
Proceedings of the 2007 Computer Science and IT Education Conference

Practical Implications of Rapid Development
Methodologies

Aurona Gerber
Meraka Institute,
CSIR, Pretoria,
South Africa

agerber@csir.co.za

Alta van der Merwe
School of Computing,

University of South
Africa, Pretoria,

South Africa

vdmeraj@unisa.ac.za

Ronell Alberts
Meraka Institute,
CSIR, Pretoria,
South Africa

ralberts@csir.co.za

Abstract
Rapid development methodologies are popular approaches for the development of modern soft-
ware systems. The goals of these methodologies are the inclusion of the client into the analysis,
design and implementation activities, as well as the acceleration of the system development
phases through an iterative construction approach. These methodologies also claim to manage the
changing nature of requirements. However, during the development of large and complex systems
by a small and technically competent development team, there is a danger that certain unforeseen
practical implications are introduced into the development process by rapid development metho-
dologies. In this paper we reflect on some observed practical implications of rapid development
methodologies after the completion of two projects that involved the construction of large and
complex software systems.

Keywords: Systems Engineering Methodologies, System Development Methodologies, Rapid
Development Methodologies, Information Systems Development.

Introduction
The goal of rapid development methodologies is to address the perceived limitations of formal
methodologies based on the traditional System Development Life Cycle (SDLC) such as long
system development times, rigorous and inflexible requirements management and the separation
of the client from the development process (Avison & Fitzgerald, 2006; Beck, Beedle, van Ben-
nekum, Cockburn, Cunningham, et al., 2001). The intent of rapid development methodologies is
for development to take precedence in the process, for the client to be part of the analysis, design
and implementation activities, the acceleration of these phases through an iterative construction

approach and the incorporation of
changing requirements into the devel-
opment process (Avison & Fitzgerald,
2006; Whitten, Bentley & Dittman,
2001).

Rapid development methodologies such
as RAD or Rapid Application Develop-
ment (Avison & Fitzgerald, 2006, p.469)
, XP or eXtreme Programming (Beck,
2000) and the methodologies of the Ag-
ile Alliance (Agile Alliance, 2006) were

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

mailto:agerber@csir.co.za
mailto:vdmeraj@unisa.ac.za
mailto:ralberts@csir.co.za

Practical Implications of Rapid Development Methodologies

234

adopted by many software development organizations in the 1990s as an alternative to the rigor-
ous prescribed traditional development methodologies (Ambler, 2002; Beck, 2000).

Proposed advantages of these rapid development methodologies include that the system being
developed could accommodate the changing nature of system requirements (Avison & Fitzgerald,
2006) and that clients have earlier access to limited versions of the functional system (Pressman,
2005).

Despite the enthusiasm for these methodologies, several criticisms are voiced against the adop-
tion thereof. For example, Reilly and Carmel (1995) argue that the RAD methodology will gener-
ally fail in Information Systems projects due to the incorrect selection of the team members, the
poor understanding of the project by management and customers, and the lack of design and ri-
gorous methodology processes.

Notwithstanding these criticisms, rapid development methodologies are popular approaches for
the development of modern software systems (Fowler, 2005). However, during the development
of large and complex systems by a small and technically competent development team, there is a
danger that certain practical implications that were not foreseen are introduced into the develop-
ment process.

In this paper we reflect on observed practical implications of rapid development methodologies
after the completion of two projects that involved the construction of large and complex software
systems.

An investigation into the practical implications of the modern rapid development methodologies
in contrast with the traditional SDLC based methodologies (such as presented in this paper),
would assist organizations to understand the pitfalls associated with rapid and ad-hoc approaches
that have a strong focus on the skill if the developers. In the next section a discussion of systems
development methodologies in general is presented, with the focus specifically on the history and
the change in emphasis, followed by a section highlighting the differences between the method-
ologies. Furthermore, a discussion of rapid development methodologies in practice is presented
that contains two case studies, followed by a discussion of the practical implications of develop-
ment using these methodologies. The paper is concluded in the last section.

