
KT and S4 Satisfiability in a Constraint Logic

Environment

Lynn Stevenson1,2, Katarina Britz1,2, and Tertia Hörne2

1 Meraka Institute, CSIR, South Africa
2 School of Computing, University of South Africa

mrslstevenson@gmail.com

arina.britz@meraka.org.za

hornet@unisa.ac.za

Abstract. The modal satisfiability problem is solved either by using a
specifically designed algorithm, or by translating the modal logic formula
into an instance of a different class of problem, such as a first-order logic
problem, a propositional satisfiability problem, or, more recently, a con-
straint satisfaction problem. In the latter approach, the modal formula
is translated into layered propositional formulae. Each layer is translated
into a constraint satisfaction problem which is solved using a constraint
solver. We extend this approach to the modal logics KT and S4 and
introduce a range of optimizations of the basic prototype. The results
compare favorably with those of other solvers, and support the adoption
of constraint programming as implementation platform for modal and
other related satisfiability solvers.

1 Introduction

One of the reasoning tasks associated with modal logic is the modal satisfiability
problem. This is a decision problem that returns ‘yes’ if an algorithm can gen-
erate some model in which a given formula is satisfiable. This problem has been
researched extensively using different automated approaches. These approaches
fall into two distinct categories. Either a special, purpose-build algorithm is used,
or the modal formula is translated into an instance of a different class of problem,
and solved with the highly optimized solvers available for that class. A widely
used class of purpose-built algorithms are based on tableau methods, and include
the tableau solvers FaCT [1] and DLP [2]. A well-known translation method is
the translation of modal formulae into first-order logic [3]. Other translation-
based approaches include translation into a propositional satisfiability problem
(SAT) [4], or a constraint satisfaction problem (CSP) [5, 6].

In this paper, we further investigate the feasibility of the constraint-based ap-
proach proposed by Brand et al. [5, 6]. A modal formula is stratified into layers,
each of which is solved using the constraint logic programming (CLP) language,
ECLiPSe [7]. The benefit of this approach is the ability to make use of an ex-
isting, well-developed constraint programming language, with its mature solvers

1 This paper was published in LNCS 5351 and is available at www.springerlink.com.

and predefined libraries of functions. A key contribution of this approach is that
the domains of variables are assigned values over and above the Booleans 0 and
1: a value of u can be assigned to a variable, thereby allowing partial assign-
ments. This has the effect of considerably speeding up finding a solution. As in
many other application domains, the advantage of a constraint-based approach
to the satisfiability problem is its support for sophisticated conceptual modelling
by means of constraints.

The solver developed by Brand et al. is, however, limited to the modal logic
K. It only deals with formulae that are in conjunctive normal form (CNF), and
have not been optimized using any of the standard techniques such as caching.
In this paper, we discuss the extension of this solver to the modal logics KT and
S4. A number of enhancements to the original prototype are discussed, the most
significant of which are the following: We relax the requirement that formulae be
in CNF; instead, formulae are kept in a negation normal form (NNF). Extensive
simplification is applied to NNF clauses using propositional unit literals (l and
¬l) and unit modal literals (2l and ¬2l). Where a propositional variable occurs
only positively or only negatively in a layered formula, all clauses in which it
occurs are excluded from the translation into the CSP. This significantly prunes
the search space. Caching of formulae and their status is introduced, which
reduces reprocessing.

These enhancements return favorable results that compare well with the re-
sults of the solvers FaCT, DLP and KSAT [8]. These solvers are highly optimized,
whereas our results have been obtained without optimized data structures. This
means that there is a strong case for incorporating constraint methods into
tableau solvers, and to develop tableau solvers using constraint programming.
Our findings therefore support the use of constraint programming as a feasible
environment for the implementation of modal satisfiability solvers. This approach
is also applicable to related areas such as description logic reasoners.

The remainder of this paper is organized as follows: Section 2 provides the
theoretical background of the KCSP solver developed by Brand et al. [6]. Sections
3 and 4 provide details of the KT CSP and S4 CSP solvers for KT and S4 re-
spectively, and discuss the results obtained using the Heuerding / Schwendimann
test data sets. In Section 5, the exponential nature of the results is discussed and
they are compared with those of the TANCS ’98 conference. The final section
(Section 6) includes details of possible further areas of research.

