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Abstract
We investigate the factors that determine the performance
of text-based language identification, with a particular fo-
cus on the 11 official languages of South Africa, using
n-gram statistics as features for classification. For a fixed
value of n, support vector machines generally outperform
the other classifiers, but the simpler classifiers are able to
handle larger values of n. This is found to be of overrid-
ing performance, and a Naı̈ve Bayesian classifier is found
to be the best choice of classifier overall.

For input strings of 100 characters or more accura-
cies as high as 99.4% are achieved. For the smallest in-
put strings studied here, which consist of 15 characters,
the best accuracy achieved is only 83%, but when the lan-
guages in different families are grouped together, this cor-
responds to a usable 95.1% accuracy.

1. Introduction
Although text-based language identification (LID) has
been studied extensively, there is still not a general under-
standing of the factors that determine classification accu-
racy. In previous work [1] we identified three crucial fac-
tors, namely: the size of the textual fragment to identify,
the amount and variety of training data and the classifica-
tion algorithm employed. The respective effects of these
various factors on classification accuracy, and their inter-
action, will form the core of the current research study.

In addition, distinguishing languages belonging to the
same phylogenetic families is much harder than iden-
tifying languages that fall outside such families. The
11 official languages of South Africa can be grouped
into a number of language families and sub-families:
Nguni (consisting of, isiZulu, isiXhosa, isiNdebele and
Siswati), Sotho (consisting of Sesotho, Sesotho Sa Leboa
and Setswana), Germanic (English and Afrikaans) and a
pair that falls outside these families (Xitsonga and Tshiv-
enda).

Text-based LID has mainly been studied for the major
languages of the world. The only other research (to our
knowledge) that includes the South African languages in
a text-based LID task was done by Combrinck and Botha
[2]. They reported a substantially lower performance rate
for South African languages in comparison to a set of Eu-
ropean languages. Unfortunately, they do not report error
rates, and do not provide sufficient information to provide

an understanding of the level of success that can be ex-
pected with these languages. Thus, our results are the first
comprehensive investigation into the accuracy achievable
in text-based LID for the South African languages.

2. Background
2.1. Language identification from written text

The general topic of text-based LID has been studied ex-
tensively, and a spectrum of approaches has been pro-
posed with the most important distinguishing factor being
the depth of linguistic processing that is utilized. At the
one extreme of complexity are approaches that attempt
to do a complete parse of text in order to determine not
only the language used, but also the syntactic structure
of the textual fragment. These linguistic models are (by
definition) perfectly accurate. However, they require sub-
stantial resources for their development and can be com-
putationally expensive if a large set of languages has to
be considered.

The opposite extreme of complexity attempts to iden-
tify the language by using simple statistical measures of
the text under consideration. Statistics are gathered from
characteristics such as letter sequences and conventional
algorithms from pattern recognition are used to perform
text-based LID based on these statistics. N-gram statis-
tics is a well known choice for building statistical models
and we discuss this feature in the next section.

2.2. N-grams

An n-gram is a sequence of n consecutive letters. The
n-grams of a string are gathered by extracting adjacent
groups of n letters.

In n-gram based methods for text-based LID, fre-
quency statistics of n-gram occurrences are used as fea-
tures in classification. The advantage is that no linguis-
tic knowledge needs to be gathered to construct a clas-
sifier. The n-grams are also extremely simple to com-
pute for any given text, which allows a straightforward
trade-off between accuracy and complexity (through the
adjustment of n) and have been shown to perform well
in text-based LID and related tasks in several languages.
Increasing the size of n can increase the accuracy of the
classifier (since a larger window of characters is consid-
ered), but beyond a certain level the large number of pos-



sible n-grams is too sparsely represented in any given cor-
pus, and accuracy decreases thereafter.

The number of possible n-gram combinations de-
pends on the value of n and the number of distinct “char-
acters” in the ortography employed. An increase in the
number of n-gram combinations increases the complex-
ity of the training model which results in long training
times and extensive resource usage. Some classifiers are
affected more than others and we will see that this is an
important factor in classifier selection.