The Development of Methodologies
Since the introduction of structured programming by pioneers such as Parnas and Dijkstra, de-
velopers were formulating processes or methodologies for the development of software systems
(Dijkstra, 1968, 2001; Parnas, 1972, 1978; Weiner, 1978). These pioneers derived techniques to
model a system as consisting of different and related components, and the identification of these
components necessitated the first structured information systems development methodologies.

Before the advent of methodologies, the emphasis of systems development was on the skills asso-
ciated with programming (Sommerville, 1982). However, as system requirements became more
complex, programmers started to appreciate the skill of the system analyst and realized that there
was a need for a repeatable process (Satzinger, Jackson & Burd, 2002). These realizations as well
as a requirement to manage the cost associated with systems development, lead to the attempts to
formulate the first methodologies (Pressman, 2005).

The methodology initiatives of the early-methodology era of the 1970s and early 1980s were
characterized by attempts to identify system phases for the management and development of in-
formation systems (Avison & Fitzgerald, 2006). This original approach was refined and became
known as the as the SDLC (Systems Development Life Cycle) or the waterfall model.

 Gerber, van der Merwe, & Alberts

 235

SDLC
Although there exist many variations, the SDLC or waterfall model generally has the following
basic structure (Avison & Fitzgerald, 2006; Kassler, 1997; Sommerville, 1982):

● Feasibility study;

● Requirements definition/System investigation;

● Systems analysis;

● Systems design;

● Implementation;

● Testing; and

● Review and maintenance.

The emphasis of the SDLC is on requirements definition as indicated by R in Figure 1. The bars
in Figure 1 depict the emphasis on the different phases as described by the methodology or proc-
ess and the thick, bright red arrow indicates that the methodology is essentially driven from the
requirements definition phase (Avison & Fitzgerald, 2006; Kassler, 1997). The brown arrow de-
picts the actual emphasis of the project team during development. In the case of the SDLC, the
brown arrow follows the defined phases closely, implying that the actual effort of the project
team follows the prescribed effort of the process. The deviation of the brown arrow from the
phases is only at the end of the process where the methodology does not put a lot of emphasis on
maintenance, but most project executions required a substantial effort during system maintenance
(Avison & Fitzgerald, 2006; Sommerville, 1982).

Figure 1: Emphasis of the SDLC is
on requirement definition, and the
process is driven from the
requirement definition (R) phase. A
indicates analysis, D design, I
implementation, T test and M
maintenance.

It is possible to argue that the traditional SDLC forms the basis of most information systems de-
velopment methodologies of the early-methodology and methodology eras, as it is recognizable
through the sequence and naming of its phases in almost any systems development project execu-
tion. Methodologies such as SSADM (Structured Systems Analysis and Design Methodology)
(SSADM, 2003), Merise (Merise, 2006), IE (Information Engineering) (Martin, 1989), and even
UP (Unified Process) (Jacobson, Booch & Rumbaugh, 1999) and RAD (Rapid Application De-
velopment) (Avison & Fitzgerald, 2006, p.469) generally aimed to refine the SDLC and address
the identified limitations by focusing on aspects that were perceived to be neglected by the
SDLC.

There are several advantages to following SDLC based approaches, including that it has been
well tried and tested, and was found to assist with the process of systems development through
the rigor prescribed by its phases (Sommerville, 1982). Following the approach allows at least
some control and management of the development process. The SDLC specifies specific docu-

Practical Implications of Rapid Development Methodologies

236

mentation standards and these documentation sets help to ensure that the requirements and system
design are documented and traceable for maintenance purposes (Pressman, 2005).

However, there are also a number of identified limitations with SDLC based approaches such as
the inflexibility to allow for changing requirements, the problems to keep the specified documen-
tation standards updated, the instability of models of the prescribed system processes, develop-
ment backlogs and systems maintenance overload (Ambler, 2002; Kassler, 1997).

