
 

Abstract 
 

Land surface temperatures (LSTs) can be approximated 

from brightness temperatures observed from satellites. 

Estimation errors between observed brightness 

temperatures and a brightness temperature model of a 

given pixel would provide information for a pixel 

concerned. Robust fitting of observed Diurnal 

Temperature Cycle (DTC) taken over a day of a given 

pixel without cloud cover and other abnormally 

conditions such as fire can give a data based brightness 

temperature model for a given pixel. In this paper, diurnal 

brightness temperatures received from the METEOSAT 

Second Generation (MSG) satellite were interpolated for 

missing data based on a model, and a performance test 

was performed by comparing a new approach based on 

robust modelling with previous algorithms implemented 

on MSG data: An algorithm based on pseudo-physical 

modelling of the DTC and an algorithm based on 

Reproducing Kernel Hilbert Space (RKHS) interpolator. 

The simulation results show that the new approach 

outperforms the previous used criteria, in the sense that 

the true nonlinear model is more often found.  

 

Keywords: Model selection, Diurnal Temperature 

Cycle, METEOSAT Second Generation. 

 

1. Introduction  
 

Satellite images contain information that can be used in 

assessing different characteristic parameters of the earth. 

Meteorological satellites provide information on the 

meteorological factors of the earth and land surface 

temperature (LST) can be approximated from the 

brightness temperature supplied by these satellites. One of 

the geostationary meteorological satellites, METEOSAT 

Second Generation (MSG) has an instrument, Spinning 

Enhanced Visible and Infrared Imager (SEVIRI) which it 

uses to provide brightness temperature data with a 

temporal resolution of 15 minutes. The data can be used 

as one of the land surface parameters for early detection 

of land surface changes. The detection of the land surface 

changes could then be used for diverse applications such 

as the detection of fires [1]-[4].   

The Diurnal Temperature Cycle (DTC) provides 

brightness temperature variations of a given pixel for a 

full day. Using MSG, it is possible to get 96 brightness 

temperature samples over 24 hours. Mainly, data received 

in the 3.9 mµ  band, which has a saturation level of 335 

K, are used in fire detection, because of the band 

properties in approximately eliminating solar reflection 

from the earth or from the atmosphere to the satellite, and 

this implies a closer correlation between the LST and the 

brightness temperature measured in this band. The DTC 

can have anomalies due to total or partial cloud cover 

over a given pixel which causes the data  contaminated 

with cloud unusable for LST determination. Other 

anomalies which can make a DTC model unstable can be 

the solar reflection, precipitation, different ground 

heights, land surface characteristics (e.g., the diurnal 

amplitude of the surface temperature is larger for dry bare 

soil than for dense transpiring vegetation as reported in 

[5]), land cover, and wind fluctuations. Weather 

fluctuations must also be considered during the derivation 

of a DTC model. The data contaminated with clouds can 

be viewed as missing data, and in this paper, a method is 

implemented to derive a DTC model and this serves in 

interpolating the missing data in DTC. 

Previous work in modelling DTC, includes models 

based on the physical properties of DTC provided in [6] 

and [7] that was improved in [8]-[10]. In [6]-[8], the 

interpolation was automatically performed and 

Levenberg-Marquardt least-squares scheme was used for 

error minimization. The interpolation reduced the effect 

of cloudiness and ensured that the corrected LST was not 

based on outliers. In [8], a new parameter was included to 

the model presented in [6]. This parameter comes from 

the fact that the minimum temperature of a given day 

could be different from the minimum temperature of its 

preceding or following day. This pseudo-physical model, 

named the Cosine DTC model, was improved in [9] with 

the inclusion of a new parameter  which is due to the 

observation of two different harmonics in DTC one for 
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the rising edge part of DTC and another one for the 

falling edge of DTC. The Nelder-Mead simplex 

optimization was used in the robust estimate of the 

parameters. In [10], less prior knowledge on parameters is 

needed for the cosine DTC model than in the work in [8] 

due to their findings that one of DTC parameter can be 

expressed in function of the remaining parameters. A 

model driven approach was implemented in [9] which 

uses Reproducing Kernel Hilbert Space (RKHS) 

interpolators to interpolate the missing data. The approach 

results in an improvement to the cosine DTC model in a 

mean square error sense. In modelling DTC, the optimum 

number of parameters must not exceed the number of 

observed data points [7] since the processing of the high 

volume of data obtained would be highly involved.   