2.3. Text-based language identification approaches

A variety of text-based LID approaches have appeared in
the literature. A collection of simpler methods include:
n-gram rank ordering [3], Naı̈ve Bayesian (NB) [4], nor-
malized dot-product [5], centroid-based [6] and relative
entropy [7].

A range of modern pattern-recognition algorithms
can also be applied. For example: support vector ma-
chines (SVMs) [8], Monte Carlo sampling [9], Markov
models [10], decision trees [11], neural networks [12] and
multiple linear regression [13].

In other approaches, methods such as: A third family
of approaches leans more heavily on linguistic informa-
tion - for example, by building language profiles from
unique character string and most frequent words [14], us-
ing pure linguistic knowledge [15] and using a combina-
tion of linguistic knowledge and statistics [16].

3. Implementation
3.1. Classifiers and feature set

In light of the large number of classifiers that have been
applied to text-based LID, it was not feasible to exper-
iment with all possible combinations. The classifica-
tion algorithms employed were therefore chosen for their
proven performance in published studies, as well as their
ability to clarify theoretical issues, as we discuss below.

The NB classifier was employed in many of the stud-
ies. The classifier achieves good results in various ex-
periments. In only one study was this classifier slightly
outperformed [10]. We therefore consider this classifier
as a good baseline system for comparison with the other
implemented classifiers.

The n-gram rank ordering method [3] is an approach
which is referenced, used and compared in many stud-
ies. The method is mostly outperformed in comparison
tests [6][17]. We have decided to implement a somewhat
similar classifier for comparative purposes. Like the dot-
product, relative entropy and centroid-based classifiers,
this method also classifies based on a similarity measure
between vectors. In our study we call this a difference-
in-frequency classifier.

We employed the SVM from the class of more com-
plex classifiers. The SVM generalizes well in high-
dimensional spaces and showed good results in compari-
son tests for text-based LID [6], and has also performed

competitively in many other pattern-recognition tasks.
The classifier was not implemented from first principles:
an available software module with full SVM functionality
[18] was used.

Based on their simplicity and excellent observed per-
formance, we employed only n-gram statistics as fea-
tures. For either a fixed-length sample or an unbounded
amount of text, the frequency counts of all n-grams were
calculated. The characters that can be included in n-
gram combinations were a space, the 26 letters of the
Roman alphabet, the other 14 special characters found
in Afrikaans, Sesotho Sa Leboa and Setswana, and the
unique combination ‘’n’ , which functions as a single cha-
racter in Afrikaans. No distinction was made between
upper and lower case characters. In total the size of the
character set added up to 42, which results in 42n possible
n-grams. However, many of these combinations are not
present in any of the languages (for example the 3-gram
“aaa”) and therefore the feature space is smaller than this
number.

As mentioned in Section 2.2, increasing the size of
n can increase the accuracy of the classier but beyond a
certain level the accuracy decreases. In preliminary tests
with a NB classifier it was found that n=6 resulted in the
highest accuracy. In addition, the burden on computa-
tion and memory usage grows exponentially with n; we
have therefore restricted our attention to the cases n=3
and n=6.

3.2. Datasets and sample sizes

Texts from various domains in all 11 South African lan-
guages were obtained from Professor D.J. Prinsloo of the
University of Pretoria and using a web crawler [19]. The
data included text from various sources (such as newspa-
pers, periodicals, books, the Bible and government doc-
uments) and therefore, the corpus spans several domains.
All text was encoded in the UTF-8 format to support spe-
cial characters found in Afrikaans (è, é, ê, ë, ı̈, ò, ó, ô, ö, ú,
û, and ü) and the ‘š’ in Sesotho Sa Leboa and Setswana.

Due to the diversity of sources employed, text was not
homogeneous and needed some automatic preprocessing
in order to be used for building models.

