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Summary

1. Fireisimportant for the maintenance and conservation of African savanna ecosystems.
Despite the importance of fire intensity as a key element of the fire regime, it is seldom
measured or included in fire records.

2. We estimated fire intensity in the Kruger National Park, South Africa, by documenting
fuel loads, fuel moisture contents, rates of fire spread and the heat yields of fuel in 956
experimental plot burns over 21 years.

3. Individual fires were conducted in five different months (February, April, August,
October and December) and at five different return intervals (1, 2, 3, 4 and 6 years).
Estimated fire intensities ranged from 28 to 17 905 kW m™. Fire season had a significant
effect on fire intensity. Mean fire intensities were lowest in summer fires (1225 kW m™),
increased in autumn fires (1724 kW m™") and highest in winter fires (2314 kW m™); they
were associated with a threefold difference between the mean moisture content of grass
fuels in winter (28%) and summer (88%).

4. Mean fuel loads increased with post-fire age, from 2964 kg ha™ on annually burnt
plots to 3972 kg ha™ on biennial, triennial and quadrennial burnt plots (which did not
differ significantly), but decreased to 2881 kg ha™! on sexennial burnt plots. Fuel loads
also increased with increasing rainfall over the previous 2 years.

5. Mean fire intensities showed no significant differences between annual burns and burns
in the biennial, triennial and quadrennial categories, despite lower fuel loads in annual burns,
suggesting that seasonal fuel moisture effects overrode those of fuel load. Mean fire
intensity in sexennial burns was less than half that of other burns (638 vs. 1969 kW m™).
6. We used relationships between season of fire, fuel loads and fire intensity in conjunc-
tion with the park’s fire records to reconstruct broad fire intensity regimes. Changes
in management from regular prescribed burning to ‘natural’ fires over the past four
decades have resulted in a decrease in moderate-intensity fires and an increase in
high-intensity fires.

7. The highest fire intensities measured in our study (11 000 — > 17 500 kW m™) were
significantly higher than those previously reported for African savannas, but were
similar to those in South American cerrado vegetation. The mean fire intensity for late
dry season (winter) fires in our study was less than half that reported for late dry season
fires in savannas in northern Australia.

8. Synthesis and applications. Fire intensity has important effects on savanna vegetation,
especially on the dynamics of the tree layer. Fire intensity varies with season (because of
differences in fuel moisture) as well as with fuel load. Managers of African savannascan
manipulate fire intensity by choosing the season of fire, and further by burning in years
with higher or lower fuel loads. The basic relationships described here can also be used
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to enhance fire records, with a view to building a long-term data set for the ongoing
assessment of the effectiveness of fire management.

Key-words: fire management, fuel loads, Kruger National Park, long-term ecological

experiment
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Introduction

African savannas are fire-prone, and fire is important
in determining the composition and structure of these
ecosystems (Bond & Van Wilgen 1996; Anderson, Cook
& Williams 2003). Without fire, considerable areas of
African savannas could potentially develop into closed
woodlands under the current climate, and the occurrence
of fires over the past ¢. 8§ million years has also seen the
evolution of a fire-tolerant and fire-dependent flora (Bond,
Woodward & Midgley 2005). The appropriate use of
fire in savannas is therefore an important considera-
tion for managing these ecosystems. Tree mortality in
savannas, and the recruitment of trees into larger size
classes, is strongly affected by fire intensity. An under-
standing of the relationship between fire intensity and
tree mortality has been used for some time by managers
of African savannas to decrease tree dominance and
encroachment by selecting conditions that lead to more
intense fires (Trollope 1974).

The ability of trees and grasses to coexist is central to
the understanding of savanna ecology. This coexistence
is traditionally explained by either equilibrium or dis-
equilibrium models (Scholes & Archer 1997). Equilib-
rium models propose that grass—tree coexistence is
possible, for example because of separation of the
rooting niche, with trees having sole access to water in
deeper soil horizons and grasses having preferential
access to, and being superior competitors for, water in
the surface soil horizons (Walter 1971). In this equilib-
rium model, climatic variability precludes dominance
by either life form, and coexistence is possible in a variety
of states (Walker & Noy-Meir 1982). Disequilibrium
models, on the other hand, propose that there is no
stable equilibrium and that frequent disturbances prevent
the extinction through competition of either grasses
or trees by periodically biasing conditions in favour of
alternative competitors. Higgins, Bond & Trollope (2000)
have proposed a disequilibrium model in which inter-
actions between life-history characteristics of trees
(sprouting ability, fire survival at different life stages
and mortality) and the occurrence of fires (which
prevent recruitment of trees into adult life classes) could
explain coexistence. This model identified the critical
need for variability in fire intensity as a prerequisite
for grass—tree coexistence and suggested that the impo-
sition of fire regimes of homogeneousintensity (such as
those associated with regular prescribed burning) could
lead to dominance by grasses.

