Description and manual for the
use of DRIVER - an

interactive modelling aid

PR Furniss

A report of the Savanna Ecosystem Project
National Programme for Environmental Sciences

SOUTH AFRICAN NATIONAL SCIENTIFIC PROGRAMMES REPORT NO

1]

SEPTEMBER 1977

Issued by the

Cooperative Scientific Programmes

Council for Scientific and Tndustrial Research

P 0 Box 395

PRETORIA 0001

from whom copies of reports in this series are available on request,

Printed 1977 in the Republic of South Africa
by the Graphic Arts Division of the CSIR

ISBN O 7988 1197 8

Author's address =

P R Furniss

Department of Applied Mathematics
University of the Witwatersrand

1 Jan Smuts Avenue

JOHANNESBURG 2001

South Africa

PREFACE

The Savanna Ecosystem Project of the National Programme for Environmental
Sciences is one of several national scientific programmes administered by
the CSIR. The National Programme is a cooperative undertaking of
scientists and scientific institutions in South Africa concerned with
research related to enviromnmental problems. It includes research designed
to meet local needs as well as projects being undertaken in South Africa as
contributions to the international programme of SCOPE (Scientific Committee
on Problems of the Enviromment), the body set up in 1970 by ICSU (Inter-
national Council of Scientific Unions) to act as a focus of non-govern-
mental internmational scientific effort in the environmental field.

The Savanna Ecosystem Project being carried out at Nylsvley is a joint
undertaking of more than fifty scientists from the Department of Agricul-
tural Technical Services, the Transvaal Provincial Administration, the
C5IR, the Transvaal Museum, and eight universities, As far as possible,
participating laboratories finance their own research within the project.
The shared facilities at the study area and the research of participating
universities and museums are financed from a central fund administered by
the National Committee for Envirommental Sciences and contributed largely
by the Department of Planning and the Environment.

The research programme of the Savanna Ecosystem Project has been divided
into three phases ~ Phase I (mid 1974 to mid 1976) - a pilot study of the
Nylsvley study area, in particular the description and quantification of
structural features of the ecosystem, Phase IT (mid 1976-1979) - studies in
the key components and processes including the development of mathematical
models, and Phase ITI (1979-1984) ~ extension to other sites and the study
of management strategies for the optimal utilization of Burkea savanna
ecosystems.

This report describes a FORTRAN language computer programme which was
developed within the Project. The programme has two main aims. Firstly,
it enables researchers with little or no computer background to exercise
existing mathematical models interactively after virtually no instruction.
Secondly, it enables modellers to implement their models on a computer
without having to concern themselves with input~output routines. This
report is intended as an instruction manual for both these user groups.

(iv)

CURBENT TITLES IN THIS SERIES

1.

10,

11,

12.

13,

14.

I5.

16.

17.

A description of the Savanna Ecosystem Project, Nylsvley, South
Africa, December 1975. 24 pp.

Sensitivity analysis of a simple linear model of a savanna ecosystem
at Nylsvley. W M Getz and A M Starfield. December 1975. 18 pp.

Savanna Ecosystem Project - Progress report 1974/1975. S M Hirst.
December 1975. 27 pp.

Solid wastes research in South Africa. R G Noble, June 1976.
13 pp.
Bibliography on marine pollution in South Africa. D A Darracott and

C E Cloete. June 1976. 131 pp.

Recycling and disposal of plastics waste in South Africa. R H Nurse,
N C Symington, G R de V Brooks and L J Heyl. June 1976. 35 pp.

South African Red Data Book - Aves. W R Siegfried, P G H Frost,
J Cooper and A C Kemp. June 1976. 108 pp.

South African marine pollution survey report 1974-1975. C E Cloete
and W D 0liff (editors). September 1976, 60 pp.

Modelling of the flow of stable air over a complex region. M T Scholtz
and C J Brouckaert. September 1976. 42 pp.

Methods and machinery for pulverising solid wastes. M J Simpkins.
October 1976. 29 pp.

South African Red Data Book -~ Small mammals. J A J Meester.
November 1976. 59 pp.

Savanna Ecosystem Project ~ Progress report 1975/1976. B J Huntley.
March 1977, 41 pp.

Disposal and recovery of waste paper in South Afrieca. G R de V Brooks.
April 1977. 35 pp.

South African Red Data Book - Fishes. P H Skelton. July 1977.
39 pp.

A checklist of the birds of the Nylsvley Nature Reserve. W R Tarboton.
September 1977. 14 pp.

Grondsoorte van die Nylsvley-natuurreservaat. H J von M Harmse.
September 1977. 64 pp.

Description and manual for the use of DRIVER - an interactive
modelling aid. P R Furniss, September 1977. 23 pp.

P T

(v)

ABSTRACT

The modelling aid DRIVER is described. It permits the interactive
manipulation of the parameters and variables of difference models which are
implemented as FORTRAN subroutines. Relationships in the model can be
expressed as arbitrary functions. A choice of output formats is avail-
able. The arbitrary functions and the output can also be changed
interactively. Parameter, variable and function values can be stored on
disk. The use of the commands for DRIVER and how to arrange a model for
use with DRIVER is explained.

UITTREKSEL

'n Beskrywing van die modelleringshulpmiddel DRIVER word gegee. DRIVER
voorsien die wisselwerkende manipulering van parameters en veranderlikes
van wiskundige modelle, wat as FORTRAN subroetines geimplementeer is.
Verwantskappe in die model kan as arbitrére funksies uitgedruk word.
Keuse van uitvoer formate is beskikbaar. Die arbitr@re funksies en die
uitvoer kan ook gedurende 'n lopie verander word. Parameter, veranderlike
en funksie waardes kan op skyf geberg word. Die gebruik van bevele vir
DRIVER en die aanpassing van 'n model vir gebruik met DRIVER word beskryf.

'n

(vi)

TABLE OF CONTENTS

Preface ...
Current titles in this Seriesu.eevesen ceees

AbSETACE v iveinnrerarnn fdtteennean erecevaaa

Uittreksel

INTRODUCTION & esieneenennnroaratsatssessaseennnns

LA I AL B A L I R R I R R R R R I R I I T N S T T S SRSy

L A N NN LR R I R R R B K I I N A B A) 44 4 e bte e e

PURPOSE AND CAPABILITIES OF THE DRIVFR PROGRAMME

Models suitable for use with DRIVER +.vveveeenn -

Concepts involved in DRIVER .vevvenenn et e aeeeetee e, ..

Output from modelcounn. ceaeaaen e

......

