Important factors in HMM-based phonetic segmentation
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Abstract

When doing research into or building systems involving
spoken language, one invariably relies on relevantly annotated
speech data for analysis and incorporation into such systems.
We investigate methods and parameters for a baseline phonetic
segmentation system on a few South African languages with
the intention of determining how accurately we can apply basic
methods and characterising typical deficiencies with the goal of
defining further refinement strategies. An HMM-based system
with a single mixture per triphone is found to work well, though
the accurate segmentation of plosives remains a challenge. Sug-
gestions for addressing this challenge are presented.

1. Introduction

Modern techniques for the development of spoken language
technologies such as speech recognition and synthesis are re-
liant on large sets of speech data in the form of annotated au-
dio recordings. For purposes such as speech synthesis or data
modelling, these annotated corpora are typically described by
labels that define the temporal locations of phones, which rep-
resent the acoustic realisations of the smallest meaningful units
of speech, namely phonemes. Data in this form can be used to
construct language based systems (including speech recognition
and synthesis systems) through the training of statistical models
or the definition of acoustic databases, as well as aid language
research in general.

The accuracy and consistency of phonetic labels are crucial
to the eventual quality of systems dependent on speech data. La-
bels that accurately isolate phones in training data used in statis-
tical models such as Hidden Markov Models (HMMs) are use-
ful as bootstrap data aiding in the initialisation of these models.
This can have significant positive effects on the performance
of speech recognition systems [1, 2, 3]. Other applications that
use labeled corpora in a more direct form, such as concatenative
speech synthesis systems, where an acoustic segment inventory
is compiled, also require highly accurate and consistent bound-
ary placement between phones in order to achieve acceptable
quality output [2, 4].

Despite numerous attempts at developing accurate auto-
matic segmentation techniques described in the literature, man-
ual segmentation is still a popular solution when building spo-
ken language systems of high quality. This is problematic in that
it severely impedes the process of building new systems due to
the time consuming and expensive nature of manual segmenta-
tion [5]. It is thus prudent to consider how existing automatic
methods can be further extended or improved to enhance their
performance and applicability, especially under non-ideal cir-
cumstances (which is often the case in the developing world)
such as limited data, speaker and language idiosyncrasies as

ebarnard@csir.co.za

well as suitability for differing applications (e.g. those men-
tioned above).

We aim to develop an accurate segmentation procedure with
application in various spoken language systems and research in
the South African context, by evaluating the applicability and
feasibility of current methods and investigating improvements
in design that could increase performance and robustness.

A popular approach to achieving highly accurate segmenta-
tion is to imitate the expert human labeling procedure where a
labeler places approximate boundary locations first and subse-
quently refines these boundaries by taking into account more of
the available features of the waveform or applying certain con-
ventions for labeling specific classes of boundaries [6, 7]. This
has led to a two stage design whereby an algorithm/model is
first used to isolate phone locations (with approximate bound-
aries) and a subsequent algorithm/model is employed to update
these initial boundary locations.

The first stage (boundary estimation) has traditionally been
attempted with ideas adopted from the speech recognition field,
including the Dynamic Time Warping algorithm (DTW) and the
Viterbi algorithm (using HMMs) [8, 9, 10, 11].

In this paper we investigate methods and parameters for an
appropriate boundary estimation stage on a number of manually
labeled corpora (designed for the building of concatenative TTS
systems in local languages).

1.1. Choosing a system for boundary estimation

For the purposes of boundary estimation, the popular DTW and
HMM based methods were considered, both of which are im-
plemented in Festvox [12]. These methods are suitable for seg-
menting speech with known orthographic transcriptions. DTW
based segmentation is considered more accurate [10, 11], but re-
quires the existence of a signal with similar acoustic properties
(to the signal to be segmented) of which the phone boundaries
are known. This is generally achieved by synthesizing a signal
using the relevant transcriptions, but can be problematic when
having to segment speech in a new language which is acousti-
cally or phonetically very dissimilar to existing languages for
which TTS systems exist. Although HMM based segmentation
lacks accuracy when compared to DTW under ideal conditions,
it is considered to be more robust in that mostly fine errors oc-
cur during segmentation as opposed to large errors in bound-
ary placement which occur more often with DTW alignment
[10, 11].