The fire regimes that characterize fire-prone ecosystems
are normally described in terms of their frequency,
season, intensity and type of fire (Gill 1975). While season
and frequency are relatively easily measured features of
afire regime, the accurate determination of the range of
intensities of fire that occur is more problematic. There
are several broad measures of fire intensity: heat per unit
area, reaction intensity and fire-line intensity (Biswell 1989).
Heat per unit area measures the total energy released
by a fire per unit area, while reaction intensity measures
the rate of release per unit area. Byram’s (1959) fire-line
intensity measures the rate of energy released along the
fire front, and is strongly correlated with the above-ground
impacts of fire. Fire-line intensity is not correlated with
soil temperatures experienced during fires (and thus is
not related to, for example, variations in seed germina-
tion patterns; Bradstock & Auld 1995). It is, however,
significantly correlated with damage to above-ground
plant parts, especially ‘topkill’ in woody plants (Higgins,
Bond & Trollope 2000).

Fire-line intensity is calculated as the product of the
heat yield of fuels, the amount of fuel consumed and
the rate of spread of the fire. Heat yields are measured
inJ g, fuel loads in g m™ and rates of spread inm ™,
providing units of kW m™. Of these factors, rate of spread
has the greatest range in vegetation fires, varying from 0-1
to 100 m min™". The value for fuel consumed in savanna
fires can vary from about 20 to 100 gm™. Heat yields vary
so little (by about 10%) that they can be considered as almost
constant at about 18 000 J g™ (Stocks, Van Wilgen &
Trollope 1997). Fire intensity in savannas thus has a
potential 100-fold range of < 500 to > 50 000 kW m™',
primarily because of the large variation of possible spread
rates (Stocks, Van Wilgen & Trollope 1997). This varia-
tion (largely because of variation in the spread rates of fires
burning in the grass layers of the vegetation) has signifi-
cant consequences for the post-fire survival of trees and
shrubs in African savannas. The direct measurement of
fire intensity is not always possible, and post-fire indicators
such asleaf and bark scorch height and percentage topkill
of trees are often used as surrogate measures.

The determination of fire regimes is dependent on
good fire records. Such records are seldom kept, and
the reconstruction of fire histories in savannas is
normally dependent on satellite remote-sensing. Where
fire records are kept, they normally provide only the date
and extent of fires. Both physical records (Van Wilgen
et al.2000) and remote sensing (Russell-Smith, Ryan &
Durieu 1997) allow for the determination of frequency
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and season, and more recently of intensity (Smith ez al.
2005). A recent analysis of different approaches to
fire management in an African savanna (Van Wilgen
et al. 2004) concluded that management had little real
impact on fire return periods (which were dependent
on grass biomass, in turn determined by the amount of,
and variability in, rainfall). On the other hand, season
of fire, and possibly fire intensities, constituted elements
of the fire regime that could be influenced by management.

Fire intensities have been recorded for more than two
decades on experimental burning plots in the savanna
ecosystems of the Kruger National Park, South Africa.
These fires included a range of seasonal and post-fire
age treatments, and they allowed for the derivation of
general principles relating to the factors influencing fire
intensity. We used fire intensity measurements from
956 experimental fires between 1982 and 2003 to derive
such principles. We then used the principles to examine
the probable historic effects of changing management
approaches on the fire intensity regimes in the park,
using the comprehensive fire records available for the
park from 1957 to 2001.

Methods

STUDY AREA

The Kruger National Park is situated in the low-lying
savannas of north-eastern South Africa, and covers
1948 528 ha. Altitudes range from 260 to 839 m above sea
level. Mean annual rainfall varies from around 750 mm
in the south to approximately 350 mm in the north, but
variations about the mean can be marked from year
to year. Geologically, the park is underlain by granites
and their erosion products in the west, while the eastern
sector is predominantly underlain by basalt. The
vegetation is characterized by a well-wooded savanna,
with knobthorn Acacia nigrescens, marula Sclerocarya
birrea, leadwood Combretum imberbe and mopane
Colophospermum mopane as the dominant trees. The
flora of the park comprises 1983 species, including more
than 400 tree and shrub species and more than 220
grasses. The park’s fire history has been described
by Van Wilgen et al. (2000, 2004). The mean fire return
period for the park was around 4-5 years between

1941 and 1996, with intervals between fires from 1 to
34 years; fires were concentrated in the late dry season.
Between 1957 and 1980, regular prescribed burning
was conducted every 3 years, in spring after the first
rains. From 1981 to 1991, regular prescribed burning
was replaced by a regime in which intervals between
prescribed fires were more flexible and were timed to
take fuel loads, post-fire age and mean annual rainfall
into account. From 1992 to 2001, a ‘natural’ fire policy
was in place, in which all lightning-ignited fires were
allowed to burn freely while at the same time attempts were
made to prevent, suppress or contain all other fires
(despite this policy, 76% of the area burnt in this period
came from unplanned fires started by people). These
changes in management did not fundamentally change
the total area burnt (area burnt was dependant on rainfall)
or the fire return periods, but did result in a change in
the proportion of the area (from 38% to 72%) that burnt
in the dry season (Van Wilgen et al. 2004).