Structured and Evolutionary Methodologies
The methodology era of the 1980s and 1990s was characterized by attempts to address the identi-
fied limitations of the traditional SDLC by specifying enhancements to the basic SDLC process.
Noteworthy methodologies of the time such as IE (Martin, 1989), SSADM (2003) and Merise
(2006) all incorporated the SDLC and have, as significant characteristics, aspects such as a rigor-
ous development process, well defined deliverables, and substantial documentation sets.

The emphasis of structured methodologies is generally also on the requirements definition phase
as indicated by R in Figure 1 because these methodologies are SDLC based. However, one of the
themes that emerged during the development of formal SDLC based methodologies is evolution-
ary development. Methodologies including some form of evolutionary development address the
maintenance overload caused by the SDLC as depicted in Figure 2. Evolutionary development
thus introduces a feedback mechanism into the SDLC, which implies that the development phases
are repeated. Evolutionary development is an incremental approach that periodically delivers a
functional system that is increasingly complete (Avison & Fitzgerald, 2006).

Figure 2: Emphasis of evolutionary approaches
is also on requirement definition, the process is
driven from the requirement definition (R) phase
but the whole process is repeated. A indicates
analysis, D design, I implementation, T test and
M maintenance.

As before, the bars in Figure 2 depict the emphasis on the different phases as described by the
methodology and the thick, bright red arrows indicate that these methodologies are driven from
the requirements definition phase (Avison & Fitzgerald, 2006). The brown arrow depicts the ac-
tual emphasis of the project team during development, and as in the case of the SDLC, the brown
arrow follows the defined phases closely, implying that the actual effort of the project team fol-
lows the prescribed effort of the process (Avison & Fitzgerald, 2006).

During this era of formal methodology development, the term methodology was coined to de-
scribe systems development approaches and processes (Avison & Fitzgerald, 2006), and a defini-
tion of the term was established as:

A collection of procedures, techniques, tools and documentation aids which will help the system
developers in their efforts to implement a new information system. A methodology will consist of
phases, themselves consisting of sub phases, which will guide the systems developers in their
choice of the techniques that might be appropriate at each stage of the project and also help them
plan, man age, control, and evaluate information systems projects. (Avison & Fitzgerald, 2006,
p.24)

This definition attempts to capture the nature and comprehensiveness of software development
activities by grouping it together into a software development methodology.

 Gerber, van der Merwe, & Alberts

 237

However, in spite of all the refinements to the SDLC by the formal methodologies of the time,
there were still significant failures in systems developed using these methodologies. In order to
address the perceived failure of SDLC based methodologies to sufficiently address significant
information systems development issues such as productivity, inflexibility and complexity, meth-
odologies with a substantial different approach were subsequently developed during the so-called
era of methodology reassessment (Avison & Fitzgerald, 2006).

Rapid Development Methodologies
The late 1990s and onwards are characterized by the appraisal of methodologies because of their
failure to sufficiently addresses information systems development issues such as the mentioned
productivity, inflexibility and complexity (Avison & Fitzgerald, 2006). During this era several
alternative methodologies, such as UP (Jacobson et al., 1999) and XP (Beck, 2000), that deviate
from the traditional SDLC approach were formulated. In addition, the evolutionary approach was
refined and included as incremental development into several modern methodologies.

Even more significant, this era includes the rejection of methodology use by some organizations
altogether, signifying a return to ad hoc software development where no formalized methodology
is followed (Avison & Fitzgerald, 2006; Introna & Whitley, 1997). In these cases the adopted
approach is the one developers understand and feel works for them. It is driven by, and relies
heavily on, the skills and experience of developers and could be compared to the pre-
methodology era and the advent of structured programming.

Rapid development methodologies all emphasize the skills and experience of developers and fo-
cus on the implementation phase. In general, rapid development methodologies also involve the
client at all levels and reduce the development time of systems through an incremental approach
and by eliminating perceived methodology overload such as unnecessary documentation. For ex-
ample, XP (Extreme Programming) adopts five basic principles (Beck, 2000, p.37):

● Rapid feedback;

● Assume simplicity;

● Incremental change;

● Embracing change; and

● Quality work.