To investigate these claims, we experimented with the seg-
mentation of South African English speech data by a female
speaker, using the existing systems in the Festvox package. In
this experiment we counted the number of labeling errors that
caused the corresponding diphone to be unusable in a concate-
native speech synthesis system. We found the HMM based seg-



mentation to make no such serious errors, while segments from
the DTW process contained errors making up more than 1% of
all the segments considered (20300 in total), with as much as a
3% catastrophic error on some phones. Although this is a rather
crude comparison, the situation tested, that of segmenting En-
glish speech is considered the most ideal practically possible
scenario for DTW alignment, because of the existence of a fe-
male English voice that was used to generate the synthetic sig-
nal. Segmentation quality of speech in different languages is ex-
pected to be even worse as a result of acoustic and phonetic dis-
similarities. Informal listening tests conducted on speech syn-
thesis systems built using the two sets of alignments also indi-
cated that the segments (containing fine errors) identified by the
HMM-based system is preferable over the DTW-based align-
ments. Since text for recording speech databases in developing-
world languages is often carefully chosen for optimal diphone
coverage (in order to minimise database size and hence the costs
involved in this process), even a 1% loss in diphones is some-
times unacceptable. We thus chose to continue further research
into boundary estimation employing HMM-based methods.

2. Experimental setup

In order to determine how HMM-based techniques can be suc-
cessfully applied to boundary estimation, a phone recogniser
was implemented using HTK [3] and integrated into the Festvox
voice building framework.

2.1. System design

The HMM training procedure follows conventions for building
speech recognition systems described in [3], including the pos-
sibility of context dependent phones (triphones) and splitting of
Gaussian mixtures. Segmentation is achieved by firstly train-
ing models, using all the speech data and available transcrip-
tions and subsequently applying these models in forced align-
ment with the transcriptions in order to determine phone bound-
aries. The essential components and functions of the segmenta-
tion system is depicted in Figure 1.
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Figure 1: Segmentation system

2.2. Speech corpora

For the purpose of testing the above system, we applied it
to three sets of recordings in three South African languages,
namely Afrikaans, isiZulu and Setswana. These recordings
were manually labeled with the aim of building concatenative
TTS systems. We use these manual labels as a reference with
which to compare the automatically obtained segments for var-
ious sets of parameters. The data set sizes are small, but are
typical of the sizes that are currently being used to develop TTS
systems for local languages [13], using careful text selection
strategies to ensure diphone coverage (Table 1).

| Language [ Gender [ Utterances. [ Duration [ Phones ‘

Afrikaans | Male 134 21 mins. | 12336
isiZulu Male 150 19 mins. | 8569
Setswana | Female | 332 44 mins. | 26009

Table 1: Reference data sets

2.3. Measures of comparison

Considering the fact that we are interested in the quality of seg-
mentation for general purposes, we employ two measures of
comparison between automatic and reference labels. Firstly, the
traditional boundary accuracy (where boundaries falling within
a certain threshold of the reference are counted as correct) and
secondly the “Overlap Rate” (O.R.), which involves calculating
how much segments overlap in time, in a duration-independent
way [10]. Briefly, the O.R. is given by:

C_Dur
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where C_Dur, M _Dur, R_Dur and A_Dur are the common,
maximum, reference and automatic durations respectively (see
Figure 2).
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Figure 2: “Overlap Rate” definition [10]

It is important to note here that the phonetic sequence is known
and as such, it is known exactly which reference segment to
compare with a particular automatic segment. Thus even when
no overlap occurs or when multiple segments overlap with
incorrect reference or automatic segments, this merely results
in C_Dur = 0 and thus O.R. = 0.

With respect to the traditional boundary accuracy measure, we
used the conventional 20ms threshold throughout.

2.4. Factors in HMM-based segmentation

Using the above system, corpora and measures, it is possible to
evaluate factors impacting the accuracy and robustness of seg-
mentation. Factors of particular interest include the following:

e Feature vectors used and parameters concerning how
they are extracted,



e HMM model parameters, such as context dependent or
independent models, number of Gaussian mixtures and
topology,

e Speaker and gender effects on accuracy,
e Segmentation performance over different languages,

e Segmentation accuracy for particular phone and bound-
ary categories, and

e Typical problems with HMM-based segmentation.

As a starting point we select system parameters that have been
proven to work well in the domain of speaker independent
speech recognition [14] and use these parameters as a baseline
for comparison.

3. Results

In this section we describe some typical difficulties experienced
when applying HMMs to segmentation, showing how these dif-
ficulties affect segmentation accuracy. Furthermore, we present
practical advice concerning operating parameters and condi-
tions for accurate segmentation.

All results in Section 3.1 are calculated from the most suc-
cessful parameters determined in Section 3.2. Thus, three state
left-to-right, single Gaussian mixture, context-dependent mod-
els (triphones) trained with MFCC (Mel Frequency Cepstral
Coefficient) feature vectors incorporating delta and acceleration
coefficients extracted every S5ms and using a 10ms window size.