EXPERIMENTAL BURNING PLOTS

A series of experimental burning plots was established
in savanna vegetation in the Kruger National Park in
1954, and we used these to estimate fire intensities during
experimental burns. In these plots, grasses provided
most (74%) of the fuel (Shea et al. 1996). The experiment
covered fires at annual (in August only), biennial and
triennial intervals (in February, April, August, October
and December). After 1974, quadrennial and sexennial
burns in October were added to the experiment. Treat-
ments were replicated four times in each of four major
landscapes in the park (Table 1). Each plot covered
approximately 7 ha. The experiment is described in
detail by Biggs et al. (2003).

DETERMINATION OF FIRE INTENSITIES

We determined Byram’s (1959) fire-line intensity at 956
experimental fires conducted between 1982 and 2003 as:

1= Hwr

where Iis fire intensity (kW m™), H is heat yield (kJ g™"),
w the mass of fuel combusted (g m™) and r the rate of
spread of the head fire front (m s™).

Table 1. Salient features of the experimental burn plots in four landscapes in the Kruger National Park, South Africa. The
number of fires at which fire intensity measurements were made in each landscape is shown

Underlying Meanannual Altitude ~ Number
Landscape Dominant vegetation type geology rainfall (mm) range (m) of fires
Mooiplaas Savanna dominated by dense low (1-2 m) mopane Basalt 496 300-340 160
(Colophospermum mopane) trees
Satara Savanna dominated by scattered tall (10-15 m) Marula Basalt 544 240-320 249
(Sclerocarya birrea) and knobthorn (Acacia nigrescens) trees
Skukuza Savanna dominated by dense Combretum collinum/ Granite 550 400-480 248
Combretum zeyheri trees
Pretoriuskop Savanna dominated by dense tall (10-15 m) Terminalia Granite 737 560-640 299

sericea trees




751 We determined the heat of combustion of five savanna
Fire intensity in grass species using a Gallenckamp automatic adiabatic
savanna bomb calorimeter (SANYO Galleukamp, Lowgh-
borough, Leicestershire, UK). Heat of combustion
values are normally corrected to heat yields to allow
for incomplete combustion in vegetation fires (Byram
1959). We collected ash remaining after head fires in
winter, and determined the heat of combustion of the
ash as above. Heat yields were then estimated by sub-
tracting the heat of combustion values for ash from
those for unburnt samples. It should be noted that this
correction factor would not account for grass fuels that
were not consumed in the fires; we assumed that all grass
fuels were consumed in each fire (for example it was found
that mean grass consumption in experimental fires in the
Kruger National Park exceeded 95%; Shea et al. 1996).
We used a disc pasture meter (Bransby & Tainton
1977), calibrated for use in the Kruger National Park
(Trollope & Potgieter 1986), to estimate pre-fire grass
fuel loads. Before each fire, we sampled 100 points on
the plot to obtain an estimate of the mean fuel load.
The rate of spread for the head fires was estimated as:

r=ALXT)

where r is the rate of spread (ms™), 4 the area burnt as
a head fire (m?), L the mean length of fire front (m) and
T the duration of the burn (s). This method provided a
single estimate of the rate of spread on each of the plots.
The plots were burnt as head fires, except for a small strip
on the downwind side and along the edges of the plot.
Calculations were based on the time taken to burn the
head fire proportion and the area of the plot that burnt
in the head fire.

Where it was impractical to use this procedure, the
rate of spread was estimated by recording the time taken
by the head fire to progress between two observable

Fuel load
(kg ha™)
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Fig. 1. The effect of time since the last fire, and mean annual rainfall in the preceding
2 years, on grass fuel loads, based on data from experimental burning plots in the Kruger
National Park. The relationship is z=382:9 + 3-3x + 979-4y — 0-001x> + 0-37xy —
161-8y* (r* = 0-169) where z = fuel load (kg ha™), y = time since the last fire (year) and
x = mean rainfall over the previous 2 years (mm).

points in the plot. This procedure was less preferred, as
poor visibility made such estimates less reliable, and
was applied to 21% of the estimates reported here.

FACTORS INFLUENCING FUEL LOADS

Fuel loads are an important variable contributing to
fire intensity. We examined the influence of post-fire
age and mean annual rainfall over the previous 2 years
on grass fuel loads, which were measured prior to each
experimental burn. Mean rainfall over the previous 2
years was used instead of a single year’s total as the
effect of rainfall on perennial grasses persists for more
than 1 year (Van Wilgen ez al. 2004). Rainfall data were
obtained from four rainfall monitoring gauges situated
in each of the four landscapes in which the experimen-
tal burning experiment was located (Table 1).