Use of DRIVER thme s et ea e et aee st et st be et e

MEANTNGS AND USE OF DRIVER COMMANDS .ouiveiniencnaacnnn

Introduction e asentenenne et e at ettt e e anan v enn

Main prompt s he e rassesresset bt s e,

FUNCELONS 4 vstveveeanenonnaanonsossosnanasssssesn

Repelitive OULPUL +uu e tnevsrsrarosnerareasesnssnsosennrennnn

Final OULPUL .+ v euuvnseensoseoenoeoesoasunnrsnnnannnsosanosnsnns

Changing output lists Ceeeai e aeraeaaaa

SETTING UP A MODEL FOR USE WITH DRIVER ..civeeriensess

InErOdUCEION 4 vt eennenerenrennesceaenoscsasessssintannnannnnnss

Writing the programme Chrresretiasannaa. e

Creating and modifying the reference file ..viieeiieenenneaecnns

APPENDIX 1.

APPENDIX 2.

APPENDIX 3.

LISTING OF EXAMPLE MODEL (DUNG 1) .v.cieeeennenaan- e

EXAMPLE DIALOGUE Cererarereran

10

12

13

14

15

15

15

15

20
21

23

INTRODUCTION

The DRIVER programme described in this report has been written to aid in
the interactive use and manipulation of ecological models on a computer.
The description is divided into several sections and it is anticipated that
readers with different interests will read different sets of sections.
Readers who wish merely to know the broad capabilities of DRIVER, without
using it themselves, need only look at "Purpose and capabilities of the
DRIVER programme'"- and Appendices 2 and 3, though they may find "Meanings
and use of DRIVER commands" useful. Those wishing to use DRIVER, with a
model that is already programmed need to read all of these sectionms. The
section "Setting up a model for use with DRIVER" contains information
required for fitting a model to DRIVER.

Certain aspects of DRIVER are machine dependent, and supplements to this
guide are available for the installations on which DRIVER operates. At
the time of writing, these are the University of the Witwatersrand's IBM
370/158, using the WITS time-sharing system and the Agricultural Technical
Services' Burroughs B7700, Listings of DRIVER, with more detailed
explanations of the programme may be obtained from the South African
Savanna Ecosystem Data Coordinator!,

DRIVER may be implemented on any machine capable of executing a FORTRAN
programme interactively. It is also necessary for the programme to read
and write to disk files. Minimum core requirements are not known, as both
the machines mentioned above are large. DRIVER has been written for use
with a VDU terminal (a cathode ray tube screen with a keyboard), but can be
used with a teletype. DRIVER can also produce output for a printer while
running interactively.

PURPOSE AND CAPABILITIES OF THE DRIVER PROGRAMME

Models suttable for use with DRIVER

DRIVER is designed for use with medium and small models based on difference
equations. In such models, time is considered in discrete steps or itera-
tions. At any one time the status of the system is determined by the
values of the state variables. These correspond to measureable properties
of the modelled system. The essential features of the state wvariables are
that they change with time and that their values at a particular time
affect the future behaviour of the system, because their present values are
the starting point for the determination of their own future wvalues.

In addition to the state variables there will be other measureable pro-
perties of the system which change with time but which, in the model, are
calculated afresh at each time interval, usually from the state variables.
Although their values may then affect the state variables these values are
not themselves carried on to the next time interval. These qualities will
be termed merely other variables (for the time being).

1 Botanical Research Institute, Private Bag X101, Pretoria 0001

-2 -

The structure of the model, that is how these variables affect each other
is defined in a computer programme, which is merely a set of rules for
calculating the next set of values for all the variables, from the present
values of the state variables and from other, constant values known as
parameters.

To clarify this, and the description of DRIVER, we will consider an extre-
mely simple model of the production and disappearance of ungulate dung from
the Nylsvley Burkea system. This was constructed during the Savanna Eco-
system Project's First Modelling Workshop in January 1977, and a more
detailed report om it is to be found in the report on the Workshop. The
time unit of the model is one week. The only state variable is the quan-
tity of dung present. Some of the "other" variables are the week's loss
and production of dung and the total number of cattle present. The para-
meters include the dung production per unit of cattle biomass and per unit
of wild ungulate biomass. The model's structure defines, for example,
that the loss is subtracted and the production added to the quantity of
dung present. A listing of the FORTRAN implementation of the model is
shown in Appendix 1.

When a model is constructed of a real ecological system, there is typically
uncertainty as to the structure, and the values of the parameters and
variables, In such a case it is desirable to make frequent changes to
these and observe the resulting behaviour of the model. Even when the
structure and standard values are known with some confidence, it is of
interest to investigate the model's response to alterations. In both
cases the capability of working with the model in an interactive environ-
ment is very useful. DRIVER enables the parameter and variable values to
be changed very easily and also permits a choice of several different forms
of output,. In can be used by someone without any knowledge of computer
programming as such.

Concepts involved in DRIVER

The conceptual structure of DRIVER is shown in Figure 1. It will be seen
that the DRIVER programme {(in fact a set of subroutines) communicates
between several entities - the user at the terminal, the model (programmed
as a subprogramme of DRIVER), a set of information known as the reference
information and copies of the reference information on disk. Most of the
communication between the model, DRIVER and the terminal is via the
reference information. As mentioned in the previous section, the models
with which DRIVER can be used have a basic time step or iteration interval
(one week in the example). The operation of the model is a sequence of
such iterations, termed a run. The number of iterations in a run is user—
defined, and referred to as the runtime. The runtime is in units of
simulated time (ie iterations), which may be days, years, generations or
any other time unit. Figure 2 shows typical output from a run of the
example model.

Within any one run the parameters of the model will be fixed, though they
may be varied by the user between runs. The variables of the model will
vary within a run, typically being redefined each iteratiom. Some of the
variables will be state variables of the system, which must be given a
meaningful value at the beginning of a rum. For "other" variables the
previous value will not affect the present or [uture behaviour of the

DRIVER

command
control

¥l routines

’/,/”/’/’/”/ reference

| »| informaticn

alteration
User R —— :ggminal —"""“"’f routines etc. \H\‘*g. Reference information|
< variable

output values ¥l
routines Madel

[~

paraneter,
“\\\\\\ function values
/ AN
Reference file output
read and write information
routines ‘_’,,—v
Figure 1. Conceptual structure of DRIVER programme.
model. DRIVER does not distinguish between state and "other" variables,

but refers te them all as "wariables'.
initial value, defined in DRIVER, but not used in the model.

Thus "other" variables have an

This

description will no longer distinguish between state and other variables.