2 Background to the KCSP Solver

We introduce some of the terminology used in the work that follows. The reader
is referred to texts such as Blackburn et al. [9] for in-depth details of modal logic.

Definition 1. The basic modal language K is defined using a set Φ of atomic
propositions, the elements of which are denoted p, p1, . . ., q, q1, . . ., the propo-
sitional connectives ¬ and ∧, and the unary modality 2. The set of well-formed
formulae generated from Φ, denoted Fma(Φ), is generated by the rule

ϕ ::= p | ⊥ | ¬ϕ | ϕ ∧ ψ | 2ϕ

where p ranges over the elements of Φ, ⊥ is the falsum and ϕ, ψ, . . . are modal
formulae.

A propositional atom is any propositional formula that cannot be decom-
posed propositionally. A propositional literal is either a propositional atom or
its negation. A modal atom is any modal formula that cannot be decomposed
propositionally – that is, any formula whose main connective is not propositional.
A modal literal is either a modal atom or its negation.

In the context of this paper, a modal formula can be normalized into ei-
ther NNF or CNF. A CNF formula consists of the conjunction of clauses, where
each CNF clause is the disjunction of propositional literals and / or modal lit-
erals. A modal formula is in NNF if negation occurs only immediately before
propositional and modal atoms and the only Boolean connectives it contains are
{¬,∧,∨}. A modal NNF formula consists of the conjunction of NNF clauses,
where each NNF clause consists of a disjunction of NNF formulae. A proposi-
tional unit clause is any clause l where l is a propositional literal. A modal unit
clause is any clause 2ϕ or ¬2ϕ where ϕ is any formula. A unit modal literal is
any clause 2l or ¬2l, where l is a propositional literal.

The satisfiability of a modal formula can be determined by translating it
into layers of propositional formulae. This approach was first proposed by F.
Giunchiglia and R. Sebastiani [4], and implemented in their KSAT solver. The
modal atoms of a particular layer are processed as though they are propositional
atoms, and truth values are assigned to them. Whenever a modal layer con-
tains a ¬2-modality, further processing at the next modal layer is required. The
KSAT solver makes use of the well-known DPLL SAT algorithm to determine
satisfiability of the propositional formula at each layer.

A related approach was proposed by Brand et al. [6], and implemented in
their KCSP solver. In this case, the stratified modal formula is translated into a
CSP. A CSP consists of a set of variables, a domain for each variable and a set
of constraints. The variables can be assigned any value in their corresponding
domain, with the limitation that the constraints on the variables need to be
satisfied. The constraints therefore limit the scope of the variables.

In both KSAT and KCSP, the modal formula needs to be in conjunctive
normal form. The propositional approximation of the modal formula is fed to
the solver, which returns a set of truth assignments to the propositional and
modal atoms, termed the top-level atoms, at the current modal level. This is
defined formally as follows:

Definition 2. A total truth assignment µ for a modal K formula ϕ is a set of
literals

µ = {2α1, . . . ,2αn,¬2β1, . . . ,¬2βm, p1, . . . , pr,¬q1, . . . ,¬qs}

such that every top-level atom of ϕ occurs either positively or negatively in µ.

Theorem 1. [4] A modal formula ϕ is K-satisfiable if and only if there exists
a K-satisfiable truth assignment µ such that µ |=p ϕ.

This means that theK-satisfiability of a formula ϕ can be reduced to determining
the K-satisfiability of its truth assignments. Such an assignment is termed total
when a truth value is assigned to each top-level atom; it is termed a partial
assignment when the truth values ensure the satisfiability of ϕ. The satisfiability
of the modal portion of ϕ is then determined as follows.

Definition 3. The restricted truth assignment µr for a modal K formula ϕ is
defined as

µr =
∧

i

2αi ∧
∧

j

¬2βj

Theorem 2. [4] The restricted truth assignment µr is satisfiable if and only if
the formula

ϕj =
∧

i

αi ∧ ¬βj

is K-satisfiable for every ¬2βj occurring in µr.

Constraints are defined on clauses in the modal formula. A clause (¬p1 ∨ p2)
has the constraints that p1 = 0 and / or p2 = 1. A clause 2p4 has the constraint
that 2p4 = 1.

A constraint solver always returns a total assignment to its variables. Because
less computational effort is required to return a partial assignment, Brand et al.
[6] followed an approach of setting the domain of each variable to {0, 1, u}, where
u indicates that a truth value has not been assigned to the associated variable.