EFFECTS OF SEASON OF BURN ON INTENSITY

The moisture content of the grass sward varies con-
siderably as a result of seasonal curing, and this in turn
has a significant effect on fire intensity. Prior to each fire,
the moisture content of the grass sward was estimated.
Four samples (about 100 g each) of the sward were placed
in air-tight bottles, weighed and dried at 65 °C for 4
days. Moisture content was expressed as a percentage
of dry mass as follows:

M = [(W - D)ID] x 100

where M id the fuel moisture content (percentage dry
mass), W the wet mass of the grass sward sample and D
the dry mass of the sample.

EFFECTS OF CHANGING MANAGEMENT ON
FIRE INTENSITY REGIMES

In order to estimate the historic fire intensity regime of the
entire Kruger National Park, we defined broad classes of
fire intensity based on the mean fire intensities estimated
on the experimental burning plots. For each of four seasons
(summer, autumn, winter and spring), we calculated the
mean fire intensity for subsets of plots supporting dif-
ferent categories of fuel loads at the time of the fire (the
categories were < 1000, 10002000, 2000—-4000, 4000—
6000 and > 6000 kg ha™). For each combination of season
and fuel load, we assigned a class of mean fire intensity
as follows: very low (< 500 kW m™), low (500—1000 kW
m™"), moderate (1000-2000 kW m™"), high (2000—4000
kW m™) and very high (> 4000 kW m™).

We used a spatial database of all fires occurring in the
Kruger National Park (Van Wilgen et al. 2000, 2004) to
estimate the fire intensity of each fire on the database
according to the above broad classes of fire intensity.
The database of fires was divided into the three periods
(1957-80, 1981-91, and 1992-2001) that were subjected
to different management approaches (see above). The
season of fire was obtained from the date of the fire, and
fuel load was estimated from the relationship between



752

N. Govender,

W. S. W. Trollope
& B. W. Van Wilgen

©2006 The Authors.
Journal compilation
© 2006 British
Ecological Society,
Journal of Applied
Ecology, 43,
748-758

post-fire age and rainfall (Fig. 1). As rainfall varies
considerably across the park, we selected the closest
of four rainfall recording stations to each fire on the
database. The four rainfall stations represented a gradient
of rainfall conditions across the park, and were between
4 and 21 km from the respective experimental burn sites.

Results

FIRE INTENSITIES

The mean heat of combustion value for the five grass
species sampled was 18 024 J g™'. After subtraction of
the mean heat of combustion for ash samples, this was
reduced to a heat yield (/) of 16 890 J g™'. This value
was assumed to be constant in all fires, as is standard
practice in many other similar studies (Catchpole 2002;
Williams, Gill & Moore 2003). Fire intensities were
determined for 162 annual fires in August, 776 fires
following fire-free intervals of between 2 and 4 years in
all seasons, and 18 fires after fire-free intervals of 6 years
in October (Table 2). Data for annual burns were
only available for winter (August) fires, while those for
sexennial burns were only available for fires in spring
(October). Mean fire intensities ranged from 638 kW
m™ for sexennial spring burns to 2664 kW m™ for winter
fires at 2—4 years intervals, while the intensities at
individual fires spanned three orders of magnitude,
from 28 to 17 905 kW m™.

Mean fire intensities also increased with mean
(calculated over the 21 years in which intensities were
estimated) annual rainfall in the four landscapes in
which the experimental burning plots were located
(Fig. 2). The relationship suggests that an increase of
50% in mean annual rainfall (from 500 to 750 mm)
corresponded to an increase in the mean fire intensity
of 67%, from 1500 to 2500 kW m™', reflecting the effect
of increased rainfall on grass fuel production.

FACTORS AFFECTING FUEL LOADS

Fuel loads were affected by post-fire age. Significant
differences in fuel loads were found between annually
burnt plots, those burnt biennially, triennially and
quadrennially, and those burnt sexennially (P < 0-05).
Mean fuel loads in the annually burnt plots were
2964 kg ha™ while those in the biennial, triennial and
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Fig. 2. Theeffect of mean annual rainfall on mean fire intensities
estimated on experimental burning plots in four landscapes
in the Kruger National Park. The relationship is: y = 4-13x —
55822 (r* = 0-71), where y = the mean fire intensity (kW
m™) and x = mean annual rainfall (mm). Bars are the 95%
confidence intervals of the mean.

quadrennial burnt plots were 34% higher, at 3972 kg
ha™'. Fuel loads in the sexennial burnt plots were lower,
ataround 2881 kgha™ (Fig. 3a). Fuel loads also increased
with rainfall over the previous 2 years (Fig. 1).