In this paper, a new method is proposed to model the 

DTC. The method has been used for robust matching [11] 

and it can be adapted to non-linear time series modelling. 

Brightness temperature time series are one the variety of 

non-linear time series. 

The paper is organized as follows. Section 2 details the 

RKHS for the DTC modelling. In section 3, the robust 

fitting approach to DTC is described, simulation results 

are the focus of section 4 and section 5 presents a 

conclusion.    

 

2.  Reproducing kernel Hilbert space model 
 

A Reproducing Kernel Hilbert Space (RKHS) [12] is a 

Hilbert space H  , to which is associated an inner product 

( ),⋅ ⋅  and a kernel ( ), :K ⋅ ⋅ × →ℝ ℝ ℝ  such that 

( ),K t H⋅ ∈  for all t ∈ℝ  and which has the 

reproducing property. This reproducing property is 

expressed as  

( ) ( )( ) ( ), ,F K t F t⋅ ⋅ =  

for all t ∈ℝ . The result of the reproducing property on 

H is that  

   ( ) ( )( ) ( ), , , ,K s K t K s t⋅ ⋅ = . 

Given the input-output training data set { }
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where aN N≤  due to the presence of noise and the 

kernel centres itɶ  are deduced from τ  by means of data 

reduction scheme in [14] and ia  is an element of a 

column vector a  given by  
†=a G f  

where f  is a column vector with elements if  and the 

Gram matrix G  is a matrix with elements ( ),i jK t tɶ . 

The superscript 
†

 denotes pseudo inverse. 

For the DTC modelling Dirichlet kernel [14] was used   

and is given by  
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where u  is a dilation parameter and n  is the harmonic 

number. The Dirichlet Kernel is widely used in optimal 

sampling of unknown function with limited number of 

harmonics [15], [16].  

 

3. Robust fitting approach to DTC 

3.1. Singular value decomposition 

The algorithm presented here has been adapted from the 

work in [11] and uses singular value decomposition 

(SVD). Using the SVD of a matrix in computations, 

rather than the original matrix, has the advantage of being 

more robust to numerical error. The SVD also exposes the 

geometric structure of a matrix, an important aspect of 

many matrix calculations. Despite its usefulness, the use 

of the SVD is computationally expensive due to the 

linearly increase of number of computations with
 
the 

number of dimensions. The SVD also operates on a fixed 

matrix; hence it is not amenable to problems that require 

adaptive algorithms.  

SVD has many uses in
 
the field of remote sensing, due 

to the inherent attributes
 
associated with this technique, 

which include: key vector analysis, dimensional 

reduction, robustness and excellent noise reduction. Key 

vector analysis [17] is
 
a technique which is primarily used 

for signal characterization and
 
allows land-cover types to 

be classified. The increasing use and
 
dissemination of 

hyperspectral data is causing many data analysis 

problems,
 
with traditional classification techniques, due to 

the large number of
 
channels. SVD can be used in such 

cases, to significantly reduce the dimensionality
 
of data 

sets. 

 



 

3.2. Algorithm 

The algorithm presented here for robust fitting of DTC 

gives the possibility of modelling a DTC of a given pixel 

based on a set of training DTCs for that pixel. Given a set 

of training DTCs, a small set of basis DTCs can be 

constructed that characterises the variation in the training 

set and can be used to estimate any of the training DTC. 

Each DTC in a training set of  p  DTCs, forms a 1D 

vector and forms the column in 96 p×  matrix A . It is 

assumed that the number of training DTCs, p , is less 

than 96. SVD is then used to decompose the matrix A  as 

 
T= ∑A U V   

where U  is an orthogonal matrix representing the 

principal component directions in the training set,  ∑  is a 

diagonal matrix with singular values 1 2, , ,
p

σ σ σ…  

sorted in decreasing order along the diagonal. The p p×  

orthogonal matrix 
TV  encodes the coefficients to be used 

in expanding each column of A  in terms of the principal 

component directions. If the singular values 
k

σ , for 

k K≥ , are small, then, since the columns of U  are 

orthonormal, a new vector e  can be approximated as  
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where the i
c  are scalar values and these values are 

