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Abstract: Complex systems can be described as systems-of-systems as it comprise of a 
hierarchy of systems. The links between sub-systems are often obscure and non-linear and 
this results in a lack of whole systems view and appropriate understanding of the system. At 
the core of the research question is the investigation of Bayesian networks as a method to 
integrate sub-system behaviour in order to evaluate final system performance. The research 
case study is the measurement of effectiveness of the Frigate Self Guided weapon system. 
The results indicate that the method integrates and quantifies links between sub-systems to an 
extent where questions posed by the end-user can be answered in a quantitative manner. 

1 Introduction 
The purpose of the study is to investigate the use of a Bayesian network (BN) as an 

integrative method to model complex systems. The model should be able to make links 
between sub-systems explicit and measure the effectiveness of the system based on input 
variables. The Frigate Self Guided (FSG) system was used as a case study as it is a good 
example of a complex system comprising of various interdependent sub-systems.  

The outcome of the study is a BN that represents the complex causal chain between 
variables in sub-systems. The BN produces quantified results that provide answers on critical 
effectiveness queries posed by the end-user. These results lead to better understanding of the 
limitations and strong points of the system. It also verifies the impact of processes, 
procedures, drills and rules of engagement on the system, especially for stressing conditions1.  

The FSG system is the weapon system on the newly acquired corvettes (Figure 1) of the 
South African (SA) Navy. The main purpose of the corvettes is to maintain a positive 
presence in the South African exclusive economic zone (EEZ). The FSG serves as the self-
defence mechanism for the ship. A key issue in understanding the limitations and strong 
points of the FSG is how to define, measure and quantify being effective in the context of the 
intended application of the weapon system and the natural environment in which it must 
operate1. The effectiveness of the FSG weapon system is not equivalent to a simple 
combination of sub-system performances, but rather the synergy of sub-systems to give a 
required effect. The modelling approach followed was to1: 

• develop a BN model utilising the causal dependencies along the engagement 
timeline of the weapon system. Identify the sensitive performance drivers such as 
the influence of natural environment on system performance.  

• evaluate the weapon system behaviour and performance, and gradually introduce 
more realistic system influencers with natural operating influences. 

• verify and validate the model with the system and subsystem subject matter 
experts, and compare the effectiveness of the different system configurations 
within a defined scenario. 
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Figure 1: Corvette F124 
 

The key aspects of the sub-systems of the FSG system namely the sensors, the combat 
management system and the seeker missile were integrated in a BN model and visualised 
with a graphical interface. The following observations could be made: 

• Very late detection of targets will definitely compress the engagement timeline, 
eventually becoming unacceptable. 

• Severe degradation of respective sub-system and weapon system performances 
due to natural environment conditions compresses the engagement timeline 
further. The compressed timeline causes the target engagement to fail eventually.  

• Firing policies will alleviate the pressure on the engagement timeline for stressing 
conditions like multiple targets, and pop-up targets.  

South Africa has limited capacity at present to respond to new areas of technology in 
terms of acquisition and implementation decisions. Typically, knowledge and understanding 
of a new system are limited to a few resources that are actively involved on a research 
project. Even then, the knowledge about that system is sometimes disparate. The reason for 
this is because complex systems are “systems of systems” and experts on sub-systems do not 
necessarily understand the complex links between sub-systems. This results in a lack of a 
whole systems view and appropriated understanding of the system. We believe that a 
modelling technique such as BNs provide structure and guidance for understanding the 
complex synergy between sub-systems. However, it is not a static “system picture” but an 
interactive what-if tool: The BN produces posterior probability distributions on system 
variables given an observed event or hypothetical scenario. This makes it much more usable 
as it facilitates analysis, evaluation and interpretation and ultimately complex decision 
making. In a resource constraint country such as South Africa, integration of knowledge of 
new technologies is vital in order to address and promote innovation. 

