SOLAR SELECTIVE ABSORBER FUNCTIONALITY OF CARBON NANOPARTICLES EMBEDDED IN SiO₂, ZnO and NiO MATRICES

G. KATUMBA¹, G. MAKIWA¹, L OLUMEKOR¹ & A FORBES²

¹Physics Department, University of Zimbabwe, Harare, Zimbabwe ²CSIR-National Laser Centre, Pretoria 0001, South Africa

SAIP 2006

Concept and motivation

Electromagnetic wave propagation

O Interaction of light with matter.O Complex refractive index.

$$E_m = E_0 \exp(-k\omega x / c) \exp[i(\omega t - n\omega x / c)]$$

• Magnetic field is not altered in optical and IR.

• Logarithmic reduction in intensity for a film thickness *d* is $ln(I/I_0) = -\alpha d = -4\pi k d/\lambda$.

Tailoring materials

 \circ Factor kd/λ determines the efficiency of a solar absorber surface.

 \circ Proper combination of *k* and *d*.

 \circ Homogeneous films – can only vary *d*.

• Composite films – change k! Practically constant for most materials used.

• Can also tune *n* by changing porosity.

Tailoring materials

• Therefore can only tune *d* to place the crossover at an appropriate wavelength.

• Reflectance and efficiency of absorber surface depends on *k* and *d*.

• Near-normal reflectance of bulk material is: $R = \left| \frac{1-N}{1+N} \right|^2$

Device structure

• Many designs are possible.

• A tandem device: a composite layer deposited on a metallic substrate.

Effective medium approximations

$$\mathcal{E} = N^2$$

• Bruggeman:

$$f_a \frac{\mathcal{E}_a - \mathcal{E}_{Br}}{\mathcal{E}_a + 2\mathcal{E}_{Br}} + (1 - f_a) \frac{\mathcal{E}_b - \mathcal{E}_{Br}}{\mathcal{E}_b + 2\mathcal{E}_{Br}} = 0$$

• Maxwell-Garnett:

$$\varepsilon_{MG} = \varepsilon_b \frac{\varepsilon_a + 2\varepsilon_b + 2f_a(\varepsilon_a - \varepsilon_b)}{\varepsilon_a + 2\varepsilon_b - 2f_a(\varepsilon_a - \varepsilon_b)}$$

Theoretical reflectance O Bruggeman O Maxwell-Garnett

Experimental procedure • Sol production • Tube furnace 1 ENTECH

Experimental procedure

• Carbonization

• Filtration of nitrogen gas

Optical characterisation

OVarian Cary 500OUV-VIS-NIRONIR-IR

N° ATOMAN BOMEM Hartmann&Braun READY ZPD ALIGN DA8 FT SPECTROMETER 0

Non-optical characterisation

• SEM: Philips XL30 Surface mophology

 \circ XRD: Philips PW1840 Diffractometer Cu K_α, 35 keV, 30 mA Crystal structure

Experimental results: SiO₂ samples

• Spin-coating speed • Carbon precursor

Experimental results: IR spectrum

○FTIR reflectance spectrum

Experimental results: defects

Problem- cracked films

• Solutions to cracking

 \circ MTES & Ac₂O

Experimental results: defects

Experimental results: X-HRTEM

- \circ (a) TEOS only
- \circ (b) TEOS + Ac₂O
- \circ (c) TEOS + MTES
- Uniform distribution
- Segregation

Experimental results: EELS

- EELS mapping
- Carbon K peak
- \circ (a) TEOS only
- \circ (b) TEOS + Ac₂O
- \circ (c) TEOS + MTES

Experimental results: ZnO samples

Experimental results: NiO samples

XRD results: NiO and ZnO

Experimental results: Comparison

Reflectance

Experimental results: XRD

Conclusions

 ○∃ a possibility to produce low cost selective solar absorbers with sol-gel technique.

 \circ Addition of 15 wt.% Ac₂O appeared to solve the problem of cracking in SiO₂ samples better than 20 wt.% MTES.

Conclusions

 New and interesting microstructure of the sol-gel derived samples have been revealed:

A short chain-like structure of both a silica matrix and carbon nanoparticles is quite evident.

• Homogeneity of the coatings at nanoscale is very encouraging.

Conclusions

Sample	α	8	α/ε
C-SiO ₂	0.90	0.31	2.90
C-ZnO	0.89	0.14	6.29
C-NiO	0.93	0.10	8.94

Acknowledgement

O University of Zimbabwe.
O Uppsala University.
O NMMU.
O Defence Peace Safety & Security, CSIR.
O Rental pool.
O African Laser Centre.