JOURNAT OF AIRCRALT
Vol 420 Noo T January-February 2005

Engineering Notes

ENGINEERING NOTES are short manuseripts describing new developments or imporiant results of a preliminary nature. These Notes cannor exceed 6
manuseript pages and 3 figures; d page of text may be substituted for a figure and vice versa, After informal review by the editors. they may be published vwithin
a fevw monihs of the date of receipt. Style requirements are the same as Jor regular contributions (see inside back cover).

Finite Element Model Updating
Using Bayesian Framework
and Modal Properties

Tshilidzi Marwala*
University of the Witwatersrand,
Witwatersrand 2050, South Africa
and
Sibusiso Sibisi’
Counctl for Scientific and Industrial Research,
Pretoria 0001, South Africa

I. Introduction

F INITE element (FE) models are widely used to predict the dy-
namic characteristics of aerospace structures. These models
often give results that differ from measured resulis and therefore
need to be updated to match measured results. Some of the updat-
ing techniques that have been proposed to date use time, modal,
frequency. and time~frequency domain data.? In this Note, we usc
the modal domain data to update the FE model. A literature review
on FE updating! reveals that the updating problem has been framed
mainly in the maximum-likelihood framework. Even though this
framework hus been applied successtully in industry, it has the fol-
lowing shortcomings: it does not offer the user confidence intervals
for solutions it gives: there is no philosophical explanation of the
regulerization terms that are used to control the complexity of the
updated model; and it cannot handle the inherent ill-conditioning
and nonunigquencess of the FE updating problem. In this Note the
Bayesian framework is adopted to address the shortcomings ex-
plained above. The Bayesian framework has been found to offer sev-
eral advantages over maximum-likelihood methods in areas closely
mirroring FE updating.”™ This Note seeks to address the following
issues: 1} how prior information is incorporated into the TE model
updating problem and 2) how to apply the Bayesian framework to
update FE models to match experimentally measured modal proper-
ties (2. natural frequencies and mode shapes) to modal properties
caleulated from the FE model of a beam. In this Note, Markov chain
Monte Carlo (MCMC) simulation® is used to sample the probability
of the updating purameters in light of the measured modal properties.
This probubility is known as the posterior probability. The Metropo-
lis wigorithm {sce Ref. 6) is used as an acceptance criterion when
the posterior probability. is sampled.
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I1.  Mathematical Foundation
A.  Dynamics
Allelastic structures may be described in terms of their distributed
mass, damping, and stiffness matrices. If damping terms are ne-
glected, the dynamic equation may be written in the modal domain
(natural frequencics and mode shapes) for the ith mode as follows’:

(ol IMI+ (K 1)Ig) = (e} (1)

Here [M) is the mass matrix, [ K | is the stiffness matrix w;,1sthe 7th
natural frequency, {¢}, is the i th mode shape vector, and {¢}; is the
ith error vector. The error vector {g); is equal to {0} if the system
matrices [M] and [K] correspond to the modal properties. I the
system matrices, which are usually obtained from the FE model. do
not match the measured modal properties w, and {¢};, then {e)i1sa
nonzero vector. In the maximum-likelihood method the Fuclidean
norm of {&}; is minimized in order to match the system matrices to
measured modal properties. Another problem that is encountered in
many practical situations is that the dimension of mode shapes does
not match the dimension of system matrices. This is because mea-
sured modal coordinates are fewer than FE modal coordinates. To
ensure compatibility between systern matrices and mode shape vec-
tors, the dimension of system matrices is reduced using a technique
called the Guyan reduction method® to match the dimension of sys-
tem matrices to the dimension of measured mode shape coordinates.

B. Bayesian Method
In this Note the Bayesian method is introduced to solve the FE
updating problem based on modal.propertics. The fundamental rule
that governs the Bayesian approach is written as follows’:
peypy = ZIPMEDPAL) @)
P D))
Here { £} is a vector of updating parameters, P ({ E}) is the probabil-
ity distribution function of updating parameters in the absence of any
data, known as the prior distribution, and {D]is a matrix containing
natural frequencies w; and mode shapes {¢);. It must be noted that
the mass [ M] and stiffness [ K | matrices are functions of updating pa-
rameters {£}. The quantity P ({E}|{ D]) is the posterior distribution
function after a set of data has been seen, P{IDIH{EY) is the Jikeli-
hood distribution function, and P ([ D]) is the normalization factor.