2 Bayesian Networks 
A language is needed to represent complex systems such as the FSG system. There are many 
perspectives on representing complex systems such as mathematics, knowledge engineering 
and artificial intelligence. BNs are a combined representation from a mathematical and 
knowledge engineering point of view: From a mathematical point of view, BNs gives a 
concise specification of any full joint probability distribution2. From a knowledge 
engineering point of view, a BN is a type of graphical model. The basic attribute of this type 
of graphical model is causality3. To summarise, a BN represents cause-and-effect 
relationships in a system explicitly and captures the uncertain knowledge about these 
relationships.  
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A BN consists of nodes (variables), arcs (the causal relationships between variables), and 
conditional probability tables (CPT) (describing the strength of the causal condition between 
two or more variables)3. The nodes and arcs make up the qualitative part of the BN, while the 
probability tables are the quantitative part of the BN. 

 

 
Figure 2: A Bayesian network consisting of two nodes 

 
With regard to the quantitative part of the BN, probabilities are assigned to the states of 

the nodes. Every node is defined by the states (or values) that it takes on. States can be 
anything from sequential intervals to descriptions such as yes and no. The states of a node 
must be mutually exclusive and exhaustive. The absence of arcs between nodes implies 
conditional independence4 and this compactness is an example of a local (sparse) structured 
system2. This simplifies the computational effort associated with the BN from an exponential 
to a linear growth in complexity2. Since the BN makes use of conditional probabilities, the 
Bayes’ rule for calculation of conditional probabilities may be used. Mathematically, Bayes’ 
rule states3: 

likelihood marginal
prior  likelihoodposterior ×

=  (1) 

or, in symbols 
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where  denotes the probability that the random variable )|( exXp = X  has value  

given evidence . The denominator on the right hand side of the equation is a normalising 
constant.  

x
e

Once the BN is constructed, it is used to estimate the values of query nodes, given the 
values of observed nodes5. This process is called inference and a BN can perform two 
inference tasks. One is to do top-down reasoning where ‘root’ nodes are observed and we 
predict the effects5 (option (a) in Figure 3). The other way is to do bottom-up reasoning 
where ‘leave’ nodes are observed and we infer the causes5 (option (b) in Figure 3). The 
second task is the more interesting one as it reasoning in the ‘opposite’ direction of the 
constructed arcs in the network. 

(a) (b)

 
Figure 3: Illustration of two inference tasks in a BN 
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3 The FSG System Model 

3.1 A timeline approach 
The approach in modelling the FSG system is to establish a probabilistic model that utilises 
the causal dependencies along the engagement timeline1. The engagement timeline represents 
all the events that take place during a target engagement. Figure 4 illustrates a simplified 
engagement timeline. Although the timeline could be interrupted at any point, it follows a 
typical sequence of events. The first event is the ‘first plot’ of a target by the search radar and 
the last event (of a successful timeline) is ‘target intercept’. The measuring unit for the 
timeline is seconds it can be translated to range (km) from ship if the target velocity is 
known. The timeline measures effectiveness of the FSG system as it aims to answer the 
question ‘did the intercept happen in-time (or far enough from the ship) not to endanger the 
ship?’1. 
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Figure 4: Typical Engagement Timeline 
 
The variation in duration of events depending on operating scenarios influences the length 

of the timeline. Each timeline event is associated with a sub-system of the FSG system. For 
example, the event ‘first plot’ is associated with the search radar system. The duration of the 
first plot is influenced by other variables from the Search Radar, other sub-systems and 
external influences.  

3.2 The Causal Structure 
The first step in developing the model is the construction of the graphical structure 
comprising of nodes and arcs4. The graphical structure represents the engagement timeline 
together with the variables influencing the duration of the events. The first step was to 
determine the critical events in an engagement timeline model together with the logical and 
correct sequence of the events as it builds up to ‘target intercept’1. 

