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Abstract

Some general theorems, new and old, concerning the behaviour of elastic
inclusions and inhomogeneities in bodies without or with external stress, are
assembled. The principal new result is that arbitrary external tractions cannot
in¯ uence the shape of an inclusion, because the elastic ® eldof the external tractions
passes unperturbed through the inclusion, and the work done by the external
forces is independent of the shape of the inclusion. The terms in the energy quad-
ratic in the external tractions are una ected by the presence of the inclusion, and
by Colonnetti’s theorem the total elastic energy contains no cross terms between
internal and external stresses.

§1. Introduction

Mott was probably the ® rst to attempt a quantitative estimate of the in¯ uence
of dispersed particles of a second phase on the plastic properties of a crystal (Mott
and Nabarro 1940). Since then, many types of problem have been considered. Many
studies are concerned with coherent precipitates, in which each lattice point retains
its identity and the structure remains topologically a single crystal, although elastic-
ally distorted. Others (for example Nabarro (1940)) treated the special case in which
the total number of atoms within the boundary of the precipitate is conserved, but
the atoms are free to ® ll their allotted space in the way which minimizes the elastic
energy. The precipitate is e ectively ¯ uid. In dislocation theory, one is sometimes
concerned with particles which are free fromelastic stress but are not easilypenetrated
by dislocations having the Burgers vector of a dislocation in the matrix.

Where elastic stresses are present, it is useful to distinguish between an inclusion,
which has the same elastic constants as those of the matrix, and an inhomogeneity,
which has di erent elastic constants. In isotropic elasticity there is an intermediate
class, in which the shear moduli are equal but the bulk moduli di er. We shall
often assume that the inclusion or inhomogeneity is derived from the matrix by a
transformation which involves a homogeneous (although not necessarily isotropic)
spontaneous elastic strain.

A further problem of interest is to understand the way in which an external stress
in¯ uences the equilibrium shapes of precipitate particles. This problem has become
important in the application of so-called superalloys in aircraft turbine engines,
where a two-phase alloy is subjected to very high temperatures and stresses, and the
particles of precipitate undergo a change of shape known as rafting (for example
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Nabarro (1995) and Nabarro, Cress and Kotschy (1995)). The quantitative solutions
of problems of this kind often depend on numerical computations, which may
(Socrate and Parks 1993) be based on Eshelby’s (1969, 1975) energy± momentum
tensor. All these studies take place within the framework of linear elasticity, some-
times coupled with the assumption of isotropic plasticity in one of the phases, and
the interfacial surface energy is neglected. Numerical computations often give little
insight into the underlying physical principles, and it seems useful to assemble some
general results which bear on problems of this type. They cannot provide solutions,
but provide useful checks on the validity of solutions obtained by other means.

§ 2. Transformations in bodies free from external stress

A theorem in isotropic elasticity which J. W. Cahn informs me is originally due
to Bitter (1931), and which has repeatedly been rediscovered independently (Goodier
1937, M. M. Crum 1940, private communication (see Nabarro (1940)), Robinson
1951) states that, if a homogeneous dilatation of a prescribed magnitude occurs in
a volume V of an in® nite isotropic medium, and the material after the transformation
has the same shear modulus as before the transformation (but not necessarily
the same bulk modulus), then the total elastic energy is proportional to V but
independent of the shape of the transformed body.

This remarkable result has a very simple physical interpretation. Consider a
spherical inhomogeneity. In isotropic elasticity, the strain ® eld inside the inhomogen-
eity is purely dilatational, while that outside is free from dilation and governed by
the shear modulus alone. Now consider two such inhomogeneities, and suppose that
the shear modulus of the inhomogeneities is the same as that of the matrix. Then
the elastic ® eld of the ® rst inhomogeneity is not a ected by the presence of the
second, and so (Eshelby 1961) the work done in creating the second inhomogeneity
is not altered by the stress ® eld of the ® rst, and there is no elastic interaction energy
between two spherical inhomogeneities which have the same shear modulus. One
region of inhomogeneity may be moved with respect to the other without changing
the total elastic energy. The prescribed volume V may be ® lled to any desired
accuracy with a set of spherical particles of various sizes. Since no work is done in
assembling these particles from a dilute distribution, the elastic energy is independent
of the shape of the ® nal assembly.

This line of thought leads at once to an additional result. Suppose that the
volume V lies, not in an in® nite medium, but in the deep interior of a body large
compared with the inhomogeneity. Then the change in the external volume of the
body produced by the dilatational transformation is independent of the shape of the
transformed volume, because it is simply the sum of the changes in volume produced
by the individual spherical particles.

In isotropic elasticity, if the precipitate is e ectively ¯ uid, the total elastic energy
tends to zero if the prescribed volume V takes the form of a thin disc (Nabarro 1940).

In general anisotropic linear elasticity, the elastic energy of a coherent inclusion
with the same elastic constants as those of the matrix is a minimum if the inclusion
is rolled out into an in® nitely thin plate whose normal is determined by the elastic
constants (Khachaturyan 1983).