1. Likelihood Distribution Function

There are many areas where the likelihood distribution function
has been applied, and these include neural networks.? In a neural-
network context, the likelihood distribution function is defined as the
nonmalized exponent of the error function. In this Note the ikelihood
distribution function P([D}|{E}) is defined as the sum of squares
of elements of the error vector shown in Eq. (1) and can be written
in the same way as in neural networks, as follws?:
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Here g is the coeflicient ol the measured modal property diata con-
Fibution 1o the error and iy set o 1 through trial and error, und

In the error matrix with subscript i representing the {th modal
[roperties and jorepresenting the jth imeasurement position. The
stuperseript £7 s the number of measured mode-shape coordinates.
Vs the number of meastred modes. and Zp s
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Itshould be noted that in Eq. (3) the error i 1s amatrix. as opposed
o a veetor as is the case in Bq. (1), This is because it takes into
account of all modal coordinates.

Prior Distribution Funciion of Parameters 1o Be Updared
The prior distribution function consists of the information that is
known about the problem. Tn FI: updating it is generally accepted
that FE updating is usually valid if the model is close to the true
model. In this Note, it is known that not al parameters to be up-
duted have the same level of modeling error. This means that some
purameters are (o be updated more intensely than others. For exam-
ple, parameters next Lo joints should be updated more intensely than
those with smooth surface arcas that are far from joints. In this Note
th2 prior distribution function for parameters to be updated may be

written using the Gaussian assumption as follows®:
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Here @ is the number of groups of parumeters 1o be updated and o,
1s he coclficient of the prior distribution function for the ith group
of updating parameters. The prior distribution function in Eq. (5)
ensures that large updating of parameters is Jess likely than small
adlustments of updating parameters. The Gaussian prior has been
successfully used” (o identify a large number of weights in neural
networks. and therefore it is assumed that it should be successiul
in dentifiying a small number of updating parameters in this Note.
Thzhigher the @, the lower is the degree ofupdating of the /th group
of >arameters, und || - § is the Euclidean norm of -. In Eq. (5). if o
1s constant for all the updating parameters, then the updated param-
eters will be of the same order of magnitudes. Equation (5) may be
viewed as aregularization parameter.’ In Eq. (5). Gaussian priors are
corveniently chosen because many natural processes tend to have
Guaussian distributions. In the Bayesian framework the regulariza-
tion method is viewed us a mechanism of incorporating prior infor-
marion, whereas in the maximum-likelihood method 1is viewed as
amathematical convenience. The function Zp (o) is anormalization
factor given by Ref. 3:
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3. Posterior Disiibution Funetion of Weight Vector

The distribution of the weights P({ L) (D] alter the data have
bee seen is caleulated by substituting Eqgs. (3) und (53 into Fq. (2)
10 give
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In B (7). the optimal weight vector corresponds to the maximu,
of the posterior distribution function, which is the solution s ob-
tained from a maxinmume-likelihood approach. This implies that tjye
Bayesian method at least gives the solution that is given by the
maximum-likelihood method but in addition gives probability dis-
tributions.

C. Markov Chain Monte Carlo Method

The application of the Bayesian approuach to FE model updating
using a Monte Carlo approach results in a set of updated parame-
ter veetors {£Y, that are statistical rather than deterministic. A a
result. FE model updating will give distributions of the predicted
modal propertics, and from these distributions. averages and vari-
ances of modal properties may be constructed. Following the ruley
ol probubility theory. the distribution of the vector {Y1. representing
measured modal propertics, may be written in the following torm:

PUYIED] = / PUVHIEDPUENIDY d(E) (9

Equation (9) depends on Eq. (7) and is difficult to solve analytically
due tw the relatively high dimension of the updating purameter vec-
tor. As a result, a Markov chain Monte Carlo (MCMC) method s
emploved to determine the distribution of updating parameters and
subscquently of predicted modal properties. The integral in Fq. (91
is solved, using the Metropolis algorithm,® by generating o sequence
of vectors {1} (£, .. that form a Markov chain with a station-
ary distribution P{[D]I{E)). The integral in Eq. (9) may thus be
approximated as follows:

