strength of process noise (covariance) is given by:
,(K)=¢, (k=) +0OTy (k-1). @

Q, =diaglo?o?a?|. (1)
(X,,Y,) is the position of the vehicle ang,(K) is its
orientation in the global frame of reference atetistepk . [JT ~ The noises are assumed to be uncorrelated, zeno aneawhite.

is the sample timey, is the change in angle required to readh Non-Linear Observation mode
next pose. The vehicle is controlled through derednconstant ~ASsume that the vehicle is equipped with exterraisers

. . . capable of measuring the range and bearing to rieatin the
forward velocityV and desired headingl/y(K) . These are environment. The measurement model is thus given by

used with the kinematic model to predict the positiof the r
vehicle. The control input vector is given by: z(k) =h(X,,X,y,) = [é } +y, (K). (12)
\Y; = o= ()2 (Y~ Y (K) - 13
W) :{ } | - =X 007+ (3, - % 00) (13)
Wy (k) .-
ei = tan_1|:yiyv():| _wv . (14)
Clearly the above kinematic model is a little utisti&, we X% =%, (K)

need to model uncertainty. The complete non-limeadel can
now be expressed in general form as: r, and @ are range and bearing to the observed feature

respectively. The observation noise vector is gagn
X, (K) = £ (X, (k=D,u, (k) + ), (K) +y; (k). (6)

¢,
One popular way to model uncertainty is to inseite terms ¥ (K) ={ " 5§11
into the control signati(k) such that: ¢
The strength of the observation noise (covariaisctjus given
u(k) = u, (k) + y, (k). (7)Y’ s
R=diag [ar agj . (16)

u, (k) is a nominal control signal ang, (K) is a zero mean

. . . The noises are assumed to be uncorrelated, zeno anglawhite.
Gaussian distributed noise vector such that:

. SLAM

v Most of the actions performed by the vehicle retyits ability

Y (k) = (8)to estimate pose. To avoid obstacles and followpaagts the
Ty, vehicle need to have reliable estimate of its pmsitand
orientation [4]. This section presents the featbesed EKF-



SLAM technique used for generating vehicle posamedes and
positions of features in the vehicle’s operatingieemment.

The localisation and map building process consistsa
recursive, three-stage procedure comprising
observation and update steps using an EKF. The &fimates
the two dimensional pose of the vehicle made uthefposition

(X,,Y,) and orientatioty/,, together with the estimates of the

positions of the N features X;; where i =1....N using
observations from the sensors on board the vefi¢lddere we

will constrain ourselves to using the simplest deatpossible — a

point feature such that the coordinates of ifiefeature in the
global reference frame are given by:

)

SLAM considers that all landmarks are stationarye Etate
transition model for thé™ landmark is given by:

Xy

Xp i (K) =% ; (k=1) = X

It can be seen that the model for the evolutiotheflandmarks
does not have any uncertainty.

A, Non-Linear Prediction

The prediction stage is achieved by passing theskiBnate
through the non-linear model of the motion of tiedicle to
compute the vehicle position at instadatbased on a control

signal u(k) and using the information up to inst&nt-1 [4].
The predicted vehicle stat, is thus given by:

X, (kVk=1) = f(X,(k-1\k -1),u(k)) . (19)

Under SLAM the system detects new features at ¢ginbing
of the mission and when exploring new areas. Orwse
features become reliable and stable they are iocatgd into the
map becoming part of the state vector. The postwinfeatures
are predicted as follows:

Xf,l(k\k_l) Xf,l(k)
(20)

Xf,N(k\k_l) Xf,N(k)

priedict

(18)

The augmented state vector containing both the siftthe
vehicle and the state of all feature locationseisaled:

x(k\k-1) =[X] (k)"X-fr,l""'X-fr,N]T' (21)
Now we need to propagate the covariance. The caveei of
the vehicle and feature statd3(k\k —1) is computed using
the gradient of the state propagation equatfeqk) , linearized
about the current best estimate, the process romgariance,
Q; . and the control noise covariandg,, .