IZIZK TIICTL WILD DUNG WLDDNG CTLDNG
1n 0000 0. 1.2100 ?.3030 0., 42350 «30000E-01
2.0000 0. 20000 L1.2483 P.4300 0. 43095 - BOOOOE-01
3.0000 0.20000 L.286% 7. 4897 0L AS042 - BOQOOE~01
Ga 0000 0.20000 1.3254 P H591 0. 46308 « BOOOOE-0], repetitive
5.0000 0.20000 1.35638 P 6385 0447733 »BOOOOE-01 table
4.0000 0.20000 1.4083 Pu7B874 0, 47081 «BOOOOE~G1 output
70000 0.20000 1.%4%408 ?.82353 0.350427 «BOOCOE-D1
8.0000 0.20000 1.4792 ?.7318 0 B17273 ~BO0COE-01
#0000 0.38000 1.5177 10.118 C.5311% 0.15200
10.G00 0.30000 1.5568 3.7508 054468 0.13200
| 11.0060 0. 38000 1.3%944 J.50880 0. 85312 Q.13200
I 12.000 0438000 1.6331 248174 0.37158 0. 15200
i 13.000 0.36000 1.6715 1.9938 0.3B304 0.135200
i TIME 12.0000 WEEK 13.0000 WILD 1.67154
! MOVE O BSTACTL 04 ZBOO00 TOTCTL 0.380000 final
! WLDDNG 0. 383030 CTLDNG 0. 13P000 PRD Q.737030 output
L.OSRAT 0.300000 L0oss 1.85800 DUNG 1.99504

L

Figure 2. Example run showing table output.

.1‘.
0
o
it

- 4 -

Time is regarded as a normal variable by DRIVER, though it is used in a
distinctly different manner to the other variables in the model routine.
Parameter and variable values can be changed with the command "set', and
their values inspected by entering other commands, as shown in Figure 3.
The parameters and variables are referred to individually by a name.

WHAT SHALL I DD NOW?
* gHOW VARIA
12 VARIABLES

VARIABLE INITIAL VnlLUE PRESENT VALUE
TIME 0. 12,0000
WEEK 1.00000 13.0000
WILD 1.21000 1.67134
MDOVE a 0.
BTACTL 0.200000 0. 380000
TOTCTL Qs 0.380000
WLIDNG 0. 4233500 0.385038
CTLRNG « 200000E-01 0.132000
PROD 0.503300 0. 737038
LOSRAT « H00000E-(1 0.300000
L.D5S 0.446734% 1.23880
DUNG 7. 38304 1.99584

WHAT SHALL I DT NOW?
* BET
ENTER PARAMETER OR VARIABLE AND NEW VALUE.
* DLING
* 0

* ENTER PARAMETER OR VARIABLE AND NEW VALUE.

WHAT SHaLL I DO NOW?

* GHO
*.NHICH VARIABLE DR PARAMETER DO YOU WANT TD KNOW ABOUT 7
DUNG
VARIABLE DUNG INITIAL VALUE = Ou PRESENT VALUE = 1.99584

SYMBOL - D BOUNDS - C. 16.0000

Figure 3. Examining and changing variable values (¥ are entries by user).

In addition to the structure and relations of the model defined rigidly in
the programme, DRIVER allows the use of arbitrary funciions. These are of
the general form -

y = £(x)

where x and y are variables, or just internal values, of the model. The
functions are defined by linear interpolation between a set of coordinates.
Up to 6 coordinates may be used. The arbitrary functions are of great use
when only the approximate form of a relationship is known or when the
relationship is empirically derived from actual data. Tn such cases the
modeller has the choices of using linear interpolation, as in the arbitrary
functions, or finding a mathematical expression which is then fitted to the
data. Both methods have advantages, interpolating allowing great freedom
of alteration and often being clearer to the non-mathematical. The co-
ordinates can be changed by the user of DRIVER. The arbitrary function
routine (called "FF") can also be used to produce a step function instead

- 5 -

of performing interpolation. A third possibility is to make the function
return a constant value (regardless of the value of x).

In the example, the effect of time of year on the hiomass/unit area of wild
ungulates and on the dung loss rate are arbitrary functions. Both are
usually used as step functions. Inspecting the previously assigned values
of the arbitrary functions, and changing them is achieved with a group of
commands. With these it is possible to change the number of line-segments
in the function, or to convert it from an interpolating to a step function,
or vice versa. The particular values of f(x) for an entered x can also be
found. Figure 4 shows a segment of dialogue performing some of these
changes., It will be seen that the functions are referred to by number.

ENTER NUMBER 0OF FUNCTION (0 TO END2

1
DURRENT WALUES. I CO-ORDINATE PAIRS.
X~-Ual8 100000 14,0000 410000
Y-UALS 1.21000 1.710600 1.21000
*.NHQT PO YOU WANT TO DO WITH FUNCTION 1 07
Y
ENTER THE Y CO-0DRDS.
bl I P
TNTER NUMBER OF FUNCTION (O TD END?
#*
i3
DURRENT VALUES. I DO-DORDINATE PAIRS.
X=-Aalls 1. 00000 14,0000 41.0000
Y-UALS 1. 00000 2, 00000 1. Q0000
« WHAT DO YOU WANT TO DO WITH FUNCTION 107
ENTER NUMBER OF FUNCTION (O TO ENDD
* 2
STEP FUNCTION
DURRENT VALUES., I DD-ORDINATE PATIRS.
X-UAaLs 1.006000 £. 00000 47w D000
YUnl 6 Q. 20000 0., 280000 On 2GO000
. WHAT RO YO WANT T RO WITH FUNCTION 2 7
MU
" ENTER CONSTANT UalUE.
ey

Figure 4. Inspecting and changing arbitrary functions.

The reference information includes the values of all the parameters, the
initial and present values of all the variables and the values associated
with the arbitrary functions. It also includes the names by which the
user refers to the parameters and variables and the information telling
DRIVER what output to produce when the model i1s running.

Output from model

When the model is running it changes the values of the wvariables. The
changes in the variables are the behaviour of the model that it is desired

-6 -

to know. DRIVER has facilities allowing a choice of output formats to
show these changes. A major distinction between these outputs is between
repetitive output, occuring during the run, and fZnal output, occurring
when the run is concluded.

For repetitive output, there are four choices -~ "nome", "table", "graph"
and "complete". '"None" will mean there is no repetitive output, (final
output only being used). "Table" output is simply a table of the values
of a selection of the variables, as shown in Figure 2. Only one line of
values is written at each one iteration. "Graph" output writes a graph on
the terminal, one line per iteration, (thus time runs down the page) with
the values of a selection of the variables indicated by the positions of
user—chosen symbols as shown in Figure 5. The scale of the graph is under
user—-control and is independent for each of the variables. The value of
the first variable in the table output is written at the left of the line.

