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Abstract

We investigate the addition of a new language, for which limited
resources are available, to a phonotactic language identification
system. Two classes of approaches are studied: in the first class,
only existing phonetic recognizers are employed, whereas an
additional phonetic recognizer in the new language is created
for the second class. It is found that the number of acoustic rec-
ognizers employed plays a crucial role in determining the recog-
nition accuracy for the new language. We study different ap-
proaches to incorporating a language for which audio-only data
is available (no pronunciation dictionaries or transcriptions) and
find that if more than about 2 000 training utterances are avail-
able, a bootstrapped acoustic model for the new language can
improve accuracy substantially.

Index Terms: spoken language identification, generalization,
resource scarce languages

1. Introduction

Spoken language identification (LID) has matured significantly
in the past decade; on comparable data, current systems are an
order of magnitude more accurate than state-of-the-art systems
around 1996 [1, 2]. The best current systems combine acoustic
[3] and phonotactic [2] information sources, and achieve equal
error rates of less than 10% on the ten-second segments con-
tained in the NIST 2003 benchmarks.

The component that contributes most to the accuracy of
these systems employs phonotactic features in the form of bi-
gram statistics. In the most successful configuration — known
as “Parallel Phone Recognition” (PPR) [4] — phone recognizers
in a number of languages are used to convert an input utter-
ance into a set of phoneme strings (one for each recognizer). A
classifier such as a naive Bayesian classifier or a support vector
machine (SVM) is then used to determine the language spo-
ken, based on the statistics of the bigrams that occur in these
phoneme strings.

The goal of the current research is to investigate how a
phonotactic language identification system can be applied to en-
vironments where limited training data is available. Such envi-
ronments will be increasingly important as speech-processing
systems are extended beyond the approximately twenty major
languages that are currently the focus of most research efforts.
For the majority of the approximately seven thousand living
languages [5] limited resources (such as lexicons, pronuncia-
tion dictionaries and transcribed speech corpora) are available
[6], and it is both practically and theoretically interesting to un-
derstand how speech-processing systems can be applied when
limited resources are available.

In Section 2 we describe a number of methods that can
be used to apply PPR language identification when limited re-
sources are available, and highlight the issues that need to be
understood in each of these approaches. Section 3 describes the
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experiments that we have undertaken to address these issues,
and Section 4 contains the results of these experiments. Con-
clusions from the experiments and future work are discussed in
Section 5.

2. Approaches

A basic PPR system, designed to recognize N languages, con-
tains two types of models: (1) a set of M acoustic models that
function as phone recognizers, and (2) a set of language mod-
els or classifiers that characterize the observed phonotactics of
each language when recognized in terms of each of the phone
recognizers.

The resource requirements of these two model classes are
significantly different — whereas the language models or classi-
fiers can be trained with untranscribed data from any language,
the acoustic models typically require pronunciation dictionaries
as well as transcribed speech. In addition, the amount of speech
needed for the training of acoustic models is typically sub-
stantially larger, in order to obtain speaker-independent phone
recognition of sufficient accuracy. Fortunately, there is no re-
quirement that N and M be equal. That is, a language can
be recognized even if no phone recognizer for that language
is available [4], since the language models or classifiers can be
constructed based on the phone strings produced by the existing
acoustic models. The first approach to adding a new language
that we investigate therefore uses no new acoustic model (in the
language being added).

However, intuition as well as some experimental results [7]
indicate that the addition of acoustic models relevant to the tar-
get language should improve the accuracy of the LID system.
Although there is strong evidence that this improvement is pos-
itively correlated with the accuracy of the additional phone rec-
ognizer [8], it is conceivable that even a recognizer with low
accuracy would be of some additional value, and initial results
confirming this expectation have been reported [9]. To investi-
gate this possibility in the current context, we have investigated
two approaches to the construction of acoustic models when
limited resources are available.

In the first approach, we assume that orthographic transcrip-
tions of a limited number of utterances in the new target lan-
guage are available. No other resources are assumed present.
An orthography-based model, with one three-state HMM model
per letter, is therefore constructed from these utterances, as in
[10].

Our other approach does not assume the availability of or-
thographic transcriptions; it is bootstrapped from the acous-
tic models of an existing phoneme recognizer. That is, all of
the training utterances are recognized with the existing recog-
nizer (using Viterbi alignment); these recognition results are
employed as “transcriptions” for training a new set of acous-
tic models, using embedded re-estimation, as in [9]. (In princi-
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Figure 1: Error rates when no Japanese acoustic models are constructed. An increasing amount of Japanese training data is used to
train the language classifier of an English-only (E), an English-French (EF), and an English-French-Portuguese PPR system.

ple, this process can be repeated with transcriptions repeatedly
derived from the updated acoustic models, but we have only
experimented with one cycle of re-estimation.)

The phonetic recognizer created in this fashion is used in
the same way as the existing recognizers — that is, for each tar-
get language, bigram statistics produced by the recognizer are
computed and used for language classification (in conjunction
with the statistics produced by each of the “conventional” phone
recognizers).

