# Bootstrapping pronunciation models: a South African case study

Presented at the

**CSIR** Research and Innovation Conference

**Marelie Davel & Etienne Barnard** 

**27 February 2006** 



## Agenda

- Background
   HLT in the developing world
   Why pronunciation models?
- Bootstrapping & pronunciation modeling
- A Bootstrapping framework Components Efficiency

- Experimental approach
- Results
- Conclusions



# Background: Human Language Technologies

Speech processing:

Speech recognition, speech synthesis Spoken dialogue systems, telephony systems

- Text-based language processing:
   Search, information analysis, machine translation
- Human Factors in language-based systems:
   System usability, culturally appropriate interfaces
   System localisation



# Background: HLT in the developing world

Free and natural access

To information To technology

Reducing barriers

Fluency in English
Technological literacy
Various types of disabilities

- Support for language diversity
- Support for service delivery



# Background: HLT in the developing world

#### HLT requires extensive language resources:

- Electronic resources for local languages scarce
- Linguistic diversity high
- Skilled computational linguists scarce
- Language resource collection expensive



Slide 5 © CSIR 2006 www.csir.co.za

# Background: Pronunciation modeling

- Ability to predict pronunciation based on written form of word
- Core component in speech processing systems:

Automatic speech recognition Text-to-speech technology

• Example:

bright: b r ay t girth: g er th

Modeling pronunciations

Language-specific

Can use large pronunciation lexicons

Can learn from data



# **Bootstrapping & Pronunciation modeling**

#### Bootstrapping:

Model improved iteratively

Via a controlled series of increments

Previous model utilised to generate next



# Bootstrapping in action (Demonstration)







# Bootstrapping framework: Components





# Bootstrapping framework: Efficiency

- Combine machine learning and human intervention, in order to minimise the amount of human effort required.
- Machine learning factors
  - Accuracy of representation
  - Conversion accuracy
  - Set sampling ability
  - System continuity
  - Robustness to human error
  - On-line conversion speed
  - Quality and cost of automated verification mechanisms
  - Validity of base data
  - Effect of incorporating additional resources

#### Human Factors

- Required user expertise
- User learning curve
- Cost of intervention
- Task difficulty
- Quality and cost of user verification mechanisms
- Difficulty of manual task
- Initial set-up cost



Slide 10 © CSIR 2006 www.csir.co.za

## Bootstrapping framework

#### Prior work:

- Demonstrated efficiency for small lexicons [1,2]
- Developed new algorithms for efficient rule extraction [3,4]
- Verified the human factors involved, including linguistic sophistication of user and implications of audio assistance [5]
- Developed additional tools to support process, including automated error detection [6]

#### • This experiment:

Evaluate efficiency for a medium-sized lexicon: large enough for practical use



## Experimental approach

- Combine all prior results (each 1000 to 2000 words) to obtain a single 5000-word lexicon
- Bootstrap from 5000 to 8000 words, measuring actual effort
- Bootstrap parameters:
  - Linguistically sophisticated user
  - Incremental Default&Refine (synchronised every 50 words)
  - Automated error detection performed at end of cycle
  - Audio assistance optional





Figure 6.10: Time taken to verify words requiring zero, one, two or three corrections, as a function of the number of words verified. For the first three measures, the averages were computed for blocks of 5 words each.





Figure 6.11: The average number of corrections required as a function of the number of words verified. Averages were computed for blocks of 50 words each.



Slide 14 © CSIR 2006 www.csir.co.za

Table 6.3: Typical observed values for various bootstrapping parameters.

| Bootstrapping parameter                                                                |                                              | Estimated value        |
|----------------------------------------------------------------------------------------|----------------------------------------------|------------------------|
| Training cost                                                                          | $t_{train}$                                  | $< 120 \mathrm{\ min}$ |
| Verification cost for single words, with x corrections required for a word in state s: | $t_{verify(single,s)}$                       | (2+4.5x) sec           |
| Verification cost during error detection (per 1000 words):                             | $t_{verify(error-det)}$                      | < 10 min               |
| Verification cost during error detection (per 400 words):                              | $t_{verify(error-det)}$                      | < 3 min                |
| Task difficulty - bootstrapping, no error detection                                    | error_rate <sub>bootstrap</sub>              | 0% - 1%                |
| Task difficulty - bootstrapping, error detection                                       | error_rate <sub>bootstrap</sub>              | 0% - 0.5%              |
| Task difficulty - manual                                                               | $error\_rate_{manual}$                       | 0 - 0.5%               |
| Manual development speed                                                               | $t_{develop}$                                | 19.2 - 30  sec         |
| Initial set-up cost                                                                    | $t_{setup\_bootstrap}$ - $t_{setup\_manual}$ | < 60 min               |





Figure 6.12: Time estimates for creating different sized dictionaries. Manual development is illustrated for values of  $t_{develop}(1)$  of 19.2 and 30 seconds, respectively.



Slide 16 © CSIR 2006 www.csir.co.za



Figure 6.13: Estimates of the efficiency of bootstrapping, as compared with manual development for values of  $t_{develop}(1)$  of 19.2 and 30 seconds, respectively.



Slide 17 © CSIR 2006 www.csir.co.za

#### Conclusions

- Dictionaries developed usable in practice
  - Afrikaans: general-purpose Text-to-Speech developed
  - isiZulu: general-purpose Text-to-Speech developed
  - Sepedi: automatic speech recognition system developed
- Approach practical and efficient
- Future work:
  - Open Source release imminent
  - Apply approach to all 11 official languages
  - Expand meta-information to be bootstrapped (including tone, stress)
  - Further algorithmic improvements
  - Evaluate implications of framework for additional resources



Slide 18 © CSIR 2006 www.csir.co.za

#### References

- [1] M. Davel and E. Barnard, "Bootstrapping for language resource generation," in *Proceedings of the Symposium of the Pattern Recognition Association of South Africa*, South Africa, 2003, pp. 97–100
- [2] S. Maskey, L. Tomokiyo, and A.Black, "Bootstrapping phonetic lexicons for new languages," in *Proceedings of Interspeech*, Jeju, Korea, October 2004, pp. 69–72.
- [3] M. Davel and E. Barnard, "The efficient creation of pronunication dictionaries: machine learning factors in bootstrapping," in *Proceedings of Interspeech*, Jeju, Korea, October 2004, pp. 2781–2784.
- [4] M. Davel and E.Barnard, "A default-and-refinement approach to pronunciation prediction," in *Proceedings of the Symposium of the Pattern Recognition Association of South Africa*, South Africa, November 2004, pp. 119–123.
- [5] M. Davel and E. Barnard, "The efficient creation of pronunication dictionaries: human factors in bootstrapping," in *Proceedings of Interspeech*, Jeju, Korea, October 2004, pp. 2797–2800.

our future through science

[6] M. Davel and E. Barnard, "Bootstrapping pronunciation dictionaries: practical issues," in *Proceedings of Interspeech*, Lisboa, Portugal, September 2005.

Slide 19 © CSIR 2006 www.csir.co.za