If this is the time it provides a scale for the graph. "Complete" output
is described below. Final output consists of a list of the names and
values of none, some or all of the variables. The choice of which

variables are in the table, graph and final output is under user-control.

RaNK VaRIap.E SYMBOL LOWER BOLIND UPPER BOUND
1 DUNG n Oa 10.00000
2 LOss L O 10.00000
3 PROD P G 3.00Q000
WEEK
1.0D L P .
3.0 L op .
9.0 L P D "
7.0 L P D u
7.0 L P D .
1.0 . Lp b »
13.0 . L FD "
15.0 L D N
17.0 . L n "
19.0 . L b -
2.0 . L. PD »
#3.0 . L n p .
23.0 i b P u
87.0 . P L D a

Figure 5. Example graph output.

The maximum number of variables in the table output depends on the
terminal's line length — an 80 character terminal allows for 6 variable
values. Up to 8 variables may be plotted with the graph output. There
is no limit to the number of variables in the final output - the values of
all the variables may be written (on a number of lines).

pr

7

DRIVER has been written for use with a VDU (Visual Display Unit, that is a
keyboard linked to a screen on which the user's input and the computer's
output appear). The VDU does not have graphics (line drawing) capability
and the information displayed on the screen is not permanent. It is
desirable, however, to have some form of permanent output from the simula-
tions. DRIVER provides this by writing to a file which can subsequently
be printed. The output on this file is basically similar to that on the
terminal. Advantage is taken of the printer's greater line width to
output more variables in table output and to print the values of the second
to fifth variables in the table output list to the right of the graph
output. "Complete" output consists of the names and values of all the
variables on the printer and standard table output on the terminal.

Complete output is particularly useful when it is desired to trace the
operation of the model step by step (usually when a "bug" is suspected).
Repetitive output, on both terminal and printer, need not be produced each
iteration of the model, but any suitable interval (eg every fourth
iteration) may be chosen. This is especially useful for models with a
short iteration time (chosen to minimise errors caused by approximating a
continuous process with discrete time units). Figure 5 shows graph output
produced on every second iteration.

Use of DRIVER

One of the additional benefits of DRIVER is that it makes the writing of
the model programme easier, since no detailed input or output instructions
are needed. Once the model is written as a subroutine it can be linked to
DRIVER. Before this combination can be used it is necessary to define
values for all the reference information. An important feature of DRIVER
is that copies of the reference information can be preserved (on "disk'")
from one session to another. This makes it unncessary to re-enter all the
parameters and initial values each time - the model can be run using the
values left in a file after a previous session. At any time when using
DRIVER the reference information can be written out to a file, or a
previous set of infermation retrieved. An auxiliary programme, CHANGE,
sets up a first file of reference information and is also used to make the
modifications necessary when the model structure is altered, (as by
addition of new parameters, variables, or functions). The capability of
keeping the reference information is particularly useful with models in
which desirable parameter, variable and function values are found by trial
and error. A suitable approach in such a case would be to set up a first
reference file with guessed values, using CHANGE. DRIVER, with the model,
could be then used to alter the values until the model behaved acceptably.
The reference information would then be kept on disk, and these values used
as the starting point for subsequent work (such as determining the effects
of perturbations). The use of CHANGE is described in "Setting up a model
for use with DRIVER". ' :

When actually using DRIVER with a model, the usual sequence is - DRIVER
asks a question, (known as a prompt) which the user answers with one of a
number of command words. DRIVER then either performs the action commanded
or asks a further question. The commands and their uses are described in
"Meaning and use of DRIVER commands". An example of a user-DRIVER
dialogue is shown in Appendix 2. The corresponding printer output is in
Appendix 3,

Some features of DRIVER include

- The use of abbreviations for command words. This is an aid in
striking the balance between meaningful commands, for the new user,
and brief commands for the more experienced.

~ Entry of the word "help" to any prompt which expects a command, will
produce a list of the possible answers.

~ For nearly all prompts the entry of a blank line will cause a return
to the previous prompt, as shown by the dashed lines in Figure 6. A
number of prompts expect the response to be a variable or parameter
name, possibly followed by further information. All such prompts are
repeated until a blank name is entered.

- A run of the medel can be either an initial rum or a "carry on" run
for which the variables (including the time) are not reinitialised,

-~ The command "loop" performs a sequence of runs using a regular series
of values for one of the parameters or variables.

~ The command "make initial" makes the present values of the variables
the initial values for all future runs, With a model that will come
to an equilibrium, it would be possible, starting from arbitrary state
variable values, to run the model until it was sufficiently near
equilibrium and then make that equilibrium state the initial state for
subsequent runs. The "carry on" command could be used repeatedly
while bringing the model to equilibrium,

- The repetitive output interval and the symbols and scales for the
graph output can be changed from the main prompt and from the graph
output prompt.

- It is possible to switch from changing graph output to changing table
output and vice versa. This does not affect which output type is to
be used, This is useful as certain elements of the table ocutput are
used in the graph output on the printer.

— The output intervals for terminal and printer are independent. If
either is set to zero, there is no repetitive or final output omn that
device. This can be used to suppress printer output when, for
example, reasonable parameter values are being searched for and the
model output is not of lasting interest, or conversely, to suppress
terminal output (and thus speed up "real" execution time) when printer
output is all that is desired.

~ Whenever a parameter or variable value, or an arbitrary function is
changed by the user, DRIVER writes the new value to the printer. The
printer output thus contains a complete record of the values before
the output from a run. These printings are unaffected by the output
intervals.

- Additional information may be written to the printer file. The
command "print" writes the values of all parameters, variables and
functions. The command "title" allows the entry of any number of
lines of annotation from the terminal.

—r

- —

atia Ui,

-0 -

— The command "get" causes a set of reference information to be read in
from a disk file. The label line (see next feature) 1s echoed to the
terminal and the printer file. An automatie read is carried out at
the beginning of a session.

- The command "put" causes the reference information to be written to
disk. The user supplies a label line, also written to the disk,
which can be used to draw attention to special features of that
particular set of reference information. The user also defines the
name by which the file is to be known. The name, label and values of
parameters, variables and functions are written on the printer file.

MEANINGS AND USE OF DRIVER COMMANDS

Introduction

There are six "prompts" (that is questions displayed on the terminal by the
computer), which require "commands” as the user's responses. The commands
are usually words, but a few commands are single characters. In addition
to the prompts requiring commands there are a number of prompts requiring
parameter or variable names or numbers as the response. This section
describes the use of all the commands.

If "help" is entered as a prompt, DRIVER lists all the appropriate commands
and re-prompts. Entry of an invalid command also results in DRIVER re-
prompting.