Accuracy was evaluated for various amounts of train-
ing text. In the 10-fold cross validation we performed
tests on 200K, 400K, 800K, 1.6M and 2M characters.

Three different character windows were used. Table
1 indicates the average number of words per character
window. The choice of these sizes influences the diffi-
culty of correct classification. A 15 character window
represents 2-3 words, and is expected to be challenging
for statistical methods. For a 100 character window (a
long sentence) classification accuracy improves and at
a 300 character window (paragraph) classification will
hopefully be highly accurate.



Language Number

of words

Average

word

length

15

charac-

ters

100

charac-

ters

300

charac-

ters

Sesotho 397 891 5.03 2.98 19.89 59.68

Sesotho

Sa Leboa

395 022 5.06 2.96 19.75 59.25

Setswana 384 237 5.21 2.88 19.21 57.64

isiXhosa 249 200 8.03 1.87 12.46 37.38

isiZulu 238 110 8.4 1.79 11.91 35.72

isiNdebele 228 977 8.73 1.72 11.45 34.35

Siswati 222 616 8.98 1.67 11.13 33.39

Tshivenda 377 905 5.29 2.83 18.9 56.69

Xitsonga 368 858 5.42 2.77 18.44 55.33

Afrikaans 335 950 5.95 2.52 16.8 50.39

English 373 057 5.36 2.8 18.65 55.96

Table 1: Word statistics on a 2M character file of each
language. Average word lengths and number of words
per character window are indicated.

3.3. Classifier implementations

3.3.1. Naı̈ve Bayesian approach

For each language a vector of n-gram probabilities is
computed by

lj =
fj
|fj |

, (1)

where fj is a vector of n-gram frequencies calculated
from a language document of class j.

The probability of the test string of size is calculated
in the logarithmic domain. In the next equation the log
likelihood simplifies calculations by adding logarithmic
probabilities and can be expressed as

P (L|D) =
n−α+1∑

i=1

ln lj(ci), (2)

where lj(ci) is the the probability of the n-gram ci in the
language model lj .

After calculating the probabilities for all languages,
the most likely language profile is selected as the lan-
guage of the test string. For unseen n-grams a penalty
value was assigned. We performed tests using various
penalty values and chose the best value based on opti-
mum classification accuracy.

3.3.2. Difference-in-frequency classifier

The same procedure as in the NB classifier Section 3.3.1
was followed to create each language profile lj . For a
test string, a vector x is created in the same manner. Lan-

guage scores are computed with the equation

Dl =
n−α+1∑

i=1

|lj(ci) − x(ci)|, (3)

where lj(ci) is the the probability of the n-gram ci in the
language model lj and x(ci) is the the probability of the
n-gram ci in the test vector x.

For each language the above metric is computed and
this gives an indication of how similar the test string is to
the language model. The language profile with the small-
est difference is chosen as the most likely language for
the string.

3.3.3. Support vector machine

The LIBSVM [18] library provides a full implementa-
tion of several SVMs. As discussed previously, the size
of the feature space grows exponentially with n, which
leads to long training times and extensive resource usage
as n becomes large; we therefore limited our SVM exper-
iments to n=3. A language model was built with samples
of size α from a training set. These samples contained a
frequency count of each n-gram combination in the cha-
racter string. Thus the feature dimension of the SVM is
equal to the number of n-gram combinations. Samples of
the testing set are created using the same character win-
dow as used to build the language model. After training
the SVM language model the test samples can be classi-
fied according to language.

The SVM used a RBF kernel, and overlap penalties
[20] were employed to allow for non-separable data in
the projected high-dimensional feature space. Sensible
values for the two free parameters (kernel width (h=1)
and margin-overlap trade-off (C=180, a large penalty for
outliers)) were found on a small set of validation data.
These “reasonable” parameters were found in a prelimi-
nary investigation and were employed throughout our ex-
periments. Classification is done in a one-against-one ap-
proach in which k(k−1)

2 classifiers are constructed (where
k is the number of classes, thus 55 classifiers were con-
structed) and each one trains from data of two different
classes. Each binary classification is considered to be a
vote for the winning class. All the votes are tallied, and
the test sample is assigned to the class with the largest
number of votes.