{¥}= GUE}) (10)
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Here G is a finite element model that takes the vector (£} and
predicts the average output, {7} is the vector containing the modal
propertics. R is the number of initial states that are discarded in the
hope of reaching a stationary distribution described byEq.(7),and L
isthe number of retained states. Several methods have been proposed
to simulate the distribution in Eq. (7), such as Gibbs sampling,'” the
Metropolis algorithim,® and a hybrid Monte Carlo method.!! Hy-
brid Monte Carlo, which has been shown to be the most efficient
of the Monte Carlo methods thus far, is not used in this Note be-
cause itrequires gradient information, which is not available in exact
form in the FE updating problem. As a result, the MCMC method
is used 1o identify the posterior distribution function of the updat-
ing parameters. In this Note the MCMC method s implemented
by sampling a stochastic process consisting of random variables
HEV {EY L. {12}, } through introduction of random changes o
the updating parameter vector {£} and either accepting or reject-
ing the sample according 1o the Metropolis algorithim.® Metropolis
criteria can be wrilten as follows:

 Pacs {ENIDD > Pug({EVIDY) accept state [y,

P UENID))
Pa(HENIDY)

else accept { 1], with probability (i

In this Note we view this procedure as a way of generating a Markoy
chain with transition from one state to another, conducted using the
criterion in Eq. (11).

1. Example: Experimentally Measured Beam

To test the proposed procedure a freely suspended aluminum
beam is used. The beam. which is shown in Fig. 1. has the fol-
lowing dimensions: length 1.0 m. width 25.4 mm. and thickness
3.4 mm. Acceleration measurements are taken at 13 equidistant
positions and the beam is excited at a position located 420 mm
from the end (sce Fig. 1). Further details of this beam are found in
Rell 12, The FE model with 12 elements is constructed using a mod-
ulus of elasticity of 800 x 10°N'm ~ and a density of 2700 ke m ™
Using conventional signal-processing analysis.” the measured data
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Fig. 1 Diagram showing a beam: its cross-sectional area, clastic bands used for suspension, and positions wherce acceleration imeasuremenis vere
taken.
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are trensformed into frequency response functions (FRFs) and from
the FREs. natural frequencies and mode shapes are extracted using
moda. extraction techniques.” Using the extracted natural frequen-
cies a1d mode shapes the FE model is updated using the Bayesian
framework. When the Bayesian framework is applied, Eq. (7) is
used. prior information is divided into four parts, and each part has
its own cocflicient of prior distribution (e, os. o3, and wy). These
coefficients are also shown in Eq. (7) by setting Q equal 1o 4. The
coefficient «; is associated with the density of the beam. is known
to be uniform for all elements. and ix also known to be fairly ac-
curate. The coefficient oy is set to 10 to ensure that the density of
the beam 1s not updated signiticantly. The coefficient a5 is asso-
ciated with the moduli of elasticity of all elements. All clements
are known to bave uniform modulus of elasticity, which is known
fairly accurately. The coefficient w1 is set to 10 to ensure that the
modulus of elasticity is not updated significantdy. The coefficient
v 1s essoctated with the cross-sectional areas of elements 1—4 and
7-12. which are known fairly accurately. The coefficient «s is set
to 1010 ensure that the cross-sectional arcas of these clements are
not updated significantly. The coetlicient ¢y is associated with the
cross-sectional areas of clements 5 and 6, which are not known ac-
curately because they enclose the arca that was drilled to mount
the excitation device, The coefficient oy 1s set to 0.1 to ensure that
the cross-sectional arcas of these elements are updated significantly.
The MCMC method is implemented by employing the Metropolis

0 0s 1 15
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Sample distributions of the natural frequencies and mode shape coordinate of the updated finite element model prediction.

Table I Measured natural frequencices, frequencies calculated
from initial and updated finite element models and associated
standard deviations

Mode

Experiment. Standird

Initial Average
number Hz FEM. Hz. updated, Hz  deviation, H/
| 64 70 67 28
2 184 193 183 7.6
3 349 379 360 10.1
4 599 628 590 287
5

398 942 893 764

acceptance criterion [see Eq. (11)] and 1000 samples are retained
to form a posterior distribution function indicated by Eq. (7).