Any command consisting of one word can be abbreviated to its first two
letters. The two word commands can be abbreviated to the first two
letters of the first word, and the first letter of the second word. There
must be a space between the words of a two word command.

All of the prompts which require a variable or parameter name are "repea-
ting prompts". After entry of the name and any associated information
DRIVER repeats the prompt, waiting for another name. This continues until
the user enters a blank line ‘instead of a name. DRIVER then returns to
the previous prompt (ie the command prompt that DRIVER came from to the
repeating prompt).

Most of the other prompts are self-explanatory, and further details are
only given below when necessary. Where two commands are listed, separated
by a comma, the commands are synonyms.

Items in angled brackets, thus <item>, are descriptions of the item that
should be entered, and are not entered as written.

Unless otherwise stated, after DRIVER has obeyed a command, it returns to
the prompt it came from. The relationships between the prompts are shown
in Figure 6. Transfer caused by entry of a command follows the solid
arrows and transfer caused by entry of a blank line is to either the main
prompt, directly, or to a prompt at the intermediate level (broken arrows).

WHAT FSHALL I DO NOW?

functicns

b4

ENTER NUMBER QOF
FUNCTION (0 TO END)*

4

!
|
>0 !
[
|

A J

WHAT DC YOU WANT TO DO
WITH FUNCTION <N> 7

Key
PROMPT

plot repetitive table final

none

3
[l
|
I
I
I

h 4 |

WHAT KIND OF OUTPUT
DO YOU WANT?

ANY CEANGES TO
FINAL OUTPUTE,

plot table

'y L3
I |
| t
i |
| |
| |
! |
! |
! [
‘ |
! [
|]
I |
| |

4 Y ¥ -

ANY CHANGES TO GRAPY |—table

L4

ANY CHANGES TO TAELE

for a command

QUTPUT? R — CUTPUT?
plot
Y
transfer | transfer * rosponses to this prompt
caused by | caused by are numbers, rather than
a command | blank entry a command word.
|

Figure 6. Relationships between the major prompts.

Main prompt

Main prompt : "WHAT SHALL I DO NOW?"

Response

go

carry on

show

show parameters

show variables

set

Use/meaning

Set all variables to their initial wvalues and run
the model.

Run the model, without resetting variables.

To inspect the values associated with parameters
and variables. Repeating prompt : "WHICH
VARTABLE OR PARAMETER DO YOU WANT TO KNOW ABOUT?".
For parameters DRIVER shows the value, for
variables the present and initial values and the
graph symbol and bounds.

Display the names and values of all the para-
meters.

Display the names, initial and present values of
all the wvariables.

To set the value of any parameter or the initial
value of any variable. Repeating prompt : "ENTER
PARAMETER OR VARTABLE NAME AND NEW VALUE".

o

set present

make initial

functions

loop

repetitive

final

intervals

bounds

symbols

title

print

put

- 11 =~

To set present value of any variable, Repeating
prompt : "ENTER VARIABLE AND REW PRESENT VALUE".

Set the initial values of all variables to their
present values.

To inspect or change the arbitrary functions.
See section below on Functions.

To perform a number of model runs, changing the
value of one of the parameters or the initial
value of a variable each time. Effectively per-
forms a FORTRAN ''DO-loop", using a parameter or
variable as the index. Prompt : "ENTER PARAMETER
OR VARIABLE TO BE CHANGED, THE FIRST VALUE, THE
FINAL VALUE AND THE INCREMENT". After performing
the runs the original value of the index is
restored.

To change the repetitive output. See section
below on Repetitive output,

To change the final output. Switch on the final
output, if switched off. See section below on
Final output.

To change the output intervals. Prompt : "ENTER
OUTPUT INTERVALS FOR TERMINAL AND PRINTER".

To change the graph bounds (scale) for any
variable, whether or not it is in the graph output
list. Repeating prompt : “ENTER VARIABLE, NEW
LOWER BOUND, NEW UPPER BOUND'.

To change the graph symbol for any variable,
Repeating prompt : "ENTER VARIABLE AND NEW
SYMBOL".

To write annotatiom to the printer. Any number
of lines of information may be entered, which are
copied to the printer. Prompt : "ENTER TITLING
INFORMATION. COLUMN | WILL BE USED FOR CARRIAGE
CONTROL. TO END TITLE, ENTER~\ IN COLUMN 1".

Write, on the printer, the names and values of all
parameters, variables and functions.

Write out the present reference information as a
new reference file. Prompt : "ENTER A LABEL
LINE". The line of information entered is copied
to the reference file. Prompt : "WHAT NAME IS
THIS TO BE SAVED UNDER?". The file name entered
is used, overwriting a previcus reference file if
the name is that of an old file. DRIVER writes,
on the printer "THIS SAVED AS FILE <filename>,

the label line and the same output as is generated
by the command "print".

get

end, stop

kill
none
graph, plot

table

complete J

show repetititive

Functions

]2

Read in a reference file. DRIVER writes the name
and the label on the terminal and the printer.

Has the same effect as put, but execution stops
afterwards.

Cease execution.

All produce exactly the same result as they do
when given as responses to the repetitive output
prompt "WHAT KIND OF OUTPUT DO YOU WANT?". See
section below on Repetitive output.

Produces same result as entry "show" to prompt
"WHAT KIND OF QUTPUT DO YOU WANT?". See section
below on Repetitive output,

Number prompt : "ENTER NUMBER OF FUNCTION (0 TO END)". If response is 0O
(zero}, DRIVER will return to the main prompt. Otherwise the present
values of the chosen function are displayed, followed by the prompt : "WHAT
DO YOU WANT TO DO WITH FUNCTION <number>?".

Response
<blank>

all

coordinates, xy

null

Use/meaning

No change.

To change all the values, including the number of
coordinate pairs. Prompt : "ENTER NUMBER OF CO-
ORDINATE PATRS (IF A STEP FUNCTION -VE). If the
function is to be an interpolating function, the
new number of coordinate pairs is entered. If it
is to be a step function, minus that number.
DRIVER then proceeds as if the command "coordi-
nates" had been used.

To change the x and v coordinates, without
changing the number of coordinate pairs.

Prompt : "ENTER X COORDINATES". They should be
entered, all on one line. Prompt : "ENTER Y
COORDINATES". Also all on one line.

To change only the x coordinates. Prompt :
"ENTER THE X COORDINATES",

To change only the y coordinates. Prompt
"ENTER THE Y COORDINATES".

To make the function return the same value,
regardless of the value of "x". Prompt : "ENTER
CONSTANT VALUE".

A

- 13 -

test To determine what value will be returned by the FF
: function for a particular value of "x". Prompt :
"ENTER TEST VALUE". DRIVER displays : FF (<test

value>, <number>) = <returned "y" value>

step Make the function a step function, without alte-
ring the coordinates.

interpolating Make the function an interpolating function,
without altering the coordinates.