FIRE SEASON AND FUEL MOISTURE CONTENT

Significant differences in fuel moisture content were found
between summer, autumn and spring, and winter (P <
0-05). The mean fuel moisture content of the grass sward
was lowest (28%) in winter (Fig. 4a). This increased
in spring and autumn (53%) and was highest (88%) in
summer. Thus season had a more than threefold effect
on fuel moisture content, which is, in turn, an important
factor influencing fire intensity. Higher fuel moisture
contents result in lower rates of combustion and
consumption, and lower rates of fire spread (Pyne,
Andrews & Laven 1996). In our data, 80% of fires had
rates of spread between 0-01 and 0-45 ms™. Fuel moisture
content had a significant effect on rate of fire spread,
with rates of spread above 0-5 m s™' being restricted to
fuel moistures below 150% and those above 1 m s™ to
fuel moistures below 80% (Fig. 5). The effect of fuel
load on rate of fire spread was also apparent in the
data. Under conditions of low fuel moisture content
(< 80%), the mean fuel load in the 142 fires that had
spread rates > 0-5 m s™' was more than three times that
of the corresponding fuel load for the 607 fires that had
spread rates < 0-5m s (4848 vs. 1506 kg ha™).

Fire season affected fire intensity, mainly as a result

Table 2. Mean fire intensities (kW m™) at different fire return intervals and seasons recorded in experimental plot fires in the

Kruger National Park between 1982 and 2003

Fire return period (years)

Season of burn 1 2-4 6

Summer (fires in No data 1279 (range 41-9621, n = 227) No data

February and December)

Autumn (fires in April) No data 1724 (range 88—8592, n = 182) No data

Winter (fires in August) 1891 (range 288365, n = 162) 2664 (range 42-9207, n = 196) No data

Spring (fires in October) No data 2419 (range = 136-17 905, n = 171) 638 (range 47-1752, n = 18)
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Fig. 3. (a) Grass fuel loads estimated prior to experimental
fires at different post-fire ages on experimental burning plots
in the Kruger National Park. Box and whisker plots show the
median, quartiles and a range excluding outliers (outliers, defined
asvalues > 1-5 x interquartile range from the upper and lower box
edges, not shown). (b) Fire intensity in vegetation of different
post-fire age on experimental burning plots in the Kruger National
Park. Box and whisker plots show the median, quartiles and a range
excluding outliers (outliers, defined as values > 1-5 x interquartile
range from the upper and lower box edges, not shown).

of changes in fuel moisture. Significant differences in
fire intensity were found between summer, autumn
and winter fires (P < 0-05). Intensities in spring fires
were more variable, and were significantly different only
from summer fires. Mean fire intensities were lowest
(1225 kW m™) in summer fires (February and December),
increased (1724 kW m™) in autumn fires (April)
and highest (2314 kW m™) in winter fires (August)
(Fig. 4b). However, the four most intense individual
fires (> 10 000 kW m™) in our data set all occurred in
spring (October) fires. Such fires are possible in Octo-
ber when conditions are unusually dry and fuel loads
are high (fuel loads were between 5000 and 7000 kg ha™
and fuel moisture contents were around 12% during
these four fires), resulting in intensities from 11 210 to
17905 kW m™. A range of fire intensities occurred in all
seasons, but low-intensity fires (< 1000 kW m™) pre-
dominated in summer and autumn, with very few fires
>4000 kWm™ (Fig. 6). The highest proportion of firesin
winter was in the moderate category (2000-4000 kWm™).
High to very high fire intensities (> 4000 kW m™) were
most prevalent in winter and spring burns (Fig. 6).
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Fig. 4. (a) Grass sward moisture content estimated prior to
experimental fires in different seasons on burning plots in the
Kruger National Park. Box and whisker plots show the median,
quartiles and a range excluding outliers (outliers, defined as
values > 1-5 x interquartile range from the upper and lower box
edges, not shown). (b) Fire intensities in different seasons on
experimental burning plots in the Kruger National Park. Box
and whisker plots show the median, quartiles and a range
excluding outliers (outliers, defined as values > 1-5 X interquartile
range from the upper and lower box edges, not shown).
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Fig. 5. The relationship between fuel moisture content and
the rate of spread from 956 fires on experimental burning plots
in the Kruger National Park.

Post-fire age had less of an effect on intensity than fire
season, with no significant differences between annual
burns and burnsin the biennial, triennial and quadrennial
categories (Fig. 3b), despite lower fuel loads in annual
burns (Fig. 3a). This suggested that the effects of season
of fire, which were manifested in low fuel moistures
in winter (and sometimes spring), overrode those of
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Fig. 6. Seasonal distribution of fires within five classes of fire
intensity (see Table 3) from 956 fires on experimental burning
plots in the Kruger National Park. The number of fires in each
class is shown above the bars.

fuel load. However, fire intensities on the sexennial
burnt plots were significantly lower (683 vs. 1969 kW
m™'; Fig. 3b) than on other plots (P < 0-05), probably
as a result of lower fuel loads following long interfire
periods.