P(k\k-1) = F(k)P(k -1\k ~D)F " (k) + J,(K)Q,(K)IT (k) +Q, (k)  (22)

(17)J, is the gradient of the state propagation equatiith respect

to the control input(K) .

If an observation of a new feature is made them dfror
covariance is augmented with the new feature caua&.

B. Observation prediction

The measurement that we would expect (predictedrghton)
if z(k) corresponded to thé" feature and the prediction
X(k\ k —=1) was correct is given as:

2(k\k -1) = h(x(k \ k —1)). 23)

C. Preparefor Update

The solution presented in the next section glosses a very
important aspect of SLAM: it assumes that each oreasent is
automatically associated with the correct landméamkpractice,
landmarks have similar properties which make theoodg
features but often make them difficult to distirgfjuone from the
other. When this happens we must address the pnobfedata
association, which is the question of which landa@arresponds
to a particular measurement [6].

For each landmark observed we compute the innove(k) ,
which is defined to be the difference between tletua
measuremeng(k) and the measurement that we would expect
if z(k) corresponded to thé" feature and the prediction
x(k\k —1) was correct. This means that:

(k) = z(k) - z(k \k = 1). (24)
The smaller the innovatiow(K) , the more likely that the
measurement corresponds to itk feature. The innovation is
assumed to be white and uncorrelated with covagi&ncThe
uncertainties in the predictions and observatiaesemcoded in
the innovation covariance mati$which is computed using the
current state covariance estim&k\k —1), the gradient of



the observation model (k/k —1) and the covariance of the

observation modeR(k \ k —1) [6].
S(k\k-1)=H(k\k-1)P(k\k-1)HT (k\k-1) + R(k \k=1) (25)
H(k/k-1)=|H,..0.H,.0| (26)

HV is the gradient of the observation model with extpo

the vehicle statesH ; is the gradient of the observation model

with respect to the observed feature

D. Update
The update step need not happen at every iterafitire filter.
If at a given time step no observations are avkil#en the best

estimate at timek is simply the predictionx(k\k—=1). If an

observation is made of an existing feature in ttegnthen the
state estimate can now be updated using the optoaal

matrixW (K) . This gain matrix provides a weighted sum of the

prediction and observation. It is computed using ittmovation
covariance S(k\k-1) , the  predicted state

covarianceP(k\k —1) and the gradient of the observatio
model, H (k/k =1) .

W(K) = P(k\k-DH (K\k-1)S™(k\k-1)  (27)

This is then used to compute the state updgte\ k) as well
as the updated state covariaf(& \ k) .

x(k\K) = x(k\k-1) +W(k\k-Dv(k\k-1)  (29)

P(k\K) =P(k\k-1) -W(k\k -1)S(k \k —)W(k \k -1)" (30)

IV. WAY-POINT GUIDANCE

The method used here to guide the vehicle througypwints
is Line of Sight (LOS). LOS is defined in terms afdesired
heading angle. Let the vehicle mission be givenabget of

waypoints[ X, (k), y, (k)] fork =1...N.

Care must be taken to select the proper quadratiidadesired
heading,i/, . After the quadrant check is performed, the ne
way point is selected based on whether the veligtewithin a
circle of acceptance with radiug, around a way-point

Ya (K) ~ y(t)
X4 (K) = (1)

(31)

wyt) = tan‘l(

X4 (K), ¥, (K Moreover if the vehicle location
%de%tg, ydv((tgg at the time t satisfies:
[%4 (K) = x(1)]* +[y4 (k) = y(©)]* <= o5 . (32)

then the next way poirftx, (K +1), y, (k +1)] is selected [8].

V.