After any of these commands are completed DRIVER returns to the number
prompt, with the exception that after "test' DRIVER returns to "WHAT DO YOU
WANT TO DO WITH FUNCTION <number>?".

Repetitive output

Prompt : "WHAT KIND OF OUTPUT DO YOU WANT?".

Response Use/meaning
none Set no repetitive output, return to main prompt.
graph, plot Set graph repetitive output, go to graph prompt

(see below).

table Set table repetitive output, go to table prompt
(see below).

complete, all Set complete output (all variables on printer, as
table on terminal). Go to table prompt.

show Show which output type is set. If graph or table
is set, DRIVER performs the display that would
occur if "show" was entered to the graph or table
prompt. After displaying the output set, DRIVER
proceeds to the prompt that it would go to if that
output type had just been set.

Graph prompt : "ANY CHANGES TO GRAPH QUTPUT?"

Response Use/meaning
<blank> No further changes, return to main prompt.
show Display names of variables which will be plotted,

with associated symbols and graph bounds, and the
output intervals.

+, add
~, subtract

See section below on Changing output lists.,
empty

sSWop

4

bounds
symbols
intervals

table

Table prompt
Response
<blank>

show

+, add

-, subtract
empty

swop
intervals

graph, plot

Final output

Prompt : "ANY CHANGES TO

Regponse
<blank>
show

+, add

-, subtract
empiy

swop

all

of f

Identical to same commands when used as responses
to main prompt.

Go to table prompt, without changing output type
selected.

""ANY CHANGES TO TABLE OQUTPUT?"

Use/meaning
No further changes, return to main prompt.

Display names of variables in the table output
list and the output interwvals.

See section below on Changing output lists.

As for main prompt.

Go to graph prompt, without changing output type
selected.

FINAL OUTPUT?".
Use/meaning
No further changes, return to main prompt.

Display names of variables in final output list.

See section below on Changing output lists.

Replace present list by list of all the wariables.

Turn final output off, but without changing the
list. Return to main prompt. Final output is
automatically turned om by the response "final" to
the main prompt.

...15_

Changing output lists

Graph, table and final output all work with lists of variables, and the
same commands are used for modifying all three of these lists., Several of
the commands invoke repeating prompts.

Response Use/meaning

+, add To add variables at the end of the list.
Repeating prompt : "WHICH VARIABLE?",

~, subtract To remove variables from the list. Repeating
prompt : "WHICH VARIABLE".

empty Remove all wariables from the list.

swop To exchange positions of two variables in the
list. Repeating prompt : "WHICH TWO VARIABLES DO
YOU WANT TO SWOP'". The first must already be in
the list.

SETTING UP A MODEL FOR USE WITH DRIVER

Introduction

This guide deals with two aspects of setting up a model for use with
DRIVER ~ writing the programme and creating the first copy of the reference
file. Writing the programme will always involve some system dependent
features, and this guide only deals with the standard elements. Creating
the reference file, using the CHANGE programme, is more or less stapdard.

Writing the programme

The model must be programmed as a FORTRAN subroutine, with the name MODEL,
and no F-parameters!. An example is given in Appendix 1. The D-para-
meters and D-variables are passed to the subroutine in COMMON in a
particular, user—-defined sequence. Details are system~dependent. On
entry to the subroutine, from DRIVER, all the D-parameters and D-variables
will have defined values. However, some of the "other" D-variables may
have inappropriate wvalues, since they may be such things as the ratio of
some of the state variables, functions of time and so forth.

There are various elements of the model subroutine that DRIVER requires.
These are shown in Figure 7. The first required executable statement is -

CALL OUT1 (0)

To avoid confusion, parameters and variables of the model (ie DRIVER
terminology) will be distinguished from the FORIRAN terminology by
the terms D-parameters and D-variables for the DRIVER ones, and
F-parameters and F-variables for the FORTRAN omnes.

- 16 -

The subroutine OUT! handles repetitive output and has one integer F-para-

meter. If this is zero, as here, then the appropriate output is perfor-
med, regardless of the output interwval. The use with a non-zero parameter
is explained below. (If an output interval is zero (see "Purpose and

capabilities of the DRIVER programme') there is no output on that device).
Thus at the beginning of a run there is a line of the chosen repetitive
output. Since some of the "other" variables may have erroneous values it
may be desirable to calculate them, from the state variables, before the
call to OQUTI.

SUBROUTINE MODEL

COMMON <declaration for parameters, including RUNTIM>
COMMON <declaration for variables, including TIME>

(Output variables may be calculated here
from the state wvariables)

CALL OUT! (0)

LIMTIM = RUNTIM

DO 100 ITIME = I,LIMTIM
TIME = INT (TIME + 1)

(Main part of model)

CALL OUT! (<integer expression>)
100 CONTINUE

CALL OUT2

RETURN

END

Figure 7. Elements required in the MODEL subroutine.

The next three required statements concern the way in which simulation time
is handled in DRIVER models. As explained in "Purpose and capabilities of
the DRIVER programme", the length of a middel run is defined by the "run-
time". This is passed into the model routine as one of the D-parameters

]7

{usually called RUNTIM). This is a real F-variable, as are all the D~
parameters and D-variables. Similarly, one of the D~variables is the time
(shown as TIME in Figure 7, but can have any legal name). TIME is
effectively a state variable, in that it has a meaningful initial value.

It is incremented by one each iteration. Since RUNTIM and TIME are real
they cannot be used in a DO-loop and the three lines -

LIMTIM = RUNTIM
Do 100 ITIME = 1, LIMTIM
TIME = INT (TIME + 1)

form the head of the iteration loop. TIME is set to INT(TIME + 1) so as
to retain a whole number value, and avoid any rounding error. It is not
set to ITIME because it may start at any value, as in a "earry on" run.
ITIME is used only as the DO-loop index.

After these three lines the main part of the model follows. In this all
the D-variable values should be redefined. Arbitrary functions may be
used in the form of the function call -

FF (<real expression>, <integer expression>)
The <real expression> is the current wvalue of "x", the independent
variable. It is important to be clear what it is, and what units it and
the returned "y" values are in. The <integer expression> (usually an
integer constant)}, indicates which of the arbitrary functions is to be
used, Again the programmer must keep clear which number is used when.
Taking the model as a whole there should be no gaps in the sequence of
function numbers (otherwise a dummy, unused, function must be included when

using CHANGE).