Similarly, James Martin's RAD (Martin, 1991) adopts an evolutionary approach with four phases
namely (1) joint requirements planning (JRP), (2) joint application design (JAD), (3) construction
and (4) cut over. The JAD phase places a lot of emphasis on prototyping.

Furthermore, several agile development approaches were defined that have as a starting point the
perceived inadequacies of the SDLC. The agile school believes that requirements are so difficult
to define that systems should evolve in collaboration with the client (Fowler, 2005). The agile
movement defines their philosophy in the Agile Manifesto (Beck et al., 2001) as:

● Individuals and interactions over processes and tools;

● Working software over comprehensive documentation;

● Customer collaboration over contract negotiation; and

● Responding to change over following a plan.

The common principles adhered to by rapid development methodologies are that the development
process should be able to incorporate change through incremental development and rapid feed-

Practical Implications of Rapid Development Methodologies

238

back (Beck, 2000), as well as by eliminating prescribed rigor and development phases. In addi-
tion, communication with the client takes the form of active participation and is encapsulated by
the developers into the implementation of the system. These methodologies in general shy away
from documentation artifacts as deliverables (Ambler, 2002; Fowler, 2005).

As stated, emphasis of rapid development methodologies is generally on the implementation
phase as indicated by I in Figure 3. Even though the SDLC phases of requirements, analysis, de-
sign, implementation and test are still recognizable, the emphasis upon and sequence of the
phases deviates completely from previously defined methodologies (Avison & Fitzgerald, 2006).

Figure 3: Emphasis of the rapid
methodologies is on implementation indicated
by I, and the process is driven from the
implementation (I) phase. R indicates
requirements definition, A analysis, D design
and T test.

As before, the bars in Figure 3 depict the emphasis on the different phases as described by the
methodology and the thick, bright red arrows indicate that rapid methodologies are driven from
the implementation phase (Avison & Fitzgerald, 2006). The brown arrow depicts the actual em-
phasis of the project team during development, and in this case, developers tend to spend even
less time than prescribed on phases other than implementation, and more on implementation itself
(Avison & Fitzgerald, 2006) as indicated by the brown arrow. Design in particular tends to be
omitted in favor of implementation (Fowler, 2004). This observation is strengthened by the case
study descriptions presented in this paper.

The Fundamental Differences between the Approaches
From the previous discussion, the differences between the methodological approaches are re-
flected upon in this section.

The traditional SDLC based methodologies generally prescribe rigorous processes and activities
within the project phases that follow strictly on one another. Each phase prescribes specific sets
of deliverables, usually several documentation sets along with the working system, and some
even define document templates in support of these deliverables. Within these methodologies, the
roles of individual team members are usually well-defined. Communication between all stake-
holders is formally agreed upon and captured into the system documentation (Avison & Fitzger-
ald, 2006; Pressman, 2005).

In contrast, rapid development methodologies shy away from rigour and formally prescribed
processes. These methodologies acknowledge development phases, but generally move through
these phases in an ad-hoc and incremental manner. The main delivery focus is a working system,
delivered in working increments in collaboration with the client. These methodologies prescribe
minimal documentation artifacts, and communication with the client is verbal and through active
participation of the client in the development process (Avison & Fitzgerald, 2006; Fowler, 2004;
Pressman, 2005).

 Gerber, van der Merwe, & Alberts

 239

Rapid Development Methodologies in Practice
The research approach reflected on in this paper is based on a case study approach combined with
ethnographic research where the researcher is an active participant in the research activity
(Myers, 1999). The systems that are described in the case studies, were developed by a small but
very competent development team (varying between five and ten members), who adopted a rapid
development methodology. This approach was adopted after the claimed success stories of these
approaches and in order to keep up with significant trends within the IS (Information Systems)
domain. The team investigated rapid development methodologies and adopted an agile approach
mainly because of the promises of reduced cost and development time.