3. Experimental design
3.1. Corpora

Because of their role as world languages that are widely spoken
in Africa, our initial LID system was designed to distinguish
between English, French and Portuguese. We therefore trained
phone recognizers and language classifiers for these languages,
using the GlobalPhone corpus [11] for both training and test
data. The amount of training data employed in each language
is summarized in Table 1. To assess the addition of a new lan-
guage, we chose to use a language that is linguistically dissim-
ilar from these languages, but with data recorded under acous-
tically similar circumstances. We therefore selected Japanese,
which is also contained in the GlobalPhone suite of corpora.

Table 1: Amount of data used to train the different phone rec-
ognizers.

Language # utterances | # hours | # speakers
English 10,219 20.0 83
French 8,380 21.6 80
Portuguese 6,037 14.4 77

3.2. Language classifier

A number of approaches to language classification from phone
strings have been proposed [4]. The most recent published re-
sults [2] as well as our own experiments indicate that a sup-
port vector machine (SVM) using bigram frequencies as input
functions optimally in this regard. Thus, the features that are
calculated for every utterance are the counts of each of the bi-
grams, normalized by the total number of bigrams recognized.
These features are computed for all phonetic recognizers, and
concatenated into a single vector; the total number of features
is therefore

M
D=> P« (P —1), (1)
=1

where P; is the number of phones (including the silence phone)
in the recognizer for language i, and M is the number of
phoneme recognizers (as above). Since P; is around 45 (on
average), there are approximately 2 000 features per recognizer
— hence the importance of a classifier such as the SVM which
generalizes well in high-dimensional feature spaces.

When using an SVM, the most important design choices
are related to (a) the shape and width of the kernel function em-
ployed, and (b) the value of the margin-accuracy trade-off pa-
rameter. After some experimentation, we decided to employ a
Gaussian kernel. Classification accuracy was found to be fairly
insensitive to the width and trade-off parameters; reasonable
values for these were thus chosen prior to formal experimen-
tation, and these values were used throughout.

4. Results

4.1. Experiment 1: Using existing acoustic models

In the first experiment, only English, French and Portuguese
acoustic models are used during language identification; no
Japanese acoustic models are constructed. During training,
Japanese training data is recognized by the other acoustic mod-
els, and the resulting phone strings are used to train the language
classifier.

In Fig. 1 we show the error rates that result from using dif-
ferent combinations of the English, French and Portuguese rec-
ognizers, when classifying a data set that contains these three
languages as well as Japanese. All error rates are shown as
a function of the number of Japanese training utterances used.
(In each of the other three languages, the same training set of
between 6,000 and 10,000 utterances per languages was used
throughout.) Fig. 1 (a) shows the overall error for all four lan-
guages, whereas Figs. 1 (b) and (c), respectively, show the error
rate in precision and recall for the added language (Japanese).

From both the accuracy and the recall measures, it can be
seen that the addition of more acoustic models does indeed re-
duce the error rates of the classifier for all training-set sizes con-
sidered. The precision results are less informative in our exper-
imental paradigm: because of the predominance of the training
data in the three “well-resourced” languages, the error in pre-
cision is significantly lower than the recall error rate, and in-
creases as additional Japanese training samples are added to the
training set (since precision errors weigh more heavily then).

The confusion matrix in Table 2 shows the performance that
can be achieved when 2 500 untranscribed utterances from a
new language are added, using acoustic models from three lan-
guages. The resulting precision and recall are not much worse
than those of the languages for which acoustic models are avail-
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Figure 2: Error rates when constructing a new Japanese acoustic model: either orthography-based (J-ort) or bootstrapped (J-boot)
using an increasing amount of Japanese training data. Results are compared with the English-French-Portuguese PPR system (EFP)

of Fig. 1.

able: the recall accuracy for Japanese is about the same as that
for Portuguese, and the error in precision is about 60% higher.

Table 2: Confusion matrix when only English, French and Por-
tuguese acoustic models are used. Columns correspond to the
true class of an utterance, and rows represent the classification
result

English French Portuguese Japanese
English 1701 0 9 0
French 0 1396 3 4
Portuguese 2 1 984 12
Japanese 0 0 7 483

4.2. Experiment 2: Adding an acoustic model

In the second experiment, new acoustic models are added ac-
cording to the two approaches described in Section 2, namely
(1) using an orthography-based model and (2) bootstrapping
transcriptions utilizing the English recognizer. Fig. 2 and Ta-
ble 3 summarize the results obtained when comparing these
two approaches with the best results obtained in Experiment 1
above. The addition of the orthography-based Japanese recog-
nizer does not seem to be of much value, except for the case
where 2 500 training utterances are used — there, the addition
of the acoustic model reduces the error in recall from 3.2% to
2.8% and reduces the overall error rate from 0.83% to 0.80%.