After the main part of the model, which consists of the calculations for
only one iteration, the model routine ends with the five compulsory lines -

CALL OUT! (<integer expression>)
100 CONTINUE

CALL 0OUT2Z

RETURN

END

This second call to OUT! involves the use of the output "interval" feature.
In its simplest form, output is only written on a device (terminal or
printer) when the D-variable TIME is an exact multiple of the output inter-
val associated with that device. In this case TIME should he placed first
in the COMMON declaration of the D-variables, and the <integer expression>
will be the constant 1. However in some models it is desirable to alter
which D-variable is used in the interval feature. An example might be a
model with weekly iterations, run for some years, If the output interval
is not a factor of 52 then output for different years will not be com-
parable. It will be found to be convenient to have a second time D-var-

18

iable which cycles from I to 52 over the year. The output interval can
then be made to depend on this - the <integer expression> then indicating
the position of the variable in the COMMON declaration of the D~variables.
A further variation is to have a D-parameter which is used in the <inte-
ger expression> to indicate which D-variable is to be used for the interval
calculations. Since these calculations perform integer arithmetic to
determine if the values are exact multiples it is important that the D-
variables used only take whole number values. The statement numbered 100
is the end of the iteratiom loop of the model. Subroutine OUT2 handles
the final output.

Creating and modifying the reference file

The programme CHANGE is used to set up and alter reference files. Al-
though the reference files can be altered by DRIVER, DRIVER cannot change
the names of the D-parameters and D-variables, nor the number of D-para-—
meters, D-variables or arbitrary functions.

CHANGE works with the lists of D-parameters, D-variables and arbitrary
functions, dealing with each in a similar manner, When the reference file
is completed, the order of D-parameters and D-variables must correspond
exactly with this sequence in the COMMON declarations in the model sub-
routine. This is necessary because DRIVER considers the D-parameter and
D-variables as a single vector, each element corresponding to an element in
the appropriate vector of names. In the model routine the D-parameter and
D-variable will be mostly simple F-variables, but may include arrays. The
correspondence between these in the model and in DRIVER is achieved by the
sequence in the COMMON declaration in the model. If multidimensional
arrays are included in the model it is essential to understand the sequence
in which such arrays are stored by the compiler. The names that the user
gives to the D-parameter and D-variable need not be the name as the FORTRAN
names in the model. D-parameters and D-variables that are elements of
arrays in the model are not distinguished in DRIVER. It may be found
helpful to give them names which include their index (eg AGE 1, AGE 2,
ete). The position of the arbitrary functions in their list must also
correspond to the numbers used in the calls to FF.

Since the method of use when altering an old file is part of the use in
creating a file from scratch, the use in altering will be described first.
With the parameters the names and values of all the defined D-parameters
are displayed on the terminal. The user is then asked to enter the index
(position in the list) of the next D-parameter. If the user enters a
number cerresponding to a defined parameter, he is asked to enter the name
and value of it. These will overwrite the previous name and value. If a
blank is entered for the name, the parameter will be deleted, (though the
parameter list is not yet altered otherwise). If the user enters a
negative number as the index, all the parameters with indexes from the
absolute value of the entry and higher are moved up one and the new entry

inserted. if the index entry is zero, and alterations have been made
since displaying the parameter list, CHANGE removes deleted items, and then
displays the parameter list as it now is. If zero is entered as index as

the first entry after the list is displayed, the parameters are considered
completed and CHANGE moves on to the variables, which are treated in the
same way as the parameters, except the graph bounds and symbol are
required, in addition to the initial value. On completing the variables,

- 19 -

the functions are dealt with. The functions are not all listed, but the
user is informed how many are defined. If the index entered corresponds
to a defined function, its values are displayed and a response asked for.
The responses are similar to the commands used in the functiom altering
part of DRIVER, but are numeric. The meanings can be found by entering a
negative number, which will cause a key to be displayed.

When creating a new reference file there will initially be no lists of
parameters, variables, etc defined. Consequently CHANGE automatically
increments the index and asks for the parameter or variable name. This
will continue until a blank name is entered. Thereafter CHANGE reverts to
the procedure described above, allowing the 1ist to be corrected. A
similar process is followed with the functions, except that the change from
automatic indexing to the correction process is indicated by the entry for
the number of coordinate pairs of ~1].

When CHANGE starts the user is asked if he is creating a new file or
updating an old one. This refers to whether he wishes to start from
scratch or not, and bears no relation to whether the result will eventually
overwrite the old file. Reading in an old file and writing the file out
at the end of the run are carried out in exactly the same way as in DRIVER,
and are partly system—dependent. Although CHANGE sets values for the
output of DRIVER these will nearly always be inappropriate, and should be
changed from DRIVER.

APPENDIX 1.

100
200
300
400
D-parameters500
D-variables &00
700
800
P00

1000

"ﬂumo

1200

1300

1400

1500

1400

1700

uge of an iBsoo

arbitrary |» 1900

function _{ 2000

2100

2800

2300

2500

2500

2600

2700

2800

2900

3000

31060

3200

3300

3400

3500

3400

3700

3800

3900

4000

4100

4200

4300

. 4400

repetitive 4500

uiput 4400

final 4700

output 1 4B00

4900
#

repetitt
output

_.20....

LISTING QF EXAMPLE MODEL (DUNG 1)

$SET SEPARATE

c-

C_
Cc—

B_

c-
C_

c-
c-

C_
C_

C—
c-

C_
c_

*

100

SUBROUTINE HODEL
THE PARAMETERS AND VARIABLES ARE DECLARED IN COMMON
REAL LDSS,LOSRAT
COMMON /PARAN/, RUNTIM,WKSIN. DENSHT . WILRAT,CATRAT WEEKINC10) ,WHICH
COMMON /VARIA/ TIME,WEEK-WILD,SMITS,OTHCAT,CATTLE , WILDUN, CATUNG-
PROD-LOSRAT,LOSS: PUNG
TIME INCREASES CONTINUOUSLY.WEEK CYCLES,MOPULD 52
WEEK=MOD{INT(TIME),52)+1
THIS CALL PROVIDES FOR OUTPUT OF THE STARTING STATE
CALL QUTi(O)
THE NEXT 4 LINES ARE THE START OF THE MAIN LOOP
LINTIM=RUNTIM
PO 100 ITIME=1.LIMTIM
TIME=INT(TIME+1)
WEEK=MOD{INT(TIME) .52)+1
THE 810MASS DPENSITY OF WILD UNGULATES IS AN ARBITRARY
FUNCTION OF THE TIME OF YEAR.
WILD=FF (WEEK-1)
FROM HERE TO STATEMENT NUMBER 3 WE ARE DETERMINING
WHETHER THE ITINERANT (SMIT'S5) CATTLE ARE PRESENT THIS WEEK
NUKS=UWKSIN
IF(NWKS.EQ.0) BD TO 4
PO 1 I=1,NWKS
IF(WEEK.EQ.WEEKINCI)Y GO TO 3
CONTINUE
SMITS=0
GO 10 2
IF THE CATTLE ARE HERE.THE VARIABLE SMITS TAKES THE VALUE OF
THE PARAMETER DENSMT
SMITS=DENSMT
THE DENSITY OF THE "OTHER” (RESIDENT) CATTLE IS AN ARBITRARY
FUNCTION OF THE TIME OF YEAR
OTHCAT=FF (WEEK, 2}
CATTLE=DTHCAT+SMITS
THERE ARE DIFFERENT PRODUCTION RATES (HASS/BIOMASS) FOR
CATTLE AND BUCK
WILDUN=WILD*WILRAT
CATUNG=CATTLE*CATRAT
PROD=WILDUN+CATUNG
THE LOSS RATE (PROPORTIDN GUING) IS FUNCTION OF TIME OF YEAR
LOSS=DUNG*LOSRAT
DUNG=DUNG+PROD-LOSS
THIS IS THE CALL TD THE REPETITIVE OUTPUT ROUTINE.
CALL OUT1 (INT(WHICH))
CONTINUE
CALL QUT2
RETURN
END