The rapid development approach adopted can be described as a lightweight, agile method. How-
ever, due to practical constraints and distributed responsibility allocations, the client (as a single
entity) could not be such an active participant into the development process as prescribed. There-
fore, there was an emphasis to involve the client through use-case scenario development and
mock-up prototypes.

In this section we present a brief overview of two case studies of projects developed using rapid
development methodologies.

Case Study 1
Case study 1 entails a project for a government health department to support and integrate the
processes spanning three different operational units to compensate mine workers in the event of
occupational related illnesses.

The requirements elicitation process included several site visits by the whole team to live the
process, familiarize themselves with the environment and the associated problems of the cus-
tomer. The initial requirements elicitation activities consisted of a definition of the scope as well
as the deliverables of each project increment. Formal analysis techniques were used to analyze
customer business processes, as well as all existing documentation and forms.

The project team adopted an agile iterative and incremental development methodology. Detailed
requirements were documented for each identified iteration. Initial design activities included an
entity-relationship data model with a data dictionary, as well as a high-level architectural design
documented in an informal manner.

After these initial activities, the developers commenced with implementation of the first system
iteration. The technical architecture and design were not formally documented but were encapsu-
lated in the development platform environment. Test cases were developed based on the detailed
requirements and each system increment was tested accordingly.

After deployment the development team performed support and maintenance for 18 months to
enable the client to find a company to do the ongoing support and maintenance of the system.

Case Study 2
The second case study entails a project for the development of an information and communication
portal for persons with disabilities. One of the most significant aspects of this project is an absent
client since the project was developed to support a national priority of government as stated by
the office of the deputy president (OSDP, 1997).

The requirements elicitation process consisted of literature reviews, site visits to organisations
supporting persons with disabilities, workshops, mailing lists and the inclusion of Disabled Per-

Practical Implications of Rapid Development Methodologies

240

sons Organizations in the project team. Since there was no specific client, the requirements were
defined based on what was learned through the activities mentioned.

Due to the nature of the user base, usability and accessibility were identified as essential non-
functional requirements the system must adhere to (Alberts, van der Merwe & Pretorius, 2006).

The project team again adopted a rapid iterative and incremental methodology. The features to be
implemented in the system iterations were identified by the development team. Detailed require-
ment specifications were developed for each feature. The detailed requirements specifications
were used by the development team for development as well as the testers to develop test cases.

The design of the system consisted of an entity diagram as well as GUI information architecture
designs depicting page flow and layout. The architectural design was heavily influenced by the
technology chosen for implementation. Detailed design was not formally documented and was
verbally communicated in the development team. Testing was performed based on the test cases
developed from the detailed requirements. After a system iteration was completed it was de-
ployed as a Web-based system and access was provided to the user community. Feedback re-
ceived on the deployed system was used to plan the next system iterations.

In general, the incremental approach included in the rapid development approach proved to be
effective within both case studies in order to manage changing requirements. The short feedback
cycle also proved to be satisfactory for developers as they could often get positive feedback on
their development efforts. It must also be noted that all the developers experienced the rapid de-
velopment approach as positive. They felt empowered and even though they often complained
about client demands, the direct contact they had with clients were regarded useful.

Practical Implications of Rapid Development
Methodologies

During and after the use of a rapid development approach, a number of observations were made
on the changing nature of development activities, some of which are supported in literature (Am-
bler, 2002; Avison & Fitzgerald, 2006). Based on these observations, the following four signifi-
cant implications were extracted namely the confusion with regard to the changing roles and re-
sponsibilities within the development team, ineffective communication, requirements prioritiza-
tion and the omission of design activities. We provide a discussion of each of these in the follow-
ing subsections.

Confusion with Regard to the Roles and Responsibilities of
Team Members
One of the most significant observations regarding the practical implications of rapid develop-
ment methodologies is the change in roles assigned to the members of the development team.