calculated by taking the dot product of e  (any input 

DTC) and the column 
i

U . This is a projection of the 

input DTC, e , onto the subspace defined by the first K  

basis vectors. This approximation corresponds to the 

least-squares estimate of the 
i

c . 
i

c ’s give a reconstructed 

DTC that minimizes the squared error ( )E c  between e  

and 
*e  summed over the entire DTC: 
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  To robustly estimate the coefficients c , the quadratic 

error norm in Equation (3) would be replaced with a 

robust error norm ρ  which was reported to have 

successful results in optical flow application [11],  
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and minimize  
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The value σ  is a scale parameter that affects the point 

on the error function at which the influence of outliers 

begins to decrease. From the derivative of the error 

function, ψ -function, the rejection of outliers begins 

where the second derivative of ρ  is zero and this means 

that those residuals where  

 

    ( )* 3j j σ− >e e                                               (5) 

 

The residuals obtained by Equation (5) have reduced 

influence on the model data and can be viewed as outliers. 

DTC outliers are on those points of DTC affected for 

example by cloud.  

The value of σ  can be estimated from the data. The 

computation of the coefficients c  involves the 

minimization of the nonlinear function in Equation (4). 

The minimization was performed using gradient steepest 

descent scheme with a continuation method that begins 

with a high value for σ  and lowers it during the 

minimization. This operation results initially to no 

rejection of data as outliers and as the algorithm continues 

to iterate towards the local minimum, the influence of 

outliers is gradually reduced. 

Given a robust fitting that recovers the principal 

structure in the input DTC, those points that were treated 

as outliers can be detected. If robust fitting results in an 

important number of outliers, then an additional fitting 

would be required by minimizing the error function  
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with m  as an outlier vector, or “mask”. 

In this algorithm, U  is calculated once during training 

and each image pixel on MSG full Earth disc can have its 

own orthogonal matrix U  characterizing its brightness 

temperature variation over a day. Each time an input DTC 



 

is observed, an inner product between the DTC and each 

column of U  is calculated.   

Using cosine DTC model and RKHS method, a pixel 

DTC model is obtained by using one observed DTC in the 

training stage. With this new method, the model can be 

trained by more than one observed DTC and this provides 

more information to the pixel DTC model.   

 

4.  Simulation results 
 

The used data set is as reported in [9]: MSG data were for 

six different regions in South Africa and in each region, 

data for 5 different pixels were selected for the 

simulation. For each pixel, brightness temperature 

sequences of between four and six complete days (cycle) 

were collected from 2004-08-01 to 2004-08-29 and some 

segments spanning 4 hours of duration were removed to 

some cycles of a given pixel in order to simulate periods 

of cloud cover over the pixel. The dataset consisted of 

three different sequences for each pixel depending of 

where the removed segment was taken. The segment 

removal was performed either at time between sunrise and 

time of maximum temperature, at time after sunset or at 4 

hours of maximum temperature of the observed DTC. 

Each removed segment consisted of 16 consecutive MSG 

samples. The removal of 16 consecutive samples which 

correspond to a period of 4 hours was chosen based on 

the results in [8] where it was reported that in case of  

cloud cover less than 4 hours over a pixel, the missed data 

due to the cloud cover can be well interpolated using the 

cosine DTC model reported in [8].  

    The Cosine DTC model reported in [8] and the RKHS 

approach were compared with this new approach. The 

Cosine DTC model in [8] and RKHS model were trained 

using a complete cycle with no missing data. Nelder-

Mead simplex method was used to minimize the error 

between the cosine DTC model and the observed DTC.  

In implementing RKHS, the kernel centres were placed 

at intervals of approximately 105 minutes (7 consecutive 

DTC samples), which gives an order of approximation 

aN =14 in Equation (1). In Equation (2), the number of 

harmonics n =7 and the dilation u  was the approximate 

of half-width of the kernel main lobe. After getting the 

model, the model was scaled and translated vertically to 

obtain the best least squares fit to any DTC of the pixel 

using Nelder-Mead simplex method. In implementing the 

robust fitting method, three DTCs without missing data 

were used in training. 

