Bootstrapping pronunciation models:
a South African case study

Presented at the
CSIR Research and Innovation Conference
Marelie Davel & Etienne Barnard

27 February 2006




Agenda

* Background * Experimental approach
HLT in the developing world

Why pronunciation models?
yp * Results

* Bootstrapping &

. ) ) I
pronunciation modeling Conclusions

* A Bootstrapping framework
Components
Efficiency

GSIR

Slide 2 © CSIR 2006 WWW.CSir.co.za our future through science



Background:
Human Language Technologies

® Speech processing:
Speech recognition, speech synthesis
Spoken dialogue systems, telephony systems

* Text-based language processing:
Search, information analysis, machine translation

* Human Factors in language-based systems:
System usabillity, culturally appropriate interfaces
System localisation
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Background:

HLT in the developing world
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Free and natural access
To information
To technology

Reducing barriers
Literacy
Fluency in English
Technological literacy
Various types of disabilities

Support for language diversity

Support for service delivery
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Background:
HLT in the developing world

HLT requires extensive language resources:

* Electronic resources for local languages scarce
* Linguistic diversity high
e Skilled computational linguists scarce

* Language resource collection expensive
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Background:
Pronunciation modeling
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Ability to predict pronunciation based on written form of
word

Core component in speech processing systems:
Automatic speech recognition
Text-to-speech technology

Example:
bright: brayt
girth: g erth

Modeling pronunciations
Language-specific
Can use large pronunciation lexicons ;

Can learn from data Gl R
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Bootstrapping & Pronunciation modeling

* Bootstrapping:
Model improved iteratively
Via a controlled series of increments
Previous model utilised to generate next

External data
Predicted A p------3m<C Werify  e----0-3 (User- readable
representation)

Conversion Current ______ Elase data: full Current
model base data set base
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Bootstrapping in action
(Demonstration)
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Bootstrapping framework:
Components
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Bootstrapping framework:
Efficiency

* Combine machine learning and human intervention, in
order to minimise the amount of human effort required.

* Machine learning factors * Human Factors

— Accuracy of representation — Required user expertise
— Conversion accuracy — User learning curve

— Set sampling ability — Cost of intervention

— System continuity — Task difficulty

— Robustness to human error — Quality and cost of user
— On-line conversion speed verification mechanisms
— Quality and cost of automated — Difficulty of manual task

verification mechanisms — Initial set-up cost

— Validity of base data

— Effect of incorporating additional
resources
.
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Bootstrapping framework

* Prior work:
* Demonstrated efficiency for small lexicons [1,2]
* Developed new algorithms for efficient rule extraction [3,4]
* Verified the human factors involved, including linguistic
sophistication of user and implications of audio assistance [5]
* Developed additional tools to support process, including automated
error detection [6]

* This experiment:
* Evaluate efficiency for a medium-sized lexicon: large enough for
practical use
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Experimental approach

®* Combine all prior results (each 1000 to 2000 words) to
obtain a single 5000-word lexicon

* Bootstrap from 5000 to 8000 words, measuring actual
effort

* Bootstrap parameters:
* Linguistically sophisticated user
* Incremental Default&Refine (synchronised every 50 words)
* Automated error detection performed at end of cycle
* Audio assistance optional
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Results
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Figure 6.10: Time taken to verify words requiring zero, one, two or three corrections, as a function of
the number of words verified. For the first three measures, the averages were computed for blocks of

5 words each.
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Results
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Figure 6.11: The average number of corrections required as a function of the number of words veri-
fied. Averages were computed for blocks of 50 words each.
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Results

Table 6.3: Typical observed values for various bootstrapping parameters.

Bootstrapping parameter Estimated value
Training cost SO < 120 min
Verification cost for single words, With X | .05 fy(single.s) (2 4+ 4.5x) sec
corrections required for a word in state s:
Verification cost during error detection | t,.,;fy(error—det) < 10 min
(per 1000 words):
Verification cost during error detection | tyepify(error—det) < 3 min
(per 400 words):
Task difficulty - bootstrapping. no error | errorarat€pootstrap 0% — 1%
detection
Task difficulty - bootstrapping, error de- | error_ratepootstrap 0% — 0.5%
tection
Task difficulty - manual ETTorratemanual 0 —0.5%
Manual development speed tdevelop 19.2 — 30 sec
Initial set-up cost Eseripvatetian = Lestipanannal < 60 min

&
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Results
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Figure 6.12: Time estimates for creating different sized dictionaries. Manual development is illus-
trated for valites of tyepeiop(1) of 19.2 and 30 seconds, respectively.
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Results
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Figure 6.13: Estimates of the efficiency of bootstrapping, as compared with manual development for
values of tgeperop(1) of 19.2 and 30 seconds, respectively.
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Conclusions

* Dictionaries developed usable in practice
* Afrikaans: general-purpose Text-to-Speech developed

IsiZulu:  general-purpose Text-to-Speech developed

* Sepedi: automatic speech recognition system developed

* Approach practical and efficient
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Future work:

Open Source release imminent
Apply approach to all 11 official languages

Expand meta-information to be bootstrapped (including tone,
stress)

Further algorithmic improvements
Evaluate implications of framework for additional resources

GSIR
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