Filter Parameters
The filter parameters used to obtain the simulatesults are
shown in Table 1 below:

RESULTS ANALYSIS

A

Table 1
FILTER PARAMETERS

Sampling Period OT 1sec
Vehicle X, process noise std dev O'XV 0.075m
Vehicle Y, process noise std dev 0'y 0.075m
Vehicle heading process noise std dey 0 50
n Yy )
Vehicle velocityV std dev g, 0.075m/s
Vehicle desired heading std dev 0
g, 05
Range measurement std dev 05m
. .
Beari tstdd
earing measurement std dev g, 2.00

B. Filter Initialization
The recursive formulation of the EKF algorithm mg#mat we
must provide some reasonable guess for the imitintlitions of

the vehicle state predictionX (k\k-1) and state error

covariance, P(k\k—1) . The choice of a reasonably good
initial estimate improves convergence and is esaeir the
convergence of the EKF. The location of the vehislinitialised

0

asx (0\0)=|0|- The error covariance is initialised as:
0

P(0\0) =sart(diag[o, o, g, ]) - (32)
C. Analysisof filter performance

The vehicle is required to follow a pre-definedusoidal
path defined by a set of way-points. We assumettiwtehicle
'ga able to avoid obstacles. We also assume thatnees which

measurement comes from which landmark and thatéhécle
maintains a constant depth. The simulation is ghelh as the
vehicle moves through the environment it randonthgesves a



feature checks if that feature has been obserf/¢ide ifeature is
new it is added into the map, if the feature hanbabserved the
state vector is updated.

Fig 1 below shows a pre-defined path (Desired Ratti¢h the
vehicle is required to track, the path where thkicle actually
went (True Path), the path estimated by SLAM (Eated Path).
It also shows the features that are in the simdlatevironment
(True Map). It can be noticed that the vehiclelikdo follow the
desired path closely during the run. The obsenesdufes and
estimated feature locations are not shown in tineré.

AUV Flight Path
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FIGURE 1. Showing the Desired Path (red), True Rgthen), Estimated Path
(blue) and the True map (red stars).

Fig 2 below shows the Estimated and TiXigositions of the
vehicle. It can be noticed that the graphs areadigtulose to
each other with small errors.

True & Estimated x Position
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FIGURE 2. Showing Estimated and Trié€ position

Fig 3 below shows the Estimated and Tryepositions of the

vehicle. It can be noticed that the graphs areadigtulose to
each other with small errors.

True & Estimated y Position
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FIGURE 3. Showing Estimated and Trd¢ position

Fig 4 below shows the Estimated and Ttlig heading of the

vehicle. From the figure it is clear that the grahre close to
each other with small errors.

True & Estimated heading
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FIGURE 4. Showing Estimated and Trglév heading

Fig 5 below shows the actual errors (errors betwaen vehicle
states and the estimated states). The left hamdgsabh shows
the errors associated witk, y positions and the right hand side
graph shows the errors in vehicle heading. Thesersrare
relatively small as expected.



Errors in x,y & heading Errors heading
0.4 T 0.02 T

0.015

0.01

0.005

Error Magnitude (m)
Error Magnitude (rad)

-0.005

-0.01
100 0

step time (sec) step time (sec)

FIGURE 5. Showing estimated and trl/év heading

The most important method of analyzing the filterfprmance
is using the innovation. The innovation is testeghiast the
hypothesis that it is white and uncorrelated. Testithe
innovation for these properties tells us a greal @gdout the
performance of the filter and can be directly usedune the
filter performance. This will be analyzed in future

VI. CONCLUSIONS AND FUTURE WORK

In this paper, it has been shown that the vehislable to
localize its position using the features that isedves in the
environment and at the same time map those features

This is performed while the vehicle follows a prefided
sinusoidal path. It has also been shown that theakerrors are
relatively small as expected although the filtered® some
further tuning.

The focus of future work will be on analysis of tihh@ovation
sequence, steady state performance, estimated a&mcbrerror
conditions so as to tune the filter further. An @lote avoidance
mechanism will be developed and the data assogigioblem
will also be addressed. The algorithm will alsoéxanded to
handle multiple observations.
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