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Abstract-The “solution” of the Simultaneous Localisation and 

Mapping (SLAM) problem has been one of the notable successes of 
the robotics community. SLAM has been formulated and solved as a 
theoretical problem in a number of different forms. SLAM has also 
been implemented in a number of different domains from indoor 
robots to outdoor, underwater, and airborne systems. At a 
theoretical and conceptual level, SLAM can now be considered a 
solved problem. However, substantial issues remain in practically 
realizing more general SLAM solutions and notably in building and 
using perceptually rich maps as part of a SLAM algorithm. This 
paper describes the Autonomous Underwater Vehicle (AUV) 
kinematic and sensor models, it overviews the basic theoretical 
solution to the Extended Kalman Filter (EKF) SLAM problem, it 
also describes the way-point guidance based on Line of Sight (LOS). 
In this paper, it has been shown through Matlab simulation that the 
vehicle is able to localize its position using features that it observes 
in the environment and at the same time map those features. The 
vehicle is expected to follow a pre-defined sinusoidal path.   
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I. INTRODUCTION 

SLAM is the generalised navigation problem. It asks if it is 
possible for a robot, starting with no prior information, to move 
through its environment and build a consistent map of the entire 
environment. Additionally the vehicle must be able to use the 
map to navigate and hence plan and control its trajectory during 
the mapping process. The applications of a robot capable of 
navigating, with no prior map, are diverse indeed. Domains in 
which 'man in the loop' systems are impractical or difficult such 
as sub-sea surveys and disaster zones are obvious candidates. 
Beyond these, the sheer increase in autonomy that would result 
from reliable, robust navigation in large dynamic environments is 
simply enormous. Autonomous navigation has been an active 
area of research for many years [1]. 

In many applications the environment is unknown. A priori 
maps are usually costly to obtain, inaccurate, incomplete, out of 
date and they limit the robot to that particular environment [2]. 

The “solution” of the SLAM problem has been one of the 
notable successes of the robotics community. SLAM has been 
formulated and solved as a theoretical problem in a number of 
different forms. SLAM has also been implemented in a number 
of different domains from indoor robots to outdoor, underwater, 
and airborne systems. At a theoretical and conceptual level, 
SLAM can now be considered a solved problem. However, 
substantial issues remain in practically realizing more general 
SLAM solutions and notably in building and using perceptually 
rich maps as part of a SLAM algorithm [3]. 

Many land-based robots use Global Positioning System (GPS) 
or maps of the environment to provide accurate position updates, 
a robot navigating underwater does not have access to this type 
of information. In typical underwater scientific missions, a-priori 
maps are seldom available.  

This paper describes the AUV kinematic model, range-bearing 
sensor models and their uncertainties. It overviews the basic 
theoretical solution to the EKF-SLAM problem. It also describes 
the way-point guidance mechanism based on Line of Sight (LOS). 
Simulation results using Matlab are presented.  

The paper is structured as follows:  Section II describes the 
vehicle kinematic model and the sensor models. Section III 
details the theoretical aspects of EKF-SLAM solution. Section IV 
describes the way-point guidance mechanism based on Line of 
Sight (LOS). Section V presents a discussion of the simulation 
results and the conclusions are found in Section VI. 

 
 
 
 



II. VEHICLE AND  SENSOR MODELS 

A. Kinematic Model of the vehicle 
   Modeling of the kinematic states involves the study of the 
geometrical aspects of motion. The motion of the vehicle through 
the environment can be modeled through the following discrete 
time non-linear kinematic model: 
 

)),(),1(()( kkukXfkX vv −= .                         (1) 

 

Thus )(kX v  is given by:  

 

))1(cos()1()( −∇+−= kTVkxkx dvv ψ .           (2) 

))1(sin()1()( −∇+−= kTVkyky dvv ψ .           (3) 

)1()1()( −∇+−= kTkk svv ψψψ .                       (4)                          

 

),( vv yx is the position of the vehicle and )(kvψ  is its 

orientation in the global frame of reference at time step k . T∇  

is the sample time. sψ  is the change in angle required to reach 

next pose. The vehicle is controlled through demanded constant 

forward velocity V  and desired heading, )(kdψ . These are 

used with the kinematic model to predict the position of the 
vehicle. The control input vector is given by:  
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Clearly the above kinematic model is a little unrealistic, we 

need to model uncertainty. The complete non-linear model can 
now be expressed in general form as: 
 

)())()(),1(()( kkkukXfkX funvv γγ ++−= .    (6) 

 
One popular way to model uncertainty is to insert noise terms 

into the control signal )(ku  such that: 
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)(kun  is a nominal control signal and )(kuγ  is a zero mean 

Gaussian distributed noise vector such that:  
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Vσ  and 
dψσ are noises in the velocity V  and desired heading  

)(kdψ respectively. )(kfγ  is the process noise.  
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The strength of control noise (covariance) is thus given by: 
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The strength of process noise (covariance) is thus given by: 
 

][ 222
ψσσσ yxf diagQ = .                          (11) 

 
The noises are assumed to be uncorrelated, zero mean and white. 