The interpolation of missing data in DTC with missing 

samples was implemented using the three approaches, and 

the comparison of the approaches is based on mean 

square error (MSE) between the observed DTC and the 

DTC model.     
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Figure 1: Sample MSG DTC with no missing data and fitted 

Cosine DTC model. MSE = 0.7465 and standard deviation of 

error = 2.2796.  
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Figure 2: Sample MSG DTC with no missing data and fitted 

Cosine DTC model. MSE = 0.4727 and standard deviation of 

error = 0.9205. 
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Figure 3: Sample MSG DTC with no missing data and fitted 

RKHS model. MSE = 0.0771 and standard deviation of  

error = 0.1392. 
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Figure 4: Sample MSG DTC with no missing data and fitted 

cycle using robust fitting. MSE is approximately zero. 

 

In Figure 1, the Cosine DTC model does not fit at the 

point of maximum temperature of the observed DTC and 

in Figure 2, the Cosine DTC model does not follow 

humps in the observed data at the exponential decreasing 

part. In Figure 3 and Figure 4, MSG DTCs with no 

missing data and picked from the training set, are fitted to 

the model. As shown from the figures, both RKHS and 

robust fitting give better results at the point of maximum 

temperature and good results are also observed at the 

exponential decreasing part of the DTC where both 

approaches managed to adapt to the humps. The RKHS 

model exhibits a higher MSE compared with the model 

found using robust fitting. With robust fitting, the 

simulation exhibits MSE of close to zero.  
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Figure 5: Sample MSG DTC with missing data and fitted 

cycle using cosine model. MSE = (0.8180, 0.1227). 
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Figure 6: Sample MSG DTC with missing data and fitted 

RKHS model. MSE = (0. 5273, 0.1296). 
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Figure 7: Sample MSG DTC with missing data and fitted 

cycle using robust fitting. MSE = (0.2243, 0.0502). 

 

In Figure 5, Figure 6 and Figure 7, the interpolation of 

missing data was implemented to DTC with partial cloud 

cover and the robust fitting exhibits a low MSE compared 

to other methods and from the figures it can be seen that 

from the sunset, with the robust fitting, the model 

approximately approaches the observed data. The 

deviation of the model to the observations in Figure 7 is 

due to the fact that the DTCs used in training are different 

from the DTC observed. The interpolated curve exhibits 

the characteristic of the DTCs used in training and some 

jumps on the interpolated curve occur because of 

undetected anomalies in the observed DTC. Such 

anomalies are for example fire which could be the cause 

of the hump above the interpolated curve. As shown, 

RKHS model could not curve in the corner after sunset in 

Figure 6 and exhibits a higher MSE compared with the 

MSE found by interpolating using the robust fitting. The 

two MSE values in caption of Figure 5, Figure 6 and 

Figure 7 correspond to the measured MSE over all  



 

Table 1: MSE obtained by fitting using cosine DTC 

modelling approach, RKHS approach and Robust fitting 

approach (standard deviation of error in parentheses). 

Method All samples Missing 

samples only 

Cosine DTC 

model 

0.8878 (1.3968) 0.1334 (0.6292) 

RKHS 0.5473 (0.6319) 0.1553 (0.3942) 

Robust fitting 0.2635 (0.2769) 0.0663 (0.2823) 

samples and the measured MSE over only the missing 

samples, respectively.  

Table 1 shows an average in MSE and standard 

deviation of error over all cycles of a given pixel. From 

Table 1, a comparison was made on interpolation of a 

cycle with missing data. There is an improvement of 

above 50% in MSE in missing samples when compared 

robust fitting with other two approaches. Robust fitting 

also improve the time of execution by an average of 48% 

compared with the RKHS approach and compared with 

the cosine DTC model approach an approximately same 

time of execution was recorded 

 

5. Conclusion 
 

The presented results show the robustness of the method 

implemented in interpolating missing data in DTC with an 

improvement of approximately 50 % in MSE compared to 

RKHS interpolator and the Cosine DTC model. Future 

work will concentrate on a design of real time 

implementation of the modelled DTC with reduced 

parameters and in this case kernel methods for recursive 

least squares can be designed for the application. The 

brightness temperature would also be analyzed together 

with other quantities such as Normalized Difference 

Vegetation Index (NVDI), elevation, soil moisture and 

surface emissivity for the study of land changes to 

improve the DTC modelling. 
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