SmartFactory: The Challenges of Open and Low Cost ICT in the Small Manufacturing Industry.

Presented at CSIR Research and Innovation Conference 2006

Materials Science and Manufacturing – MST Competence Area

Mr Peter Bosscha

Senior Researcher

27 February 2006

SmartFactory Agenda

Introduction
 Who we are
 What we do

SmartFactory - Architecture

Analysis Requirements Design

- SmartFactory Implementation
- SmartFactory Future

Introduction

Who we are

What we do

Introduction

- Operating Unit: Materials Science and Manufacturing
- MST Competence Area
- 2 Main Activities:
 - Digital Manufacturing
 - Cooperation with MIT's Centre for Bits and Atoms
 - FabLab
 - Affordable Automation
 - Robotics / Mechatronics
 - Automation & Control

Introduction Past Activities

Water & Waste water Industry

Rooiwal Plant, Live Data & Graphs

http://rooiwal.sst.csir.co.za

Introduction Improve Manufacturing Competitiveness

- Competitiveness Fund Assessments (for DTI by M&Mtek)
- Technology Roadmap, Automotive industry (Innovation Fund)
- National R&D Strategy
- Advanced Manufacturing Technology Strategy (AMTS)
- All agree: use of ICT is the key to increase industrial competitiveness.

Introduction Available Systems

- Established automation and control solutions
 - provided by Siemens, Honeywell, etc.
 - standards like PROFIBUS, PROFINET, etc. (Proprietary)
 - large industrial customers
 - high performance at a high price
- Enterprise Resource Planning (ERP)
 - provided by SAP, Baan, PeopleSoft, etc.
 - large industrial and other corporate customers
 - high performance at a high price

Introduction BUT: Smaller companies neglected

- Automation and control
 - affordability
 - simpler requirements
 - non real-time monitoring and basic control

ERP

- affordability
- simpler requirements
- less complex processes and corporate governance policies
- Example: use of Excel

Introduction
The Dream

- Create an ICT solution for SMME's.
 - ERP
 - SCADA
 - Automation & Control
- Replace High-Cost Imported Technologies
- Building competences and skills in the CSIR and S.A.
 - A collaboration between CSIR & Universities

SmartFactory - Architecture

Analysis

Requirements

Design

SmartFactory - Architecture Analysis

SmartFactory - Architecture Requirements

- Ease of Installation Plug-and-Play
 - High tech behind the scenes, simple appearance
 - Anyone with some computing skills can install
- Ease of use
 - Extremely low learning curve
 - Use should be intuitive, if not daily in use, should easily be recalled
- Low-Cost / Affordable
- Open Standards / Open Source
 - Encouraging cooperation with others
- Modular and Scalable
 - Able to scale with company size

Slide 12 © CSIR 2006 www.csir.co.za

SmartFactory - Architecture Technologies

- Wireless Technologies
 - 802.11b
 - Mobile Mesh
- Open Source Building Blocks
 - FreeBSD / Linux
 - PostgreSQL
 - HTML based SCADA
 - Compiere ERP + CRM
- Open Hardware
 - Commodity PC's
 - Embedded SBC's
 - Custom Interfacing Electronics

SmartFactory - Architecture Design

SmartFactory CAN Node Options - 1

SmartFactory CAN Node Options - 2

Open Source PLC

SmartFactory - Architecture CAN Node - Result

Standard SBC

802.11b PCI Card

Custom Interfacing Electronics

Custom HMI

Low Cost

SmartFactory - Implementation

"Getting our hands dirty"

SmartFactory - Implementation Automotive Manufacturer

- GMT (Global Material Technologies), in Babelegi, manufacturers of Iron Products for Automotive & Building Industry.
- Manufacturing Process:
 - Steel Rods from ISCOR
 - Wire Draw Machine -> Smaller & Consistent Diameter.
 - "Shave" steel from wire -> Steel Wool
 - Hammer Mill, creates powder

Slide 19 © CSIR 2006 www.csir.co.za

SmartFactory - Implementation Wire Draw Machine

- Sense Temperature of the Accumulators
- Measure Production; how many tons/day
- Measure Wire Diameter & Ovalness (9 Points)
- Operator Report Down-Time Reasons

Slide 20 © CSIR 2006 www.csir.co.za

SmartFactory - Implementation Wire Sensor

SmartFactory - Implementation Sensor Recipes

Magnet

Production Sensor:

- HALL Sensor I.C. + Glass Fibre Rod + Epoxy + Signal Cable
- Extremely low cost

 SmartFactory Website to contain recipes for simple sensors: www.smartfactory.org.za

HALL

Sensor

SmartFactory - Implementation Lessons Learned

- Factory Installation is NEVER generic, unclear requirements causing delays & lots of learning.
- Never enough I/O
- Select appropriate O.S & Hardware for CAN-Node
- Keep SCADA functionality limited
- Remote Link is indispensable

SmartFactory - Future

SmartFactory - Future

- Establishment of Cooperative Research Network with Universities
- AMTS is funding SmartFactory as a "Flagship Project"
- PRIME used to fund Students in Industry

Slide 25 © CSIR 2006 www.csir.co.za

SmartFactory - Future Further Development

- Smaller Node Hardware
- More versatile HMI Options
- Plug and Play software on SCADA level
- "Building Block" Configuration Software (GUI)

SmartFactory - Future Research Opportunities

- Distributed Sensing, Sensor Mesh networks
- Energy Harvesting

Slide 27 © CSIR 2006 www.csir.co.za