B. Non-Linear Observation model 
Assume that the vehicle is equipped with external sensors 

capable of measuring the range and bearing to features in the 
environment. The measurement model is thus given by:  
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ir  and iθ  are range and bearing to the observed feature 

respectively. The observation noise vector is given as: 
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The strength of the observation noise (covariance) is thus given 
by: 

][ 22
θσσ rdiagR = .                                           (16) 

 
The noises are assumed to be uncorrelated, zero mean and white. 

III.  SLAM 

Most of the actions performed by the vehicle rely on its ability 
to estimate pose. To avoid obstacles and follow waypoints the 
vehicle need to have reliable estimate of its position and 
orientation [4]. This section presents the feature based EKF-



SLAM technique used for generating vehicle pose estimates and 
positions of features in the vehicle’s operating environment. 

The localisation and map building process consists of a 
recursive, three-stage procedure comprising prediction, 
observation and update steps using an EKF. The EKF estimates 
the two dimensional pose of the vehicle made up of the position 

),( vv yx  and orientation vψ , together with the estimates of the 

positions of the N  features ifx ,  where Ni ....1= using 

observations from the sensors on board the vehicle [4]. Here we 
will constrain ourselves to using the simplest feature possible – a 

point feature such that the coordinates of the thi  feature in the 
global reference frame are given by: 
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SLAM considers that all landmarks are stationary. The state 

transition model for the thi  landmark is given by: 
 

ififif xkxkx ,,, )1()( =−= .                            (18) 

 
It can be seen that the model for the evolution of the landmarks 
does not have any uncertainty.   

A. Non-Linear Prediction 
The prediction stage is achieved by passing the last estimate 

through the non-linear model of the motion of the vehicle to 
compute the vehicle position at instant k  based on a control 

signal )(ku and using the information up to instant 1−k  [4].  

The predicted vehicle state vX  is thus given by: 

 
))(),1\1(()1\( kukkXfkkX vv −−=− .           (19) 

 
Under SLAM the system detects new features at the beginning 

of the mission and when exploring new areas. Once these 
features become reliable and stable they are incorporated into the 
map becoming part of the state vector. The positions of features 
are predicted as follows: 
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The augmented state vector containing both the state of the 
vehicle and the state of all feature locations is denoted: 
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Now we need to propagate the covariance. The covariance of 

the vehicle and feature states, )1\( −kkP  is computed using 

the gradient of the state propagation equation, )(kF , linearized 

about the current best estimate, the process noise covariance, 

fQ , and the control noise covariance, uQ .  
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uJ  is the gradient of the state propagation equation with respect 

to the control input )(ku . 

 If an observation of a new feature is made then the error 
covariance is augmented with the new feature covariance. 

B. Observation prediction 
The measurement that we would expect (predicted observation) 

if )(kz  corresponded to the thi  feature and the prediction  
)1\( −kkx  was correct is given as: 
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C. Prepare for Update 
The solution presented in the next section glosses over a very 

important aspect of SLAM: it assumes that each measurement is 
automatically associated with the correct landmark. In practice, 
landmarks have similar properties which make them good 
features but often make them difficult to distinguish one from the 
other. When this happens we must address the problem of data 
association, which is the question of which landmark corresponds 
to a particular measurement [6]. 

For each landmark observed we compute the innovation )(kν , 
which is defined to be the difference between the actual 
measurement )(kz  and the measurement that we would expect  
if )(kz  corresponded to the thi  feature and the prediction 

)1\( −kkx  was correct. This means that: 
 

)1\()()( −−= kkzkzkν .                       (24) 
  
The smaller the innovation )(kν , the more likely that the  
measurement corresponds to the thi  feature. The innovation is 
assumed to be white and uncorrelated with covarianceS . The 
uncertainties in the predictions and observations are encoded in 
the innovation covariance matrixS which is computed using the 
current state covariance estimate )1\( −kkP , the gradient of 



the observation model, )1/( −kkH and the covariance of the 
observation model )1\( −kkR  [6]. 
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vH  is the gradient of the observation model with respect to 
the vehicle states. fH  is the gradient of the observation model 
with respect to the observed feature 

D. Update  
The update step need not happen at every iteration of the filter. 

If at a given time step no observations are available then the best 
estimate at time k is simply the prediction )1\( −kkx . If an 

observation is made of an existing feature in the map, then the 
state estimate can now be updated using the optimal gain 
matrix )(kW . This gain matrix provides a weighted sum of the 

prediction and observation. It is computed using the innovation 
covariance )1\( −kkS , the predicted state 

covariance )1\( −kkP  and the gradient of the observation 

model, )1/( −kkH . 
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This is then used to compute the state update )\( kkx  as well 

as the updated state covariance )\( kkP .  
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IV.  WAY-POINT GUIDANCE 