The benefits of the bootstrapped acoustic model are more
substantial for the amount of training data considered: even
for 1 500 training utterances, the relative reduction of the er-
ror in recall and overall error rates are more than 10 %, and
for 2 500 training utterances these relative reductions in error
rate are around 20 %. Table 4 contains the resulting confusion
matrix. Now, both the precision and the recall of the Japanese
utterances are statistically indistinguishable from those of the
Portuguese utterances. (Note that we have used the same utter-
ances for estimating the acoustic and language models. With a
small amount of training data this is the only available option,
but it may be preferable to split the training data and use differ-
ent sets for these two tasks when sufficiently many utterances
are available.)

5. Discussion

We have shown that languages with limited available resources
can be added to a phonotactic language-identification system
containing more resource-demanding components with almost

Table 3: Detail of error rates (in %) when constructing a
new Japanese acoustic model: either orthography-based (J-
ort) or bootstrapped (J-boot) using 2,500 Japanese training
utterances. Results are compared with the English-French-
Portuguese PPR system (EFP) of Fig. 1

System | Accuracy | Precision | Recall
EFP 0.83 1.43 3.21
J-ort 0.80 0.62 2.81
J-boot 0.63 0.61 241

Table 4: Confusion matrix when a Japanese acoustic model is
bootstrapped using the English recognizer.

English French Portuguese Japanese
English 1702 0 9 0
French 0 1396 3 3
Portuguese 1 1 988 9
Japanese 0 0 3 487

no loss in accuracy to the latter languages, and good — though
not quite equal — accuracy for the former. In achieving this per-
formance, the number and diversity of available phonetic recog-
nizers is an important requirement. Through use of a bootstrap-
ping procedure, acoustic models can be created for a language
for which neither transcriptions nor pronunciation dictionaries
are available; such acoustic models have a significantly benefi-
cial effect on overall accuracy. This result confirms the findings
in [9], provides some additional insight on the relationship be-
tween the amount of training data and the benefits of various
algorithmic components, and suggests that blind re-estimation
is preferable to the use of orthography-based unit recognizers.
In light of the improvements obtained, it is worthwhile to inves-
tigate alternatives and extensions to the methods employed - for
example, MAP adaptation of acoustic models rather than em-
bedded re-estimation and multiple iterations of estimating the
transcriptions for untranscribed languages.

It would also be interesting to extend this work to systems
that include an acoustic scoring component. In light of the
superior performance achievable with phonotactic models [2],
we expect that the improvements reported here will remain the
most important contribution to overall accuracy. It will also be
worthwhile to repeat these comparisons on other corpora, such
as those used for the NIST evaluations. Our long-term aim is
to apply these methods to resource-scarce languages, including
the majority of languages spoken in Africa.



(1]

(2]

(3]

(4]

(5]

(6]

6. References

Alvin F. Martin and Mark A. Przybocki, “NIST 2003 lan-
guage recognition evaluation,” in Eurospeech, 2003, pp.
1341-1344.

Haizhou Li, Bin Ma, and Chin-Hui Lee, “A vector space
modeling approach to spoken language identification,”
IEEE Transactions on Audio, Speech and Language Pro-
cessing, vol. 15, pp. 271-284, January 2007.

William M. Campbell, Joseph P. Campbell, Douglas A.
Reynolds, E. Singer, and P. A. Torres-Carrasquillo, “Sup-
port vector machines for speaker and language recogni-
tion.,” Computer Speech and Language, vol. 20, no. 2-3,
pp- 210-229, 2006.

M. A. Zissman, “Comparison of four approaches to auto-
matic language identification of telephone speech,” IEEE
Transactions on Audio, Speech and Language Processing
SAP-4(1), pp. 31-44, January 1996.

SIL International, “Ethnologue, languages of the world,”
http://www.ethnologue.org/.

Ksenia Shalonova and Roger Tucker, “Issues in porting
TTS to minority languages,” in LREC, SALTMIL work-
shop on Minority Languages, Lisbon, 2004.

(7]

(8]

(9]

[10]

(11]

E. Barnard and Y. Yan, “Toward new language adaptation
for language identification,” Speech Communication, vol.
21, pp. 245-254, 1997.

Pavel Matejka, Petr Schwarz, Jan Cernock, and Pavel
Chytil, “Phonotactic language identification using high
quality phoneme recognition,” in Interspeech, 2005, pp.
2237-2240.

A. Montero-Asenjo, D.T. Toledano, J. Gonzalez-
Dominguez, J. Gonzalez-Rodriguez, and J. Ortega-
Garcia, “Exploring PPRLM performance for NIST 2005
language recognition evaluation,” in IEEE Odyssey 2006:
The Speaker and Language Recognition Workshop, June
2006, pp. 1-6.

C. Schillo, G.A. Fink, and F. Kummert, “Grapheme based
recognition for large vocabularies,” in ICSLP, Beijing,
China, October 2000, pp. 129-132.

Tanja Schultz and Alex Waibel, “Fast bootstrapping of
LVCSR systems with multilingual phoneme sets,” in Eu-
rospeech, Rhodes, Greece, September 1997, vol. 1, pp.
371-373.



	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Links to Other Manuscripts by the Authors
	------------------------------
	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
	------------------------------