EFFECTS OF CHANGING MANAGEMENT ON
FIRE INTENSITY REGIMES

The mean fire intensities recorded in 20 classes separating
season and fuel load ranged from 194 to 5253 kW m™
(Table 3). Winter fires reached the high intensity class
when fuel loads exceeded 2000 kg ha™, while autumn
and spring fires only reached high intensities when fuel
loads exceeded 4000 kg ha™. Very high intensities were
possible in both spring and winter fires when fuel loads
exceeded 6000 kg ha™'. Experimental burns in summer
were only classed as moderate intensity at the higher
levels of fuel load.

During the period between 1957 and 1980, when
regular prescribed burning was practised, a total of 7-8
million ha was burnt. During this period, fires were
predominantly in the moderate intensity class (59%
of the area) (Fig. 7). Between 1981 and 1991, when 1-7
million ha were burnt, a more flexible approach to
prescribed burning was followed. This period was
dominated by fires in the moderate intensity class (71-1%
of the area burnt). This decade had below-average
rainfall, which resulted in a much smaller proportion
of the park being burnt than in the other periods; the
lower fuel loads that accompanied this period would
have precluded many high-intensity fires. Between 1992
and 2001, when the ‘natural’ fire policy was in place,
2-8 million ha were burnt. The majority of fires in this
period (50-1% of the area) were in the high intensity
class. It was also only in this period that a small number
fires (0-2% of the area) was classified as very high
intensity, having occurred in winter or spring when fuel
loads exceeded 6000 kg ha™.

Discussion

FUEL BUILD-UP AND FIRE INTENSITY

Our results suggest that fuel load (grass biomass) accu-
mulates in proportion to rainfall for the first 4—5 years
after fire. Thereafter it declines as a combined result

Table 3. Classes of fire intensity associated with different fuel loads and seasons of burn in the Kruger National Park. The mean
fire intensities, and the number of fires on which these means are based, is shown

Fuel loads (kg ha™)

Season of burn Descriptor <1000 1000-2000  2000-4000 4000-6000 > 6000
Summer Fire intensity class Very low Low Moderate ~ Moderate =~ Moderate
(1 December—31 March) Mean fire intensity (kW m™) 287 578 1031 1432 1650
Number of fires 1 17 95 83 31
Autumn Fire intensity class Very low Low Moderate  High High
(1 April-30 May) Mean fire intensity (kW m™) No data 732 1455 2106 1900
© 2006 The Authors. Number of fires 0 19 62 79 23
Journal compilation Winter Fire intensity class Very low Low High High Very high
© 2006 British (1 June-31 August) Mean fire intensity (kW m™) 194 835 2082 3625 4385
Ecological Society, . N‘um.ber of. fires 4 65 187 .83 19 .
Journal of Applied Spring Fire mtensﬁy clqss Very low Low Moderate  High Very high
’ (1 September—30 November) ~Mean fire intensity (kW m™') No data 712 1570 3066 5253
Ecology, 43, Number of fires 0 15 103 55 16
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Fig. 7. The proportion of area burnt in classes of fire intensity (see Table 3) during
three distinct eras of fire management. The eras are (i) 1957-80, regular prescribed
burning; (ii) 1981-91, flexible prescribed burning; and (ii) 1992-2001, ‘natural’ fires; the
areas burnt in each era were 7-8, 17 and 2-8 million ha, respectively.

of grazing, decomposition and the loss of grass vigour,
possibly leading to equilibrium fuel loads (when decom-
position balances accumulation) after > 6 years (Kessel,
Good & Potter 1982; Bond & Van Wilgen 1996). Given
that fire return periods are between 3 and 6 years in
the Kruger National Park (Van Wilgen ez al. 2000),
fires will normally remove accumulated biomass before
equilibrium is reached. Fuel build-up is also more rapid
in nutrient-poor areas (on granites in the Kruger National
Park). This is especially so in areas of higher rainfall
(for example in the Pretoriuskop landscape; Table 1),
where less palatable grasses dominate the sward,
resulting in lower grazing pressure. In areas of lower
rainfall, and higher soil fertility (on basalts in the Kruger
National Park), more palatable grasses dominate the
sward. Fuel build-up is retarded by higher grazing pressure,
and fire intensities tend to be lower.