A modal formula is negated and converted into CNF before being passed to
KCSP.

Algorithm 1 [6] The KCSP algorithm schema:

function KCSP(ϕ) // succeeds if ϕ is satisfiable
ϕcsp = to csp(ϕ);
µ := csp(ϕcsp);
Θ =

∧
{α : 2α = 1 is in µ};

for each 2β = 0 in µ do
KCSP(Θ ∧ ¬β); // backtrack if this fails

end;

The procedure to csp identifies the top-level atoms of ϕ, sets their domains
to {0, 1, u} and defines the constraints on each clause. The resulting formula
is then passed to the ECLiPSe constraint solver with the call to csp which
returns a truth assignment. If it contains negative literals, that is, literals to
which a value of 0 has been assigned, further processing is required. Each of the
modal literals ¬2βj effectively generates a new branch of the modal tree. The
conjunction of each βj and the αi variables having 2αi = 1, form the modal
formula that will be processed at the next modal layer. If there are no negative

modal literals, the formula is satisfiable and no further processing is required. If
there are negative modal literals, the algorithm backtracks.

Using a domain of {0, 1, u} reduces the processing requirement. If all the
¬2βj variables at a particular modal layer can be assigned a value of u, no
further processing will be required.

Various optimizations have been applied to the solver to reduce the search
space. These included simplification of the initial formula by applying unit sub-
sumption and unit resolution. When unit subsumption is applied to a modal
formula containing a unit clause l, every clause containing l is removed. When
unit resolution is applied to a modal formula, ¬l is removed from every clause
in which it occurs. Further details of these optimizations are provided in [6, 5].

3 The KT CSP Solver

The KCSP prototype described in the previous section yielded some promising
results, but did not yet establish the constraint-based approach to modal satisfi-
ability as viable alternative to existing solvers. This is due to two factors: Firstly,
few of the standard optimisations to tableau solvers were implemented, so the
modelling benefits could not be appreciated fully, and secondly, the prototype
only addressed the modal logic K. We address these issues below.

To extend KCSP to the modal logic KT , the solver was modified to allow
for a reflexive accessibility relation. This introduces two challenges – the number
of clauses in a formula is significantly increased, and the formula is no longer
in CNF. To address the first challenge, we propose the following lemma, which
has the effect of reducing the number of clauses generated. Full details including
further examples and proofs of lemmas are available in [10].

Lemma 1. Applying the axiom 2
nϕ → ϕ at each modal layer, to each occur-

rence of 2
nϕ, is a sound and complete strategy to enforce the reflexivity of R in

the KT CSP algorithm.

However, applying the lemma yields a formula which is no longer in CNF.
We find that, when Lemma 1 is applied to a modal clause with n positive modal
literals, and the resulting formula is converted to CNF, the original modal clause
is replaced by 2n modal clauses. There is thus an exponential increase in the
number of clauses when a modal formula is converted to CNF.

Two prototypes were developed to deal with reflexivity. In the one, the for-
mulae were retained in CNF and in the other, they were not. We discuss only the
second prototype since it produced better results. The approach followed when
dealing with clauses that are not in CNF is illustrated by the following example.

Example 1. Consider the modal formula

ϕ = 2ψ ∧ (¬2ψ1 ∨ (¬2ψ2 ∧ ¬2ψ3)).

When we convert it to CNF and apply Lemma 1, we get

ϕ′ = 2ψ ∧ ψ ∧ (¬2ψ1 ∨ ¬2ψ2) ∧ (¬2ψ1 ∨ ¬2ψ3).

There are several possible truth assignments that the constraint solver can re-
turn: µ1 = {2ψ, ψ, ¬2ψ1}, µ2 = {2ψ, ψ, ¬2ψ1, ¬2ψ2}, µ3 = {2ψ, ψ, ¬2ψ1,
¬2ψ3} and µ4 = {2ψ, ψ, ¬2ψ2, ¬2ψ3}.