IV. Discussion

When natural frequencies from the updated FE model are com-
pared to those caleulated from the initial FE mocdel as well as those
from the measured natural frequency data, the results in Table 1 are
obtained. Table | also shows standard deviations of the distributions
obtained through the use of the MCMC method to sample the dis-
tribution in Eq. (7). The updated natural frequencies are calculated
using Eq. (10). This table shows that for all the modes the updated
model is more accurate than the initial model. Furthermore. it is
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Table 2 Modal assurance eriterion between the measured
maode shapes and finite element model-caleulated mode
shapes as well as associated standard deviations

NMaode MAC Standard

Average MAC
numberexperiment/inital - experiment/updated  deviation
I 01.996] 0.9992 0.0011
2 0.9895 (.9974 0.0019
3 (1.9799 1.9958 0.0029
| 0.9703 0.9981 0.0011
3 0 1O

712 0.9949 (.

observed in Table | that the higher the maode, the higher the stan-
dard deviation, indicating that higher modes are less certain than
lower modes. This is consistent with the knowledge that. in gencral.
high-frequency modes are less certain than low-frequency modes.
To compare analvtical mode shapes to measured mode shapes, the
maodal assurance criterion (MAC) is used.” The MAC is a criterion
that represents how well two mode shapes are corretated. Two per-
feedy correlated mode shapes give an identity matrix. As a result.
in this Note the diagonals of the MAC, whose elements are sup-
posed 10 be equal to 1 for similar mode shapes, are used to assess
the effectiveness of the proposed updating method. The diagonal
of the MAC between mode shapes from experiment and from the
updated FE models is shown in Table 2. This table shows that the up-
dated FE modet gives more accurate mode shapes than the initial FE
medel. Tibles T and 2 show standard deviations, and these are used
o construct error bars that measure confidence intervals of updated
maodels. The results showing the distributions of the first natural
Frequency and mode shape coordinate are shown in Fig. 2. From
these distributions error bars may be constructed for confidence
mtervals,

V. Conclusions

tn this Note an updating procedure that uscs a Bayesian {rame-
wo'k and modal propertics is implemented using a Markov chain
Mente Carlo method. The method takes into account of prior
information and has the advantage of giving distributions of pre-
dicied model properties. When the method is tested on experimen-
tal data it is found to significantly improve the accuracy of finite
element models.
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On Active Aeroelastic Control
of an Adaptive Wing Using
Piezoelectric Actuators
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I.  Introduction

HE application of piezoelectric actuators and sensors for con-

trol of acroelastic response of wing structures has been reported
in the literature.”” © The material properties of piezoelectrics make
them uniquely suited for this task, because they are easily bonded
to the surface of the structure on which they are capable of exerting
targe forces. Piezoclectric ceramics are actuated by passing a current
through the thickness of the ceramic wafer. inducing a strain per-
pendicular to the directional of the electric potential. Piezoelectrics
arc cable of operation in a frequency range from under 1 Hz up
to more than 20 kHz making them ideal for dynamic aeroelastic
induced instability control.

The current study is a natural evolution of the research program
on active aeroelastic aircraft structures.””® The three-dimensional
adaptive wing has its aerodynamic profile made from the primary
load-carrying members, the skins of the wing. Piczoelectric sensors
and actuators bonded to the inside of the skins then allow for control
of the structure. Combining the load-carrying structure of the wing
and the acrodynamic exterior makes it possible to realize the full
potential benefits of distributed control, which include minimizing
weight, control over the acroclastic behavior of the structure, mitiga-
tion of fatigue problems in stressed regions, and reduced component
complexity.

The objective of the study is to perform computational and ex-
perimental studies of an active aeroelastic wing, using a wing with
piezoelectric actuators mounted in the main spar (active spar con-
cept). The characterization and quantification of the improvements
onthe wing performance was carried out. For the active spar coneept.
it was found that the actuators were able to suppress significantly
the aeroclastic vibrations.

II. Methodology
First, the vibration frequencies and modes of the wing were deter-
mined using a finite element commercial code ANSYS. Next, the
aeroelustic analysis ZAERO" program was used to determine the
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