Because of crystal symmetry, this normal is usually not uniquely determined.
What is determined is a set of crystallographically equivalent normals. In the practic-
ally interesting case of a family of precipitate shapes having orthorhombic symmetry
with axes along the cubic axes of a matrix with cubic symmetry, it is easy to
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show (Nabarro et al. 1995) that the equiaxed form represents a con® guration of
equilibrium, not necessarily stable.

We now consider a transformation occurring in a region of a ® nite body which
is not necessarily small in comparison with the body as a whole. Then, if the
transformation consists of a homogeneous strain without change in elastic constants,
the volume of the body containing the transformed region is the sum of the volumes
of the transformed region and of the matrix when disassembled. To show this, we
consider the application of a small test pressure p. For ease of drawing, we take the
transformation to involve a shrinkage of the inclusion (® gure 1). There are three
regions: region 0 outside the body, region 1 which does not undergo transformation,
and region 2 which undergoes transformation. The interfaces are S1 0 and S2 1 .

We consider the following cycle.

(1) The unchanged portion 1 and the transformed portion 2 are assembled by
joining corresponding points on the inner and outer surfaces of S2 1 , separated
by u2 1 after the expansion.

(2) A small test pressure Õ p is applied.
(3) The body is disassembled in the presence of Õ p.
(4) The pressure Õ p is removed, and the system has returned to its original

state. Let the volumes of regions 1 and 2 before the expansion be V1 and V2 .
Let the volume increase of V2 during free expansion be dV2 , and let the
volume of the coherently constrained body after the expansion be
V1 +V2 +DV.

Let the work done by external forces and stored in the body when regions 1 and
2 are assembled be Wa , and let the bulk modulus of the material be K.

Then the increases in the stored energy of the system in the four steps of the
cycle are

Fig. 1

A ® nite body with boundary S1 0 contains an inclusion with boundary S2 1 . The inclusion
undergoes a homogeneous transformation strain which, if continuity across S2 1 were
broken, would cause a relative displacement by u2 1 of corresponding points onopposite
sides of the interface.
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(1) Wa ,
(2) (p2 /2K)(V1 +V2 +DV ) (Colonnetti’s theorem (§3) shows that there are no

cross terms),
(3) Õ Wa Õ pDV +pdV2 +O[(p2 /2K)dV ] +O[(p2 /2K)dV2 ] (the term Wa is

unaltered because the applied pressure creates the same distortion in the
inclusion and in the cavity into which it is ® tted), and

(4) Õ (p2 /2K) (V1 +V2 ).

The sum of these energies must vanish. Since pHK, this requires that

DV =dV2 . (1)

This result may easily be veri® ed for the case of a sphere in a concentric spherical
shell by using the results of Love (1920) with p0 =0.

§ 3. Transformations in bodies under homogeneous external stress

The most powerful theorem is due to Colonnetti (1915). It applies to any linear
elastic system, with no assumptions as to isotropy or homogeneity. The total elastic
energy of a linear system subjected to internal and external stresses has no cross-
terms between the internal and the external stresses. The proof is trivial. Suppose
that, in the presence of the ® nal external stresses, the displacement of any surface
element dA is u(dA), while the traction across this element is t(dA). Suppose now
that these tractions are applied gradually and proportionately to all elements, so
that during the process the displacements are lu(dA) and the tractions lt(dA). For
the body containing internal stresses but free from external stresses, l=0; for the
body subject to internal and external stresses, l=1. Let the energy of the body free
from external stresses be Ui . Then the energy of the body under both internal and
external stresses is

U=Ui +P
1

0 Plt(dA) u(dA) dAdl

=Ui +DP t(dA) u(dA) dA, (2)

and there are no cross terms between the internal stresses and the tractions t.
It follows from§2 that, if a transformation involves a homogeneous strainwithout

change in elastic constants, the volume of the body containing the transformed
region is independent of the shape of the transformed region. Thus an external
hydrostatic pressure does no work if the shape of the transformed region changes at
constant volume, and hydrostatic pressure cannot induce such a change in shape.

Suppose now that the hydrostatic pressure mentioned above is replaced by an
arbitrary externally applied homogeneous stress. Then, if the transformation is a
homogeneous strain without change of elastic constants, an argument similar to that
in §2 shows that the work done by the external stress during the transformation is
the same as the work which would be done if the transformation occurred in the
isolated inclusion under this stress. This work is independent of the shape of the
inclusion, and therefore the arbitrary stress cannot induce a change in the shape of
the inclusion.

The result is really intuitive, because the external stress ® eld passes unperturbed
through the inclusion. The terms in the energy quadratic in the external stress are
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una ected by the presence of the inclusion while, by Colonnetti’s theorem, there are
no cross-terms between the internal and the external stresses. This interpretation
allows the previous result to be generalized; apart from its elastic response, the
equilibrium shape of an elastic inclusion is not in¯ uenced by an arbitrary set of
external tractions.
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