As the FSG is a new system and not yet operational, no integrated understanding of the 
engagement process does exist. A workgroup consisting of experts on sub-systems of the 
FSG and other similar weapon systems was put together in order to develop the causal 
structure of events and influences.  This workgroup is an independent expertise group on the 
FSG system in South Africa. The graphical structure of the BN was constructed in a 
facilitated workshop.  We based the criteria for inclusion of variables on the lesson learned 
from Borsuk et al.1, namely that it must be either (1) controllable, (2) predictable, or (3) 
observable.  This is a simplification strategy that prevents researchers from pushing their ‘pet 
processes’ to be included in the model without adding value to the model4. Variables that 
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adhere to the above-mentioned criteria and influence the engagement timeline were included 
in the model. 
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Figure 5: Full FSG System model 
 
Figure 5 is a graphical representation of a simplified version of the full BN model 

describing the FSG system. The square nodes represent the timeline events and the 
surrounding blocks contain the networks representing models of sub-systems. The four sub-
systems identified in the FSG system are 1) the Search Radar system, 2) Combat 
Management Suite (CMS) system, 3) the Tracking Sensor system and 4) the Missile system. 
The numbering corresponds with the numbering of the graphical structures in Figure 5. 

 

3.3 Quantification of the BN model 
Once the graphical structure of the model is established, the next step is to define the strength 
of the causal relationships.  As was mentioned before, no integrated expertise on the FSG 
system does exist. However, mathematical and physical models on some of the sub-systems 
do exist. In other cases, the only form of knowledge available on sub-systems is that of expert 
judgment. Two approaches were followed in order to utilise the (limited) existing knowledge 
on the FSG system: Where models did exist, the Monte Carlo algorithm2 was used to 
generate data. Figure 6 is an example of Monte Carlo simulation results that were used to 
populate a conditional probability6.  
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Figure 6: Histogram of data generated for a conditional probability 

 
It must be noted that there are some difficulties when using existing models for BN 

quantification purposes. Firstly, the discrepancy between assumptions made on both the sub-
system model and the BN model levels could be too large to accommodate. Secondly, the 
sub-system model output may not map directly onto the requirements of the BN and the 
practical implication of data requirements may not be cost effective6. 

The other quantification approach that was followed, was the elicitation of expert 
judgment. This was done in cases where models for sub-systems did not exist, or where it 
was too difficult to use sub-models because of reasons mentioned above.  

Elicitation of probabilities from experts is a major challenge. It is a time consuming task 
and experts are often reluctant to provide numbers as they feel unable to do so with a high 
level of accuracy7.  

Van der Gaag et al.7 designed a method for eliciting probabilities that combines the ideas 
of transcribing probabilities as fragments of text and of using scale with both numerical and 
verbal anchors for marking assessment. We adapted their approach it in the following way: 
Experts were asked the following two questions: 

• Given a specific configuration of scenario variables, what do you expect the 
average time of a timeline event to be? 

• What is the uncertainty associated with the expected average time of a timeline 
event? 

The answers to the questions are the mean and standard deviation that forms the 
parameters of a Gaussian distribution. To assume a Gaussian distribution could be seen as a 
gross assumption, but we felt that given the lack of a whole systems view and appropriate 
understanding of the FSG at that time, it was the best estimate at the time. As understanding 
on the system improves and more validated models become available, these probabilities will 
be updated and refined while the graphical structure of the model stays unchanged. 

3.4 The Integrated Model 
The graphical structure and associated conditional probability tables were integrated in a 
commercially available software package Hugin®8.  Inference is the task of calculating the 
posterior probability distribution for a set of query variables, given an observed event2. The 
explicit outcomes of inference are marginal probabilities on all query variables in the BN.  
For the FSG model the query variables are the timeline events. The results are presented as 
normalised histograms. This provides a more complete representation of the uncertainty 
associated with the queries than statistical summaries1. The histograms were translated from 
time to range from ship using a constant threat velocity assumption. In terms of evaluating 
results, range from the ship is a more relevant parameter than time. 
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4. Results 
The following hypothesis is analysed with the BN model as an example of a typical 
hypothesis posed by the user. 