VARIATION IN FIRE INTENSITY

The classification of fire regimes for an area as large as
the Kruger National Park will of necessity involve a
degree of generalization, as we have done in allocating

fire intensity classes to individual fires on the basis of
predicted fuel loads and season of fire alone. A great
deal of variation in fire intensity is possible in the same
fire, especially if a large area is covered (for example,
since 1957 most of the area in the Kruger National
Park burnt in fires of greater than 5000 ha each; Van
Wilgen et al. 2000). A single fire of this size will burn
under a variety of changing conditions, during the day
or at night, upslope or downslope, and with or against
the wind, before it is extinguished, resulting in a fine-scale
mosaic of varying fire intensities. Two fires in the same
season may also burn under significantly different weather
conditions, or in landscapes dominated by either grasses
or trees. The intensities measured on experimental plots
cannot encompass this variation. They also tend to
exclude conditions that would lead to very high-intensity
fires (for example experimental or prescribed burns
are seldom conducted under very hot, dry or windy con-
ditions for reasons of safety) and therefore do not
provide a sample of the full spectrum of possible fire
intensities. None the less, the principles outlined here
will provide a more rigorous basis for the refinement
of models that include fire intensity as an important
input variable (Higgins, Bond & Trollope 2000; Van
Langevelde et al. 2003).

COMPARISONS WITH OTHER STUDIES

The fuel loads and fire intensities reported here are
generally in line with those reported from other savanna
regions in Africa (Table 4). Our data, however, are based
on hundreds rather than tens of observations, and some
of the fires reported here had intensities more than double
those reported previously. Fire intensities reported for
early dry season fires in Australian savannas are similar
to those reported for African savannas, while fires in the
late dry season are much higher in Australian savannas
(Table 4). At the Kapalga experiment in northern
Australia, the mean intensity of early dry season fires
was 2100 kW m™, compared with a mean of 7700 kW
m™! for late dry season fires (more than double the mean
for winter dry season fires in our study). The difference

Table 4. Comparative fuel load and fire intensity data from savanna vegetation in Africa, Australia and South America

Fire-line
Number Fuel loads intensity
Place of fires (kgha™) (kW m™) Source
Kruger National Park, South Africa 956 830-9214 28-17 905 This study
10 2218-5492 480-6130 Shea et al. (1996)
2 1281-5964 4048-10 906 Stocks et al. (1996)
Hluhluwe/Umfolozi Park, South Africa 10 1600-14 200 194-5993 Van Wilgen & Wills (1988)
Chobe National Park, Botswana 9 2000-9930 130-9474 Smith et al. (2005)
Western Province, Zambia (dambo vegetation) 7 18843314 2885271 Hoffa et al. (1999)
Western Province, Zambia (miombo vegetation) 6 8953-13 233 25-5274 Hoffa et al. (1999)
Kasanga National Park, Zambia 4 31647343 1734-4061 Shea et al. (1996)
Early season fires, Northern Territory, Australia 15 2100-6000 500-3100 Williams, Gill & Moore (2003)
Late season fires, Northern Territory, Australia 10 3000-9800 370018 000 Williams, Gill & Moore (2003)
Cerrado, Brazil, South America 2 7128-10 031 2842-16 394 Kauffman, Cummings & Ward (1994)
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between early and late dry season fires in Australia was
mainly because of more extreme fire weather conditions
in the late dry season (Williams, Gill & Moore 2003).
Fuel composition also differed between the early and late
dry season in Australian savannas. For example, grass
made up 71-5% of the fuel load in the early dry season
at Kapalga, and this dropped to 41:1% in the late dry
season; the balance was made up by leaf (41-1%) and
twig (12:2%) litter (Williams, Gill & Moore 2003). In
African savannas, grass fuel loads are dominant, and
contribute 70—-98% of the total fuel (Shea et al. 1996).
In South American cerrado vegetation, both fuel
loads and fire intensities were comparable to the upper
ranges found in African savannas (Table 4). Fires in
these ecosystems consumed > 97% of biomass in open
grasslands, compared with 72-84% in more wooded
communities (Kauffman, Cummings & Ward 1994).
Fire-line intensities were greatest in grasslands, which
reinforced grass dominance through damage to trees.

ECOLOGICAL CONSEQUENCES OF CHANGES
IN FIRE INTENSITY

Fire intensity has an appreciable effect on African
savanna trees. Relatively high fire intensities will kill the
aerial parts of medium-height woody plants, forcing
them to resprout from the base after fire. It is only
when these saplings grow tall enough to escape the
flame zone (which increases with increasing intensity),
and are able to continue growing from aerial parts, that
they are recruited into larger size classes of trees. For
example, fires of 3000 kW m™ will topkill 90% of tree
saplings 1 m tall but only 40% of those that are 2 m tall
(Van Wilgen, Everson & Trollope 1990). The number
of times that these critical intensities are attained is
a key determinant of recruitment by trees into larger
size classes; trees that are unable to grow to heights
sufficient to escape fires of higher intensity are considered
to bein a ‘fire trap’ (Higgins, Bond & Trollope 2000).
In our study, intensities above 3000 kW m™" were more
often reached in winter and spring fires (26% and 24%
of fires, respectively), than in summer and autumn fires
(6% and 14% of fires, respectively). Fire managers
who wish to reduce the recruitment of trees to larger
size classes could therefore plan to set fires mainly in
winter and spring, in years when grass fuel loads are
high, in order to increase fire intensity.