Roles and responsibilities in traditional methodologies
Traditionally, analysts would perform the requirements elicitation and analysis activities, and
would rigorously and formally document their findings. One of the skills of an analyst is the abil-
ity to communicate with clients in their domain language and translate these requirements into
technical terms for the development team to interpret (Avison & Fitzgerald, 2006; Pressman,
2005).

Analysts therefore document the requirements and perform initial high-level design, documented
in the form of analysis diagrams that depict entities within the domain with the relationships be-

 Gerber, van der Merwe, & Alberts

 241

tween them (Sommerville, 1982). During the next phase, system architects and developers design
the system, and would document the design and design decisions. Usually this design is reviewed
by the whole development team including the analysts and even the client. After these activities
were performed, the development team commences with implementation with the support of the
analysts.

In contrast, rapid development methodologies only assign a clear role to the developer and negate
the role of system analysts.

The “Developer as King” phenomenon
Developers rather than analysts interact directly with the clients about their requirements and the
role of analyst therefore become uncertain and even redundant in rapid development methodolo-
gies. Analysts often loose their authority or decision making power with regards to the develop-
ment process. This leads to the phenomenon where the system developers, because of their tech-
nical skill and the emphasis on the rapid construction of a working system, become the main de-
cision makers within the process with regard to design and implementation choices.

This shift in roles and the associated responsibilities often lead to conflict within the team, and
when a decision needs to be made in the team on behalf of the client rather than what technology
prescribes (traditionally done by an analyst), the developer makes the decision based on technol-
ogy preference. Developers become the drivers of the systems development process. In these
cases developers often cannot be persuaded to implement the system in a way they do not agree
with since they are the primary decision makers.

In addition, developers have a natural (and healthy) tendency to focus on new and exciting tech-
nologies, and design decisions are therefore often technology driven rather than project, client or
requirements driven.

In case study 1 the client was not a single entity, but the the department of health as organization
and the system spanned the work flow across various operating units. It was also not practically
feasible for the client to be as involved with the process as required. The development team was
not able to translate the perceived needs into technical requirements and in response reverted back
into the traditional role structure where analysts extracted the requirements and translated it to
requirements that were implemented by the development team.

In case study 2 this phenomenon was even more prevalent as the client as entity was absent and
the system analysts, which were part of the team, had to enforce decisions based on their acquired
knowledge of the domain. This was refuted on occasion by the technical team and since the ana-
lysts did not have authority due to role transitions, certain essential functional and non-functional
requirements were not implemented.

Ineffective Communication
Rapid development methodologies generally emphasize the interaction of developers directly
with the client and active involvement of the client in the process.

However, because of their technical orientation, developers tend to use technical terms when
communicating with clients, which often leads to misunderstanding and confusion. Developers
tend to speak a different language than that used by the general client, and this often results in
developers deciding that clients do not know what they want. The analyst, who played an inter-
pretation role in traditional methodologies, is bypassed in the rapid development methodologies.

In these cases developers may make decisions on behalf of the client without taking into account
the operating domain of the client, resulting in systems that are not optimal solutions for the cli-

Practical Implications of Rapid Development Methodologies

242

ent. This is especially true in the case of large systems where the 'client' is not embodied in a sin-
gle person, but spans organizational processes, as was the case in case study 1.

In case study 2 the client was absent and the system analysts analyzed, studied and interpreted the
domain and compiled the requirements on behalf of these absent clients. However, the defined
requirements were often questioned or changed because of the assumption that the decisions of
one team member (the analyst) was as good as those of another (the developer). This was mainly
due to the fact the inter-team roles and communication was not clearly established.

Requirements Prioritisation
The rapid development methodologies prescribe a process that is less rigid than that of more for-
mal methodologies. This process does not include a formal design review by all stakeholders, but
rather prefer continuous feedback by the client.

This process with the additional emphasis on rapid delivery often leads to functional require-
ments implemented in a way that is the 'easiest' for the developer. Developers make the final de-
sign decisions in this case, often to the detriment of important functional and non-functional re-
quirements.