The method used here to guide the vehicle through waypoints 
is Line of Sight (LOS). LOS is defined in terms of a desired 
heading angle. Let the vehicle mission be given by a set of 

waypoints )](),([ kykx dd  for Nk ...1= . 
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Care must be taken to select the proper quadrant for the desired 

heading, dψ . After the quadrant check is performed, the next 
way point is selected based on whether the vehicle lies within a 
circle of acceptance with radius 0ρ  around a way-point 

))(),(( kykx dd . Moreover if the vehicle location 
))(),(( tytx vv  at the time t satisfies:  

 
2
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then the next way point )]1(),1([ ++ kykx dd  is selected [8]. 
 

V. RESULTS ANALYSIS 

A. Filter Parameters 
The filter parameters used to obtain the simulation results are 

shown in Table 1 below: 
  

Table 1 
FILTER PARAMETERS 

Sampling Period T∇  1 sec 

Vehicle vx  process noise std dev 
vxσ  m075.0  

Vehicle vy  process noise std dev 
vyσ  m075.0  

Vehicle heading process noise std dev 
vψσ  05.0  

Vehicle velocity V  std dev 
Vσ  sm /075.0  

Vehicle desired heading std dev 
dψσ  05.0  

Range measurement std dev 
rσ  m5.0  

Bearing measurement std dev 
θσ  00.2  

 
B. Filter Initialization  

The recursive formulation of the EKF algorithm means that we 
must provide some reasonable guess for the initial conditions of 
the vehicle state prediction, )1\( −kkX v  and state error 

covariance, )1\( −kkP . The choice of a reasonably good 

initial estimate improves convergence and is essential in the 
convergence of the EKF.  The location of the vehicle is initialised 

as
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C. Analysis of filter performance   

  The vehicle is required to follow a pre-defined sinusoidal 
path defined by a set of way-points. We assume that the vehicle 
is able to avoid obstacles. We also assume that we know which 
measurement comes from which landmark and that the vehicle 
maintains a constant depth. The simulation is such that as the 
vehicle moves through the environment it randomly observes a 



feature checks if that feature has been observed, if the feature is 
new it is added into the map, if the feature has been observed the 
state vector is updated.   

Fig 1 below shows a pre-defined path (Desired Path) which the 
vehicle is required to track, the path where the vehicle actually 
went (True Path), the path estimated by SLAM (Estimated Path). 
It also shows the features that are in the simulated environment 
(True Map). It can be noticed that the vehicle is able to follow the 
desired path closely during the run. The observed features and 
estimated feature locations are not shown in the figure. 
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FIGURE 1. Showing the Desired Path (red), True Path (green), Estimated Path 
(blue) and the True map (red stars). 
 
Fig 2 below shows the Estimated and True x  positions of the 
vehicle. It can be noticed that the graphs are actually close to 
each other with small errors. 
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FIGURE 2. Showing Estimated and True x  position 

 
Fig 3 below shows the Estimated and True y  positions of the 

vehicle. It can be noticed that the graphs are actually close to 
each other with small errors. 
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FIGURE 3. Showing Estimated and True y  position 

 

Fig 4 below shows the Estimated and True vψ  heading of the 

vehicle. From the figure it is clear that the graphs are close to 
each other with small errors. 
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FIGURE 4. Showing Estimated and True vψ  heading 

Fig 5 below shows the actual errors (errors between true vehicle 
states and the estimated states). The left hand side graph shows 
the errors associated with x , y  positions and the right hand side 
graph shows the errors in vehicle heading. These errors are 
relatively small as expected.  
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FIGURE 5. Showing estimated and true vψ  heading 

 
The most important method of analyzing the filter performance 

is using the innovation. The innovation is tested against the 
hypothesis that it is white and uncorrelated. Testing the 
innovation for these properties tells us a great deal about the 
performance of the filter and can be directly used to tune the 
filter performance. This will be analyzed in future. 

VI.  CONCLUSIONS AND FUTURE WORK 

In this paper, it has been shown that the vehicle is able to 
localize its position using the features that it observes in the 
environment and at the same time map those features. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This is performed while the vehicle follows a pre-defined 
sinusoidal path. It has also been shown that the actual errors are 
relatively small as expected although the filter needs some 
further tuning. 

The focus of future work will be on analysis of the innovation 
sequence, steady state performance, estimated error and error 
conditions so as to tune the filter further. An Obstacle avoidance 
mechanism will be developed and the data association problem 
will also be addressed. The algorithm will also be expanded to 
handle multiple observations.  
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