The environment degrades the performance of the FSG system in terms of 
success criteria to intercept the target outside the 2km zone from the ship. 

In order to test the hypothesis, the performance of the FSG model was analysed for two 
environmental conditions: a clear, sunny day and stormy conditions. The x-axis of each graph 
in Figure 7 range from 30 km (left) to      0 km (right) from the ship. The upper row 
histograms represent the clear, sunny day scenario and the lower row histograms represent 
the stormy conditions. The histograms represent the uncertainty calculated from the observed 
events. 

The dotted line on the right hand side of the graphs represents the 2 km zone from the 
ship. Any histogram (or at least the highest point of the histogram) beyond this line represents 
events occurring inside the 2 km zone of the ship.  

The ‘Permission to Fire’, ‘Launch’ and ‘Intercept’ events of the lower graph occurs inside 
the 2 km zone which indicates that severe degradation of the respective sub-system 
performances due to natural environment conditions compresses the engagement timeline. 
The compressed timeline causes the target engagement to fail eventually.  

 
Figure 7: Results for a clear, sunny day (upper row graphs) and stormy 

conditions (lower row graphs) 
Other analyses by the BN model indicated that very late detection of targets will 

definitely compress the engagement timeline, eventually becoming unacceptable. Firing 
policies that must be carefully developed and implemented by the user will alleviate the 
pressure on the engagement timeline for stressing conditions like pop-up targets. 

The key issue in understanding the limitations and strong points of the system is how to 
define, measure and quantify being effective. The results summarise the effectiveness of the 
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FSG system. It can be used to adapt and improve processes, procedures, drills and rules of 
engagement to comply with the ability of the system. For example, it was shown in the results 
that carefully planned firing policies could alleviate pressure on the engagement timeline for 
stressed conditions. The effectiveness of different system configurations were compared 
which provides insight for trade-off decision that needs to be made. 

5. Conclusions 
A large percentage of the required knowledge about the weapon system is not documented 
but exists in the form of mental models of people with first hand experience of the weapon 
system. The structured modelling approach facilitates the process of turning tacit knowledge 
into explicit knowledge. Borsuk et al.4 states that the purpose of such a modelling process is 
to develop a model that more realistically represents the knowledge about the system rather 
than the system itself. 

Through active participation team members develop a shared understanding of the 
system. Synergy between expert groups develops during the workshops as experts start to 
understand the ‘bigger cause-and-effect picture’ of the weapon system. This improves the 
overall knowledge and understanding of the weapon system. The model can also be seen as a 
framework that serves as a focusing mechanism for research efforts on the system. 

The behavioural model, as the output of the study is a useful and concise documentation 
of the system. It can serve as a record of why certain options were selected and others not. 
This facilitates explaining and selling the solution to stakeholders as well as to those that will 
be impacted directly. However, it is not a document, but a dynamic and interactive what-if 
tool. This makes it a much more usable discussion tool than a static document. 

The instantaneous what-if analysis results produced by the BN model are of huge benefit 
to users of the model. This implies that the model can be used as a discussion tool, training 
tool and ultimately, a decision-support tool. 

The BN modelling approach has shortcomings. Firstly, a BN is a diagonal acyclic graph3 

which implicates that arcs represent one-way causal influences between nodes. It cannot 
explicitly represent system feedbacks. Dynamic BNs is an option to accommodate temporal 
links in the model, but it need to adhere to graphical model assumptions5 which may not be 
flexible enough to handle the dynamic aspects of a complex system4.  

Another shortcoming and focus of future work is the lack of understanding of aggregation 
of uncertainty. A BN makes two assumptions regarding uncertainty. The first assumption is 
implicated through the graphical structure and the second assumption is implicated through 
the parameters (probabilities). Proper uncertainty analysis is needed to understand the 
aggregation of uncertainty to the final result. Closely related to this issue is the issue of 
sensitivity analysis in order to identify sensitive variables to the system effectiveness. This 
will provide more insight and understanding in the complex interaction of the system. 
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