If we do not convert the formula to CNF, and apply Lemma 1, we can verify
the satisfiability of ϕ1 = 2ψ∧ψ ∧¬2ψ1 and ϕ2 = 2ψ ∧ψ ∧¬2ψ2 ∧¬2ψ3, with
the proviso that ϕ2 is processed only if ϕ1 is not satisfiable. The possible truth
assignments the constraint solver will return, are µ5 = {2ψ, ψ, ¬2ψ1} and µ6

= {2ψ, ψ, ¬2ψ2, ¬2ψ3}.
Now suppose ¬ψ1 is unsatisfiable. For a complex formula, this could take

considerable resources to establish. When the formula is converted to CNF, ¬ψ1

is processed three times, causing backtracking each time; if it is not converted,
it is processed only once. ⊣
We therefore propose that, instead of converting the formula into CNF, it is
retained in NNF. We first apply Lemma 1, and then selectively construct the
formula to convert to a CSP.

Definition 4. An NNF clause ψ in a modal formula ϕ is represented as

ψ = ψ′ ∨ θ1 ∨ . . . ∨ θn, where

ψ′ =
∨

{l : l ∈ P} ∨
∨

{2α : 2α ∈ B+} ∨
∨

{¬2β : 2β ∈ B−},

P is a set of propositional literals, B+ and B− are sets of modal atoms, and θ1,
. . ., θn are NNF formulae.

After the modal formula has been negated and converted to NNF, the fol-
lowing algorithm is applied.

Algorithm 2 The KT CSP algorithm schema:

function KT CSP(ϕ) // succeeds if ϕ is satisfiable
ϕkt = apply reflexivity(ϕ);
ϕformula = construct formula(ϕkt);
ϕcsp = to csp(ϕformula);
µ := csp(ϕcsp); // backtrack if this fails
Θ =

∧
{α : 2α = 1 is in µ};

for each 2β = 0 in µ do
KT CSP(Θ ∧ ¬β); // backtrack if this fails

end;

Lemma 1 is applied to the input formula, after which the function con-
struct formula proceeds as follows: Each clause in ϕkt is grouped as per Def-
inition 4. The formula ϕformula is constructed as the conjunction of the ψ′

components of each NNF clause. If there is no ψ′ component in an NNF clause,
the θ1 component is used instead. This formula is then converted into a CSP
and fed to the constraint solver. If the constraint solver cannot find a solution, it
backtracks to construct formula and a new formula is built using the remaining
θi clauses.

This prototype was tested using the Heuerding / Schwendimann data sets
[11] which consist of nine classes of 21 provable formulae (the ‘p’ data sets)
and 21 unprovable formulae (the ‘n’ datasets). Data sets are available for each
of the logics K, KT and S4 and can be downloaded off the Internet [12]. The
formulae in each class get progressively more complex. The capability of a solver
is measured in terms of the number of ‘p’ and ‘n’ data sets it can solve in a
particular class in less than 100 CPU seconds. Thus, if a result of 3 is recorded
for the k branch n data sets, this means that only the first 3 of the 21 data
sets could be solved in under 100 CPU seconds. Whenever all 21 data sets are
solved, the symbol ‘>’ is used. The initial prototype did not return particularly
good results. Table 1 lists the results per class, for each category. A series of
enhancements was therefore applied.

Table 1. Initial Results of the KT CSP Prototype

kt branch kt 45 kt dum kt grz kt md kt path kt ph kt poly kt t4p

n 3 8 14 > 5 10 7 2 3

p 2 8 5 9 4 2 4 > 3

Propositional and modal simplification: In the KCSP solver, both sub-
sumption and unit resolution are applied to the initial modal formula. In the
KT CSP prototype, the modal formula is no longer in CNF, making this ap-
proach more complex. In addition, because the application of Lemma 1 gener-
ates further propositional variables, simplification is now required at each modal
layer. We therefore reconsider the unit subsumption and unit resolution rules
applied in the DPLL SAT procedure and extend them to include NNF clauses
and unit modal literals. The resulting reduction in the number of choice points
leads to a significant improvement in the results obtained.

Enhancement 1 We apply the following rules after the application of Lemma
1 to the modal formula at each modal layer:

1. For every clause ψ that is either a propositional unit clause or a unit modal
literal, unit subsumption is applied to every other NNF clause containing ψ
and such clauses are removed, provided that ψ does not occur in a modal
formula within the NNF clause.

2. For every clause ψ that is either a propositional unit clause or a unit modal
literal, unit resolution is applied and ¬ψ is removed from every other NNF
clause in which it occurs, provided that ¬ψ does not occur in a modal formula
within the NNF clause.

This process is repeated until no further simplification is possible.