4. Results
Our main results are shown in Figure 1, 2 and 3. These
figures represent the error rates obtained with various
classifiers as a function of the amount of training data
for different window sizes.

For the 15 character window the 6-gram NB model
performs best at all but one dataset. The SVM trained
with 3-grams did slightly better than the 6-gram NB
model with the same dataset of 200K characters. How-
ever, for this window size, the differences between the
SVM and the 6-gram NB classifier are quite small. The



SVM does noticeably better than the 3-gram NB model
for the same datasets (for a 2M character dataset the dif-
ference is 5.13%). The 6-gram difference-in-frequency
model performs worse than the 3-gram NB model and
the 3-gram difference-in-frequency model is significantly
worse everywhere. The accuracies of the competitive
models are still improving when 2M training data are em-
ployed (the largest amount we could employ).
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Figure 1: Classification results on 15 character win-
dow. Error rates are calculated by applying 10-fold cross-
validation on various amounts of text.

For a 100 character window, the outperformance of
the 6-gram NB model compared to the SVM is more
significant than with a 15 character window test. The
average percentage difference is 1.82%, where it was
0.68% in the previous test. Now, the SVM and 3-gram
NB model have very similar performances from 200K to
800K characters and from 1.6M characters the difference
is more evident but less than with the 15 character win-
dow (now only 1.06% at the 2M character set). It was
interesting to find that the NB classifier performed best
for only the smallest dataset. The performance of the
difference-in-frequency classifier cannot be compared to
the NB classifier and SVM. For the case of n=3 there is
not much of a difference in accuracy performance for the
different datasets. Again it seems that the accuracies con-
tinue to improve uniformly with the amount of training
data available, for the competitive classifiers.

Figure 3 contains the results for the largest window
size; here, the improvement in accuracy with increasing
amounts of training data is less uniform, suggesting that
the accuracies of the classifiers may be saturating at these
levels. The 6-gram NB classifier performs best overall. In
this dataset, the 6-gram NB does better than the SVM by
0.52% on average, and at convergence the SVM performs
0.48% better than the 3-gram NB model. As with the 100
character window, the 3-gram NB model slightly outper-
forms the SVM only at the 200K dataset. The difference-
in-frequency classifier was once again outperformed. The
6-gram difference-in-frequency classifier showed an av-
erage 2.77% accuracy deficit when compared to the best
NB classifier with 800K and more training data.

From the results it is obvious that larger test windows
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Figure 2: Classification results on 100 character win-
dow. Error rates are calculated by applying 10-fold cross-
validation on various amounts of text.
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Figure 3: Classification results on 300 character win-
dow. Error rates are calculated by applying 10-fold cross-
validation on various amounts of text.

increase classification accuracy, to the extent that the 6-
gram NB classifier with a 2M training set and a character
window of 300 achieved an error rate of 0.6%. For the
smallest test sample accurate classification was difficult,
and the lowest error rate of 17.11% was found with the 6-
gram NB model trained with the largest dataset. For the
intermediate window of 100 characters, the 6-gram NB
again performed best, with a 1.53% error rate for a 2M
character training set.

The size of the training set improved the accuracy in
most cases. Except for the largest window sizes, the best
classifiers continued to improve even when 1.6M train-
ing characters per language are available. For small win-
dows, the SVM is apparently more efficient in its use of
the training data than the NB classifier (i.e. for the least
amount of training data the n=3 SVM and n=6 NB clas-
sifier are almost equally accurate, but for larger training
sets the NB classifier improves more rapidly).