3.1. Typical errors during segmentation
3.1.1. Phone isolation

Using the “Overlap Rate” previously described, it is possible
to judge how well each phone is isolated . Figure 3 shows the
accuracies for particular phonetic categories. From these re-
sults, it is evident that fricatives, nasals and vowels are isolated
more accurately than plosives, silences and trills. This is pos-
sibly attributable to the nature of the feature vectors used (Sec-
tion 3.2.1), causing models for spectrally more distinguishable
segments to be more successful. Another possibility is that the
successful training of models for these “problem phones” is less
easily achieved from the “flat start” approach to HMM initiali-
sation that is commonly used.
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Figure 3: Overlap rates for different phonetic categories

3.1.2. Phone transitions (Boundaries)

Another important aspect of the segmentation accuracy is how
close boundaries are placed to the actual transitions between
phones. By looking at boundary placement accuracies, we have
identified problematic cases. Some of the results are not sur-
prising when one considers that the nature of certain transitions
cause difficulties even for human labelers. These difficulties are
most often overcome during manual labeling by simply defining
clear conventions which determine where boundaries are placed
when the transition cannot be easily perceived. Table 2 shows
some examples of transitions that are of particular interest.

| Transition | Afrikaans | Setswana [ isiZulu ]
short vowel - short vowel 47,06% 47,99% | 43,75%
nasal - nasal NA 19,19% NA
closure - plosive 59.62% 62.51% | 82,79%

Table 2: Boundary accuracies for classes of phone transitions
that are not segmented well

It is also interesting to note that there are some transitions which
are considered easy by human labelers that are not always well
placed (e.g. transition between closures and plosives). In con-
trast with these problematic cases, there are also some transi-
tions which are consistently accurately identified (Table 3).

| Transition | Afrikaans [ Setswana [ isiZulu ]

90,58% 86,46% | 90.07%
89,74% 73,72% | 95,92%

fricative - short vowel
silence - short vowel

Table 3: Boundary accuracies for classes of phone transitions
that are segmented well

3.2. Practical segmentation parameters

In this section we present results to experiments that were per-
formed with parametric variation of the segmentation process.
We focused on the feature extraction and HMM training proce-
dures (see Figure 1) as well as an analysis of the errors made by
the system.

3.2.1. Feature vectors

During the feature-extraction phase, the speech signal is
parametrised into a sequence of feature vectors by windowing
the signal at regular intervals and calculating a relevant repre-
sentation for each window. HTK provides a number of options
for specifying how parametrisation is done, including feature
vector type, window and step sizes.

Taking into account that the segmentation system trains and
applies the HMM models on a single speaker only, our first con-
cern was the applicability of the window and step sizes that are
commonly used for speech recognition purposes. Window sizes
of around 20 to 25ms with a step size of 10ms have been shown
to work well for speaker-independent speech recognition, but
are not necessarily optimal for our purposes. Figures 4 and 5
show the results obtained when stepping through various win-
dow sizes. In each case the step size is equal to half the window
size so that consecutive windows overlap 50% in time.

These results seemed to indicate that all of the data sets
benefited from higher resolution feature extraction. Table 4 (on
the final page) shows why this could be the case. Our conven-
tional three-state, left-to-right HMM topology imposes a min-
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Figure 5: Boundary accuracies for the three languages using
varying window/step sizes

imum phone duration constraint of 3 times the step size (that
is a minimum phone duration of 30ms for commonly used step
sizes). This is obviously not appropriate for all phone types.

We also experimented with different feature representations
including Linear Prediction Coefficients (LPCs) and Mel Fre-
quency Cepstral Coefficients and found MFCCs with delta and
acceleration coefficients to give much better performance (this
is consistent with literature on speech recognition [14]). Tech-
niques like Cepstral Mean Normalisation (CMN) had little ef-
fect on the outcome. This is a sensible result when one consid-
ers that all models are trained and applied on a single voice and
channel.

3.2.2. Models

Concerning the training of HMM models, we firstly evaluated
the techniques and factors classically used in speech recogni-
tion, to ascertain the validity of these methods in the segmenta-
tion domain. These include:

e Effects of training data set size on accuracy,
e Context independent and context dependent HMMs, and

e Number of Gaussian mixtures per state.

It is interesting to note that some of the factors that have
great impact on speech-recognition performance (especially
for the speaker independent case), have smaller effects in
the segmentation scenario (training and applying HMMs on
the same set of data by only a single speaker and defining
phone overlap as performance measure). The results of our
investigations are briefly discussed below.

Size of the data set

An important factor when training statistical models is the
size of the training set. For speaker-independent speech
recognition, a significant number of training samples of each
phone is necessary to obtain accurate recognition rates. In our
scenario, we were able to get decent segmentation accuracy
even with very little data (Table 5). Segmentation consistency
did, however, gradually improve with the addition of more
training samples.