Early pruning: Lemma 1 and then simplification are applied to each modal
formula. An analysis of some of the data sets showed that we can have a scenario
at the next modal layer where, after processing a number of the ϕj =

∧
i αi ∧ ¬βj

formulae, a ϕj can be encountered which has p in some αi and ¬p in ¬βj . Such

a formula is unsatisfiable. Its early detection prevents unnecessary processing.
This observation led to the following enhancement:

Enhancement 2 Let ϕ′ = ψ1 ∧
∧

j ¬βj where ψ1 =
∧

i αi. If a propositional
unit clause l in

∧
j ¬βj also occurs in ψ1, force a backtrack to the previous modal

layer.

Grouping of clauses: By grouping disjoint clauses and processing each
group separately, the number of choice points can be reduced.

Enhancement 3 Suppose we have a modal formula ϕ. Let γ = {p1, . . ., pn}
be the set of propositional atoms pi occurring in ϕ, where pi can occur at any
modal layer in ϕ. Partition the clauses in ϕ as follows:

ϕ = ψ1 ∧ ... ∧ ψm,

where each ψi is a conjunction of NNF clauses and for each pk ∈ γ, if pk occurs
in ψi, then pk does not occur in any other ψj, where j 6= i. By determining the
satisfiability of each ψi, we determine the satisfiability of ϕ.

Value assignments: Any top-level propositional literal that only occurs
positively or that only occurs negatively in the modal formula may, without loss
of generality, be assigned a value of 1 or 0 respectively. Therefore, when the CSP
for these literals is constructed, their domains can be limited to {1} and {0}
respectively, instead of to {0, 1, u}. If a clause contains a positive propositional
literal p to which a value of 1 has been assigned, this clause is True since the
clause is the disjunction of variables. We therefore do not need to pass this clause
to the constraint solver. Again, by reducing the number of clauses in the CSP,
we reduce the number of choice points. Note that this case differs from unit
subsumption in that we are now dealing with propositional literals that are not
propositional unit clauses.

Enhancement 4 Suppose we have a modal formula ϕ. Let γ = {p1, . . ., pn1,
¬q1, . . ., ¬qn2}, where if pi ∈ γ, then pi occurs only positively in ϕ and if qj ∈
γ, then qj occurs only negatively in ϕ. We apply the following rule to the clauses
in ϕ: For each clause ψ in ϕ, if ψ contains a single propositional literal p and p
∈ γ, then this clause is removed from ϕ.

Caching: Some formulae repeat at various nodes – in some cases, there is
a prolific propagation of the same formula. A solution to this problem is to be
found in the introduction of a cache.

Enhancement 5 Formulae, together with their satisfiability status, are stored
in a cache. Before a new formula ϕ is processed, the store is checked to see if it
has already been cached. If it has, and has been marked as satisfiable, no further
processing is required. If it has been marked as unsatisfiable, a backtrack is forced.

If ϕ has not yet been processed, check to see if it is a subformula of any modal
formula ϕ′ that has been cached. If this is the case and ϕ′ has been marked as
satisfiable, no further processing is required. Otherwise, if a subformula of ϕ has
been cached and marked as unsatisfiable, a backtrack is forced.

If no information is available in the cache for ϕ, it is added to the cache
with a status of unsatisfiable. It is then processed, and only if it is found to be
satisfiable is its status in the store updated.

Enhancements 1–5 significantly improved the results of Table 1. The final
results are provided in Table 2.

Table 2. Final results of the KT CSP prototype

kt branch kt 45 kt dum kt grz kt md kt path kt ph kt poly kt t4p

n 10 > > > 6 > 7 10 >

p > > > > 5 > 4 > >

4 The S4 CSP Solver

Applying Lemma 1 to enforce reflexivity, and the axiom 2ϕ → 22ϕ to enforce
transitivity of the accessibility relation in S4, leads to the same looping behavior
experienced by other solvers. In addition to looping, we note that the modal
depth of a formula can remain unchanged at each successive modal layer. To deal
with modal S4 formulae, we introduce the following two lemmas, the latter of
which defines the stopping condition which prevents the algorithm from looping
when enforcing transitivity.

Lemma 2. Applying the axiom 2
nϕ → (22ϕ ∧ 2ϕ ∧ ϕ) at each modal layer

to each occurrence of 2
nϕ is a sound and complete strategy to enforce reflexivity

and transitivity of R in the S4 CSP algorithm.