In his definition of fire regimes, Gill (1975) used the
term fire type to distinguish between fires that burn in
organic layers of the soil (ground fires), those burning
in fuels contiguous with the ground (surface fires)
and those burning in the canopies of trees (crown fires).
Fires in African savannas are surface fires, burning in
grass layers below the tree canopies. The term fire type
has sometimes been used in the literature on African
savanna fires to distinguish between head fires (those
burning with the wind or upslope) and back fires (those
burning against the wind or downslope; Trollope 1978;
Trollope 1999). Head fires and backfires are not types

of fire in terms of Gill’s (1975) definition. They differ in
their intensity, but the distinction was made in terms of
fire type because head fires and back fires of the same
intensity have different effects on grasses (Trollope 1978).
More recently, the term fire severity (Waldrop & Brose
1999; Diaz-Delgado, Lloret & Pons 2003) has been
used to distinguish between measures of fire behaviour
(intensity) and effects as a result of the alteration of soil
properties and below-ground processes (severity). Fire
severity is also used to describe fire duration (Jacoby,
Ansley & Trevion 1992; Perez & Moreno 1998). African
savanna back fires have longer residence times than
head fires (Trollope 1978), and thus differ in their severity
in this respect. The use of back fires to decrease fire
intensity (for example to reduce the topkill of trees) will
increase fire severity, and managers of African savannas
need to understand these differences and their effects.

OPTIONS FOR MANAGERS

Managers of conservation areas in South Africa are
currently reviewing their fire management policies, in
response to changes in ecological concepts and a new
focus on biodiversity conservation (Bond & Archibald
2003). Despite recent advances in understanding, the
ecological impacts of fires on all elements of the biota
are not known in sufficient detail to be able to prescribe
appropriate fire regimes with confidence. The managers
of some areas (including the Kruger National Park)
have, in response, opted to use fire patterns as surrogate
measures of achieving diversity goals, on the assumption
that a diversity of fire patterns (including a diversity
of fire intensities) will promote the conservation of
biological diversity (Van Wilgen, Richardson & Seydack
1994; Van Wilgen, Biggs & Potgieter 1998). The need for
variation in fire intensity was also supported by a
simulation model that suggested that such variation
is essential for tree—grass coexistence in savannas
(Higgins, Bond & Trollope 2000). Managers in the
Kruger National Park have therefore recently adopted
an approach that will seek to diversify the range of
fire intensities achieved in the application of manage-
ment fires.

When the targets for achieving a range of fire intensities
were originally conceived, the concern was that manage-
ment fires over the past four decades were too frequent,
and too intense, and that this, in turn, retarded the recruit-
ment of savanna trees into larger size classes (Van Wilgen
et al. 2003). In addition, fire and browsing by elephants
interacted to increase the mortality of large trees
(Eckhardt, Van Wilgen & Biggs 2000; Van Wilgen
et al. 2003). As a result, vegetation structure was being
homogenized into a landscape dominated by short
(< 2-3m) trees (Van Wilgen ez al. 2003). Our analysis
suggests that there has been a recent shift towards higher
intensity fires (Fig. 7) in the last decade, despite the desire
to move away from a dominance of high-intensity fires.

The response of the vegetation to fire treatments
on the experimental burning plots has not yet been
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comprehensively analysed. However, a concerted effort
is now being made to redress this situation (Freitag
1998). Preliminary results suggest that fire has a marked
effect on the structure, but not the composition, of woody
vegetation. Trees and shrubs survive and mature in non-
fire treatments but are significantly smaller where regularly
burnt (Van Wilgen et al. 2003). It was also suggested,
for one set of experimental plots at least, that seasonal
effects of fire manifest themselves through fire behaviour
(Enslin ez al. 2000). On these plots, there was a continuum
from the least multistemmed coppicing (in low-intensity
summer fires) to the most (in high-intensity winter fires).
High-intensity fires could therefore be contributing to
the widespread phenomenon of dominance by trees of
low, multistemmed stature.

Given the absence of a thorough understanding of
fire effects, managers need to adjust their approaches to
fire management using the best available information
(adaptive management; Rogers 2003). The regime
between 1992 and 2001 was dominated by intense, late
dry-season burns, and this may have exacerbated the
problem of dominance by trees of low, multistemmed
stature. By shifting a larger proportion of fires to summer
and autumn (the growing season), managers could
hope to reduce the intensity of many fires. Whether
this approach will be effective could be assessed by
including estimates of fire intensities into fire records.
The relationships between season of fire, fuel loads
and fire intensity described here could be used for
that purpose.
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