APPENDIX 2.

TNy

WHAT SHALL I DO Nowp

- 21

EXAMPLE DIALOGUE

ENTER DUTPUT INTERVALS FUOR TERMINAL NND PRINTER (SaME LINE)
IF NO OUTPUT WANTED ON A DEVICE.ENTER 0 FOR THAT INTERVAL

Lr%

*5o

RANK

o

WEE

Ll el il

™~
i34
o

TIME
MOVE

WLDDNG
L.OSRAT

i
B
x
<
¥ ¥ =z ¢ 7 3w 3 a2 P02 x & x 2 3 x B & x u % 3 o™ 3

WHAT &GHaALL I DD NOW?

VARIABLE
DUNG D

1
8 LOGS L
3

PROD P

K

Fs
=

COCVOUQLTOOT O
[l
oo e

a
<
¥ T oz 3oz % ¥k om ok

[el R AR RO R L

= 1 ® &

| 2l el el ol el
oo oo

r
o3

o
=
2

-
-
-
|TU|TETVE O
]
=
L~

™~

[0 it ol 2l el Rl el wnll el el pall aud
TOTTUTV TV VBV UT T |

[y
<
= ¥ 2 ox x

52,0000
Qa
0.330000

» 30CO00E-01

SYMBOL

LOWER BOUND

0.
Gu
Ou

WEEK 1.00000
STACTL 0.230000
CTLDNG 0.100000

LO8S 0.384118

UPFPER BOUND

10.00000
10.00000
5.000000

i

WILD 1.06000
TOTCTL 0. 250000
PROD 0. 450000
DUNG 7.74823

* ¥ x 4 ¥ o=z o3z u

4 % 3 = % ®* X 2 ™2 % ® 32 N K

- 22 -

APPENDIX 2. (CONTINUED)

WHAT SHALL I DD NOW?
* NONE
NO REPETITIVE OUTPUT.

WHAT SHaLL I DO NOW?

* FINAL
ANY CHANGES T FINAL OQUTPUT @
¥ EMPTY removing all variables
FENAL DUTPUT LIST EMPTIED. from the final output
. ANY CHANGES TO FINAL QUTPUT ?
+
WHICH VARIABLE? adding dung tc the (empty)
* DLING output ilist

WHICH VARIABLE?D

ANY CHANGES TO FINAL OUTPUT ? blank line ends repeating prompt

WHAT SHaLL I RO NOW?
* Loop
ENTER THE PARAMITER DR VARIABLE TO BE CHANGED.THE FIRST VALUE,THE LAST VALUE
AND THE INCREMENT.
CTI_-RAT
o
1L

» 23

* % % %

CTLRAT = 0.
DUNG 4. 81707

CTLRAT = 0.25000

DUNG . 564980
CTLRAT = 0.50000
DUNG £§.480533
CTLRAT = 0.73000
DUNB 10.3113
CTLRAT = 1.0000
DUNG 12.1420
parameter used as indexr of
CTLRAT = 0. 400000 loop restored to ite old value

WHAT SHALL I DO NOW?
TITLE
ENTER TITLING INFORMATION. COLUMN I WILL BE USED FOR EARRIAGE CONTROL.
TD END TITLE ENTER B IN COLUMN 1.
TEXT ENTERED IM THIS MANNER WITLL APPEAR ON THE PRINTER OUTPLUT
&
1 LINES WRITTEN.

WHAT SHALL I DO NOW?

- 23 -

10-3000005"

gooosz*”

ose*
9GE "
0SE*
osE*
20v*
»Sy*
905*

LYHES0T
ALOVYLS

SL*L

SNNA

co0oSH*

Q00000%0

leb g]

aodd

0GZ*
000*0
208

ERLsI

e e ataty et

1LNdAND HILNIHd IHL NO HVYISHY “TIIM HINNVH SIHL NI Q3¥3LNI LX31

ogoov* = 1vdILD
oZvitzZil ONNQ
NNY VILINI 00000*1 = 1vdalD
21IE*0I 9NNg
NNd I¥ILINI oopass* = LY¥YHdTILD
1soev*e aNNa
NRY TIYILINI 0Q0Qas*" = L¥YNILD
6L699°9 SNNG
NOd IVILINI ooooG2* = ivdTio
cosIg*y aNNna
NOY IVILINI 0000Q0*0 = Lv¥yTLd
EEBRVLL SNNa LiTvaE" S$507
10=-3000000"1 ONGTILD QQOo0SE" SNJG M opoose” aL010L
00000" 1 aim 000001 HI3M Q000*2s AWTIL

LMdLlnNg YNIA

oQo*1
00*61
Co*SYy
Qo*1Y
00" LE
00 EE
po*6e
Qo*sg
oL e 4
00"*L1
00*€1
0006
000G
Q00*1
ErEL]

o
a
o
-l
[a]
[a]
[a]
pu
o
ta
- anpon
J |
O Jeesn s ar_oany

[a]
ang
o
-1a

l

[

o
oo
-

-l

000000*S e40000°*0
00000°01 000000*0
0000001 000000*0

aNNDa d3ddn AONNOHE Y3IM0 08w

20
[5)]
0]
o
4

£
2
I

> O
V]
z
2
2]

$:4 ATV IUVA ANTY

NNy YILINI

HAD0TVIA OL ONIANO4SHI™N0D INdLN0 HATJAVXH *¢ XIAN¥ddV