It is also interesting to track the classifiers’ perfor-
mance across different window sizes for a fixed amount
of training data. Figures 4 and 5 represent these results
using the smallest and largest training sets. For the small
training set and a 15 character window the SVM performs
best, but it is slightly worse than the 6-gram NB model



at the larger windows. For the larger dataset the 6-gram
NB model outperforms all the classifiers for all character
windows. The SVM outperforms the 3-gram NB model
at all character windows and training-set sizes. Though
the performance of the difference-in-frequency classifier
is consistently the worst, it demonstrates the same broad
patterns of change with n, and training-set and window
sizes.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

30010015

E
rr

or
 R

at
e 

(%
)

Character window size

NB n=3
Difference-in-frequency n=3

SVM n=3
NB n=6

Difference-in-frequency n=6

Figure 4: Error rates for different characters windows.
This results were obtained using 10-fold cross-validation
on 200K characters of text.
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Figure 5: Error rates for different characters windows.
This results were obtained using 10-fold cross-validation
on 2M characters of text.

4.1. Confusion within language families

We found significantly higher error rates on the smallest
(15-character) window. To understand the results better
we analyzed the confusions between languages [21] and
found (predictably) that the vast majority of errors result
from confusions within the Sotho and Nguni language
families.

We then created a confusion matrix based on the con-
fusable language families in Table 2. (Since Germanic
languages were reasonably discriminated, we did not
group them together.) The overall performance increases
drastically and this indicates that language families can
successfully be classified with only 15 input characters.

Sotho family Nguni family TV XT AF EN

3837 423 160 208 72 157 Sotho Family

541 51096 237 375 107 317 Nguni Family

289 440 12158 270 15 46 TV

339 478 250 12028 22 78 XT

58 92 9 11 12876 232 AF

91 165 21 45 177 12608 EN

Table 2: Confusion matrix for the SVM classifier trained
with 200K characters, for n=3 and a window size of 15
characters. Nguni and Sotho languages are merged into
families. TV=Tshivenda, XT=Xitsonga, AF=Afrikaans
and EN=English.

Sotho family Nguni family TV XT AF EN Overall

2.59 2.99 8.02 8.44 3.03 3.81 4.88

Table 3: Error rates across language families, calculated
from confusion matrices in Table 2.

5. Conclusion
All the classifiers showed improvement at larger train-
ing sets. From the smallest data set to the 1.6M dataset,
a considerable reduction in error rate occurred in most
cases. Error rates between the 1.6M and 2M data sets are
more similar, but a statistically significant improvement
is again present (except for the 300-character window).

Overall, we found that the 6-gram NB classifier per-
formed best except for one experimental condition: the
3-gram SVM did slightly better than this classifier with
a 200K dataset and a 15 character window. Also, for the
other training sets and the 15 character window, the 6-
gram NB did not do substantially better than the SVM.

The SVM performed better than the other two 3-
gram classifiers except under two circumstances: the 3-
gram NB classifier did somewhat better with the smallest
dataset using a 100 and 300 character window.

The difference-in-frequency classifier proved to be
inferior to the other two methods. The classifier also
showed that the 6-gram statistics improves accuracy over
the smaller n-gram size.

Besides its excellent accuracy, another significant ad-
vantage of the NB classifier is that new language doc-
uments can simply be merged into an existing classifier
by adding the n-gram statistics of these documents to the
current language model. For the SVM a whole new clas-
sifier would need to be trained.

The poor performance on 15 character window was
analyzed using a confusion matrix. The results indicated
clearly that confusion is found within language fami-
lies (Nguni and Sotho), which results in high error rates.
A confusion matrix was then created where all the lan-
guages in a family were merged, which drastically im-
proved the classification accuracy. For the larger charac-
ter windows the confusion within language families be-
came significantly less. Thus for the smallest character
window it is possible to identify the language families by



examining where there is a notable uncertainty between
languages in the confusion matrix. For the larger charac-
ter windows the classifiers found it much easier to dis-
criminate between languages within a family.
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