Lemma 3. Suppose we have a modal formula ϕ at modal layer n and suppose
ϕ is also the modal formula generated at modal layer n+1. No further processing
of this branch is required, as it is satisfiable.

The S4 CSP algorithm differs from the KT CSP algorithm in two ways -
Lemma 2 is applied to the modal formula at each modal layer, instead of Lemma
1 and loop checking is implemented, as per Lemma 3.

The results obtained by the initial S4 CSP prototype are listed in Table 3.
The results of the s4 45 data sets are particularly bad. Note that the p-data sets
generally returned better results than the n-data sets.

Table 3. Initial results of the S4 CSP prototype

s4 branch s4 45 s4 grz s4 ipc s4 md s4 path s4 ph s4 s5 s4 t4p

n 8 2 > 8 8 9 7 5 10

p > 1 > > 10 10 4 5 13

Simplification and early pruning revisited: Consider the two clauses
(p4 ∨ (p2 ∧ (2p1 ∨ 2p0))) ∧ 2p0. When Lemma 2 is applied, they become (p4

∨ (p2 ∧ ((22p1 ∧ 2p1 ∧ p1) ∨ (22p0 ∧ 2p0 ∧ p0)) ∧ (22p0 ∧ 2p0 ∧ p0). We
now have a set of clauses which is difficult to simplify. However, if simplification
was applied before Lemma 2, we would have the formula (p4 ∨ p2) ∧ 2p0 which
is much easier to deal with. This leads to the following enhancements:

Enhancement 6 For each unit modal literal ψ in a modal formula ϕ, we apply
the rules of Enhancement 1 to every other clause containing ψ before Lemma 2
is applied to ϕ.

Enhancement 7 We apply the following two simplification rules to every propo-
sitional unit clause and unit modal literal ψ in a modal formula ϕ:

1. NNF-unit subsumption is applied to every other clause containing ψ:
A formula ϕ1 ∧ (ψ1 ∨ (ψ ∧ ψ2)) ∧ ψ, in which ϕ1 consists of the conjunction
of any number of NNF clauses and ψ1 and ψ2 are NNF clauses, is replaced
with ϕ1 ∧ (ψ1 ∨ ψ2) ∧ ψ.

2. NNF-unit resolution is applied to every other NNF clause containing ¬ψ:
A formula ϕ1 ∧ (ψ1 ∨ (¬ψ ∧ ψ2)) ∧ ψ, whose variables are defined as in 1.
above, is replaced with ϕ1 ∧ ψ1 ∧ ψ.

Enhancements 6–7, together with a re-implementation of enhancement 2, led
to a considerable improvement in results, particularly for the s4 45 datasets.
The final results of the S4 CSP solver are listed in Table 4.

Table 4. Final results of the S4 CSP prototype

s4 branch s4 45 s4 grz s4 ipc s4 md s4 path s4 ph s4 s5 s4 t4p

n 8 14 > 8 9 20 8 6 12

p > 12 > > 12 19 4 5 13

5 Comparison of Results

In order to gain further insights into these results, it is necessary to compare them
with the results of existing state-of-the-art solvers. Few solvers can effectively
deal with the modal logics KT and S4 – our research showed that only FaCT
and DLP have been optimized for S4. See [10] for further details.

As already discussed, the formulae in each class of data sets get progressively
more complex. This causes results such as:

Data set number 9 10 11 12 13
CPU secs 28.17 95.14 360 1320 6605

in the case of kt branch n. These results clearly demonstrate exponential behav-
ior, which justifies the comparison of our results with those of the TANCS-1998

competition, which was based on the Heuerding / Schwendimann data sets. The
results obtained for the KT data sets by the KSAT, DLP, FaCT solvers [8],
together with the results of the KT CSP solver, are listed in Table 5. In Table 6,
we list the results obtained for the S4 data sets by the DLP, FaCT and S4 CSP
solvers (the KSAT solver does not support S4). As can be seen, the results of
the KT CSP and S4 CSP prototypes compare favorably.

If we were to rerun the TANCS-1998 results on the hardware used for our
benchmark results, the results would obviously be much better. For example,
the DLP solver would inevitably solve all 21 kt ph n data sets. However, in the
case of data sets such as kt branch n, the improvement would be in the order of
1 to at most 4 data sets. If one considers the results for kt branch n listed above,
the hardware would need to be considerably faster to solve the 12th data set in
under 100 CPU seconds.

