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Nomenclature
[A] = aerodynamic matrix
¢ = reference chord
. = structural damping
[K] = stiffness matrix
k = wd/V, reduced frequency
[M] = inertia matrix
p = vk * ik, cigenvalue of the flutter equation
q = vector of degrees of freedom
V. = true air speed
X.Y = complex vectors of length n
Y = damping coefficient
o = air density
© = angular frequency
Introduction

T HE flutter equation and its solution is central to almost

all aeroclasticity problems. Various formulations of the
flutter cquation exist, each involving some approximations.
The p-k formulation of Hassig! is generally accepted as the
one giving the most realistic damping values. However, the
determinant iteration solution procedure proposed by him
may fail under certain conditions, and some trial and error is
usually required to obtain a satisfactory solution. An alter-
native solution procedure using eigenvectors to assign eigen-
walues to modes is suggested which will in most cases sub-
‘mtially reduce the chance of failure.

Although the use of eigenvectors is presented for the p-k
formulation only, the method can be applied equally well to
the V-g formulation. The method was originally developed to
assign cigenvalues to modes in the solution of the latter for-
mulation. “the fundamental and troublesome problem,” ac-
cording the Desmarais and Bennett.? The description of the
method given here is directly applicable to the V-g formula-
tion.

p-k Method

A stmplified form of the p-k formulation of Hassig is

[K [MIp* = (- ilK] = Zovia) | g = 0 (1)

Acrodynamic matrices are calculated for a relatively small
number of reduced frequencies and are interpolated to other
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reduced frequencies as required during the solution process,
The solution consists of a frequency and damping cocfficient.
caleulated from the eigenvalues of the flutter equation, for
cach mode at a given set of true air speeds. The eigenvalues
determined at previous speeds are used to calculate initial
values for a determinant iteration procedure to determine the
eigenvalues at the next speed. The solution is started at very
low speed where the eigenvalues are close to the structural
values determined by either ground vibration testing or finite
element analysis.

Two commonly encountered conditions may cause the pro-
cedure to fail. If an cigenvalue changes rapidly with increasing
speed, the determinant iteration procedure may not converge
or converge to the wrong eigenvalue due to too large anerror
in the initial value of p. Decreasing the speed increment usu-
ally solves this problem at the cost of increased computer
time. When two eigenvalues are close to each other or even
identical, it is sometimes impossible to prevent the procedure
from converging to the wrong eigenvalue, even with verysmall
speed increments.

Alternative Procedure

One possible way to avoid the problems of failure to con-
VErge or converging to the wrong eigenvalue., is to use an
eigenvalue routine which can handle repeated eigenvalues,
Such a routine will return a number of eigenvalues equal to
the number of modes, and it must stil] be determined which
is the desired eigenvalue. Eigenvectors can be used effectively
to select the eigenvalue even if the eigenvalues have changed
substantially from the previous speed, justifying the use of a
more expensive (in computer time) eigenvalue routine by the
possibility of using larger speed increments and having fewer
failures.

Implementation

In the present implementation, the solution for one mode
at all speeds is found before the solution for the next mode
is started. The explanation which follows is for the solution
of mode i only. Although only the solution for mode / is valid
(because the aerodynamic matrix is a function of reduced
frequency), the cigenvalues and eigenvectors corresponding
to ail the other modes are calculated.

‘The natural frequency of mode i is used in the first calcu-
lation of the reduced frequency at the first speed. The aero-
dynamic matrix is interpolated and the eigenvalue routine is
called to solve the eigenvalues and eigenvectors. The eigen-
vectors are compared to unit vectors, corresponding to the
natural modes, in order to determine which eigenvalue cor-
responds to mode i. This eigenvalue is used in the next cal-
culation of the reduced frequency and the eigenvalue routine
is called again. The process is repeated until the reduced
frequency converges. At each successive speed, the converged
eigenvalue of the previous speed is used in the first calculation
of the reduced frequency. The aerodynamic matrix is inter-
polated and the eigenvalue routine is called to solve the ei-
genvalues and eigenvectors. The eigenvectors are compared
to the converged eigenvectors of the previous speed to de-
termine which cigenvalue corresponds to mode ;. This eigen-
value is used in the next calculation of the reduced frequency.