Afrikaans Setswana isiZulu
Set size OR. tgtal OR. tptal OR. tptal
time time time
large NA NA | 64.41 | 2642s NA NA
medium | 62.44 | 1234s | 64.05 | 1347s | 69.96 | 1132s
small | 63.05 643s | 65.09 625s | 69.82 569s
very small | 59.50 336s | 62.46 284s | 65.60 273s

Table 5: Phone overlap rates for different data set sizes

Context dependent phones
The use of context-dependent phones (i.e.

triphones) is a

common technique in speech-recognition systems to build
more accurate models of phonetic segments. This is because
the spectral features can vary greatly depending on the context
in which a phone was realized. The use of triphone models for
segmentation proved to be slightly more accurate and resulted
in greater overlap consistency than monophones (Table 6),
despite the small amount of available training data.

Models Afrikaans Setswana isiZulu
O.R. [ o O.R. [ o O.R. [ o
Monophones | 60.58 | 24.66 | 61.59 | 24.61 | 65.49 | 23.60
Triphones | 61.80 | 23.86 | 62.24 | 23.93 | 66.31 | 22.69

Table 6: Comparative phone overlap rates for context depen-
dent and context independent models (average O.R. over differ-
ing window/step sizes)

Gaussian mixtures per state

When one trains HMMs for speaker independent speech recog-
nition, it is usually beneficial to perform splitting of Gaussian
mixtures per state in order to better model diverse qualities in
phone realisation by different speakers. Figure 6 shows that
mixture splitting does not hold any benefits in our context and
only leads to overly complex models which reduce the speed
of the training and segmentation. This is not unexpected for a
speaker-specific context-dependent model (which might show a
lack of diversity that could benefit from multiple mixtures), but
emphasizes the contrasting requirements of speech recognition
and segmentation.



Category Afrikaans Setswana isiZulu
<30ms | total [ <30ms [ total | <30ms [ total
plosives 51.1% 1923 42.7% 2433 48.8% 762
short silences 13.5% 2313 9.3% 3670 314% | 1156
trills 18.6% 706 7.4% 499 4.8% 21
approximants 5.0% 480 6.1% 2208 1.4% 691
fricatives 2.5% 1634 0.1% 1778 0.0% 622
nasals 0.5% 1049 0.0% 2276 0.4% 907
vowels 0.5% 3863 0.5% | 10832 0.1% | 3137
silences 0.0% 368 0.1% 743 0.0% 878
affricates NA 0 0.4% 1335 0.0% 69
aspirated stops NA 0 3.0% 235 4.7% 254
clicks NA 0 NA 0 2.8% 72
TOTAL 12.3% | 12336 6.2% | 26009 8.9% | 8569

Table 4: Proportions of phones with durations of less than 30ms
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Figure 6: Phone overlap rates for the three languages for in-
creasing number of Gaussian mixtures per state

HMM topology

In view of the phone durations summarized in Table 4, the defi-
nition of suitable HMM topologies that better suit certain phone
types might present a sensible option. In a few trial runs we
were able to increase the phone overlap rate by defining two-
state HMMs for phones with shorter durations; however, to ob-
tain consistent improvements it is necessary to elucidate all the
important factors during training and segmentation.

4. Conclusion

With the focus on defining a system to serve as a basis for
refinement and research towards robust and accurate phonetic
segmentation, we investigated the feasibility of typical methods
for boundary estimation. The advantage in robustness of
HMM-based methods over DTW was verified and led to the
further examination of important factors when segmenting
speech with HMMs.

A number of interesting results are presented here with regards
to segmentation accuracy under various practical conditions.
Amongst others, it was shown that performance trends tended
to stay consistent across languages and speakers, especially
gender (refer to Figures 4, 5 and 6 as well as Table 6). This
makes it possible to define practical parameters that are suitable

for segmentation in the general case presented here. The
increase in segmentation accuracy associated with extracting
features at a higher time resolution and the identification of
phone types which benefit from this is an important result that
can be used to good effect during segmentation and further
research in this area (e.g. by defining appropriate HMM
topologies). From the results obtained for training data sets
of different sizes, it is evident that robust segmentation can
be achieved even on very small amounts of available data
(somewhat smaller than what is generally deemed useful
for building language based systems and spoken language
research).

In the literature, accurate segmentation has been achieved by
using elaborate statistical methods such as explicit boundary
models [6, 15] and multiple segmentation machines with sta-
tistical candidate selection [4]. These techniques require large
amounts of data and — more importantly — significant amounts
of manually labeled data for training. We believe that a more
appropriate and indeed cost-effective approach toward bound-
ary refinement (at least in the South African context where data
scarcity is a problem) involves using the known phonetic se-
quence and the signal properties of specific phonetic categories.
This could be done by optimising the HMM-based procedure,
applying boundary correction strategies (using features such as
signal energy and fundamental frequency more directly) or ap-
plying “convention” rules in much the same way that human
labelers do. In this paper we have shown that cases that would
benefit from such strategies do indeed exist and we plan to con-
tinue research in this area.
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