Table 5. Results of the Heuerding / Schwendimann KT data sets

FaCT DLP KSAT KT CSP FaCT DLP KSAT KT CSP

n n n n p p p p

kt 45 > > 5 > > > 5 >

kt branch 4 11 7 10 6 16 8 >

kt dum > > 12 > 11 > 7 >

kt grz > > > > > > 9 >

kt md 5 > 4 6 4 3 2 5

kt path 3 > 5 > 5 6 2 >

kt ph 7 18 5 7 6 7 4 4

kt poly 7 6 2 10 > 6 1 >

kt t4p 2 > 1 > 4 3 1 >

Table 6. Results of the Heuerding / Schwendimann S4 data sets

FaCT DLP S4 CSP FaCT DLP S4 CSP

n n n p p p

s4 branch 4 8 8 4 10 >

s4 45 > > 14 > > 12

s4 grz > > > 2 9 >

s4 ipc 4 > 8 5 10 >

s4 md 4 > 9 8 3 12

s4 path 1 > 20 2 3 19

s4 ph 4 18 8 5 7 4

s4 s5 2 > 6 > 3 5

s4 t4p 3 > 10 5 > 13

6 Conclusion and Future Work

A strength of translating each modal layer into a constraint satisfaction problem
lies in the ability to limit the domain of a propositional variable which occurs

only positively or only negatively to a single value. This allows us to reduce the
number of conjunctive clauses in the modal layer, thereby significantly reducing
the search space. Because the modal problem has been stratified into layers, this
is easily implemented.

Although we obtained good results, we have identified areas for further im-
provement. Firstly, the selection criteria applied when constructing the CSP from
the NNF formula can be further enhanced. Secondly, further improvement is pos-
sible by optimizing the data structures to exploit normal forms for modal logics.
Finally, our results support the adoption of constraint programming as underly-
ing formalism for description logic reasoners. This should lead to improved scope
for taking advantage of the improved modelling opportunities provided by the
constraint-approach, especially when dealing with more expressive description
logics. We are currently investigating this further.

References

1. Horrocks, I.: The FaCT System. In: TABLEAUX’98. Volume 1397 of LNCS.
Springer, Heidelberg (1998) 307–312

2. Patel-Schneider, P.F.: DLP system description. In: Proceedings of the 1998 Inter-
national Workshop on Description Logics Workshop (DL’98). Volume 11. CEUR-
WS.org (1998) 87–89

3. Ohlbach, H., Nonnengart, A., de Rijke, M., Gabbay, D.: Encoding two-valued non-
classical logics in classical logic. In: Handbook of Automated Reasoning. Elsevier
Science (2001) 1403–1486

4. Giunchiglia, F., Sebastiani, R.: Building Decision Procedures for Modal Logics
from Propositional Decision Procedure. The Case Study of Modal K. In: Cade-13.
Volume 1104 of LNCS. Springer, Heidelberg (1996) 583–597

5. Brand, S., Gennari, R., de Rijke, M.: Constraint programming for modelling and
solving modal satisfiability. In: CP 2003. Volume 2833 of LNCS. Springer, Heidel-
berg (2003) 795–800

6. Brand, S., Gennari, R., de Rijke, M.: Constraint methods for modal satisfiability.
In: Recent Advances in Constraints. Volume 3010 of LNCS. Springer, Heidelberg
(2004) 66–86

7. Wallace, M.G., Novello, S., Schimpf, J.: ECLiPSe: A platform for constraint logic
programming. ICL Systems Journal 12(1) (1997) 159–200

8. Horrocks, I., Patel-Schneider, P.: FaCT and DLP: Automated reasoning with
analytic tableaux and related methods. In: TABLEAUX’98. Volume 1397 of LNCS.
Springer, Heidelberg (1998) 27–30

9. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University
Press, Cambridge, UK (2001)

10. Stevenson, L.: Modal Satisfiability in a Constraint Logic Environment. University
of South Africa (2008) MSc dissertation.

11. Balsiger, P., Heuerding, A., Schwendimann, S.: A benchmark method for the
propositional modal logics K, KT, S4. Journal of Automated Reasoning 24(3)
(2000) 297–317

12. Jaeger, G., Balsiger, P., Heuerding, A., Schwendimann, S.: K, KT, S4 test data
sets Available at http://www.iam.unibe.ch/∼lwb/benchmarks/benchmarks.html,
retrieved September 2007.