Eigenvectors are compared as follows: A matrix of scalar
products of the converged eigenvectors of the previous speed
and the new eigenvectors is calculated. Fach column of the
matrix corresponds to a new eigenvector and each row to an
old eigenvector. The element in row i and column j of the
matrix is the scalar product of old eigenvector i and new
eigenvector j. The matrix is then searched for the largest
element. The corresponding old and new eigenvectors are
taken to belong to the same mode. The corresponding row
and column is zeroed and the process is repeated until the
whole matrix is zero.
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The scalar product of two complex vectors must be defined
to be independent of scaling and phase. A definition which
satisfies these conditions is

Xy R y)
AR )
where
S, = > Re(X)Re(Y) + Im(X)Im(Y)) (3
i1

S. = 2 Re(X)Im(Y) ~ Im(X,)Re(Y) (4)
Si= 2 hXIP (5)

1=
Se= 2 0¥ (6)

i=1

In the present implementation, the LZ eigenvalue routine of
Kaufman®* is used.

The present method has proved to be reliable and faster
than the determinant iteration procedure. One problem that
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Fig. I Frequencies calculated with the determinant iteration proce-
dure.
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Fig. 2 Frequencies calculated with the present method.
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has been encountered is that the eigenvalue routine some-
times failed to find all the eigenvalues. This occurred whep
generalized masses varied by a factor of more than approxi-
mately 30, and the problem could be solved by rescaling the
modes to unit generalized mass.

Results

It is impossible to make an absolute comparison between
the two methods of solving the flutter equation because of
the many different implementations and possible refinements.
The results presented here are only used to illustrate a po-
tential problem of the determinant iteration procedure and
to show that it is overcome by the present method. The test
case is taken from an actual flutter clearance in which 16
modes were identified by ground vibration testing. Modes 4
and 5 are of particular interest because they were almost
identical modes of the left and right wings, respectively. Due
to slight structural asymmetry of the aircraft, their frequencies
differed by 0.1 Hz and they were treated as separate modes.
The measured structural dampings of the two modes were
almost equal. For the sake of clarity, only the first five modes
were used to generate these results.

In Fig. 1, calculated using the determinant iteration pro-
cedure and a speed increment of 20 m/s, a typical failure of
the procedure is illustrated. At a speed of 160 m/s, the ¥
genvalue of mode 4 converges to the eigenvalue of mode 5.
The speed increment was reduced to 5 m/s, with the same
result. It seems likely that it was not the large error in the
initial value of p that caused the failure, but the large per-
turbation in p used to calculate the derivatives of the deter-
minant. Decreasing the perturbation in p may cause numerical
instabilities and is, therefore, not always an acceptable rem-
edy.

Figure 2, calculated using the present method and a speed
increment of 20 m/s, shows that the method is successful in
distinguishing between modes 4 and 5 up to the maximum
speed of 320 m/s. To further test the robustness of the method,
the speed increment was progressively increased until a single
calculation at 320 m/s was performed. The results for the five
modes were within the specified tolerances of the results cal-
culated with a speed increment of 20 m/s. A similar calculation
with all 16 modes was also successful.

Conclusions

The present method has the potential to overcome some
of the problems of the determinant iteration procedure of
solving the flutter equation. The use of eigenvectors to asSi,:
eigenvalues to modes has the following advantages: 1) it 1
possible to use a general eigenvalue routine capable of solving
repeated eigenvalues; 2) eigenvalues can be distinguished ef-
fectively; 3) initial frequency values are only required for the
first calculation of reduced frequency at each speed; 4) control
laws can be accommodated as easily as with the determinant
iteration procedure; and 3) computation time is reduced in
most cases.

References

'Hassig, H. J., “An Approximate True Damping Solution of the
Flutter Equation by Determinant Iteration.” Journal of Aircrafi, Vol.
3. No. 11, 1971, pp. 885-889.

‘Desmarais, R. N., and Bennett. R. M., “An Automated Proce-
dure for Computing Flutter Eigenvalues.” Journal of Aircraft. Vol.
11, No. 2, 1974, pp. 75-80.

*Kaufman, L. C., *"ALGORITHM 496 the LZ Algorithm to Solve
the Generalized Eigenvalue Problem for Complex Matrices,” ACM
Transactions on Mathematical Software, Vol. 1, No. 3, 1975, pp. 271-
281.

‘Kaufman. L. C., “Remark on ALGORITHM 496 the LZ Algo-
rithm to Solve the Generalized Eigenvalue Problem for Complex
Matrices,” ACM Transactions on Mathematical Software. Vol. 2. No.
4. 1976, p. 396.