In addition, the developers prioritize the requirements to be implemented in rapid development
methodologies, and where a conflict arises in the implementation of these requirements, decisions
are often made in favour of requirements that are important to the developers, rather than those
important to the overall project.

Within case study 1, it is noteworthy that the development team decided to adhere to existing
skills when a technology platform was chosen because it sped up delivery of the initial system
increments. The developers chose to prioritize speedy delivery and a known skills base above the
non-functional requirement of the client to outsource maintenance and support of the system.
When the system was delivered, the technology platform was regarded as outdated, and hence
maintenance intensive. This provided an obstacle with regards to the outsourcing of the ongoing
support and maintenance of the system.

In case study 2 one notable situation enforces this observation. People living with disabilities re-
quire usable and accessible systems and these requirements were captured as high-priority by the
system analysts. However, the chosen technology platform placed a high priority on maintainabil-
ity which often conflicted with the usability requirements. In general, the developers made the
final decisions, which resulted in the implemented system not fully adhering to the accessibility
and usability requirements and therefore failing to sufficiently address the needs of the intended
audience.

The Omission of Design
The emphasis of rapid development methodologies on rapid delivery and an adjustable process
often leads to the omission of the design phase. The design phase might be included in the first
system development increments, but further system iterations are often developed by just entering
the implementation phase again without executing a preceding design phase.

In addition, there is no emphasis on documentation by rapid development methodologies and
therefore design documentation are often lacking. In traditional methodologies a design document
had to be generated before implementation could commence and this forced developers to do de-
sign.

Generally, requirements documentation is still generated because most clients still require some
agreement that is captured formally on paper. There is, however, no pressure to do design or ar-

 Gerber, van der Merwe, & Alberts

 243

chitectural documentation in rapid development methodologies and in most cases the architec-
tural and systems design reside only in the heads of the development team. The development
team often do not regard this as a problem because tasks to update documentation 'wastes time'
and impacts on rapid delivery. This phenomenon was also discussed by Fowler (2004).

Within case study 1, it is noteworthy that one of the reasons the client experienced problems with
regards to the outsourcing of the ongoing support and maintenance of the system was a lack of
design documentation. When this became apparent, the development team attempted a reverse
engineering of the system. This proved to be difficult because the design decisions, especially
with regards to systems architecture, were not documented at design time and was hence lost.

Within case study 2, the initial design of the system conflicted with the system requirements and
due to the fact that the design was not formally documented and reviewed, the discrepancy was
only discovered after the implementation phase. This situation caused conflict between develop-
ers and analysts and in the end necessitated a redesign effort which put unnecessary pressure due
to time constraints and limited resources on the whole development team.

To illustrate that this pitfall is a general phenomenon, the following quote appeared on a discus-
sion forum in response to a request on how to capture the systems architecture in UML:

Hehe [sic], outside of university courses and some -extremely- backward consulting companies,
designing software using UML is a definite anti-pattern :-) (JBoss.com, 2006).

Conclusion
In this paper we presented some unforeseen practical implications that were observed when de-
velopment teams adopted rapid development methodologies for the development of large and
complex systems. We observed that when organizations adopt these rapid development method-
ologies, care must be taken to avoid role and responsibility confusion and communication break-
down within the development team, and between the team and the client. In addition, especially
in cases where the client is absent or not able to participate with authority in the development
process, the system analyst should be endowed with this authority on behalf of the client to en-
sure appropriate prioritisation of non-functional requirements. Lastly, no increment of the system
should be developed without a thorough and formally documented design phase.

Acknowledgments
The authors want to acknowledge the contributions of the development teams that were responsi-
ble for the development and successful deployment of the systems described in the two case stud-
ies.

References
Agile Alliance. (2006). Agile Alliance Home. Agile Alliance Web site. Retrieved 10/12/2006 from

http://www.agilealliance.org/

Alberts, R., van der Merwe, A. & Pretorius, H. (2006). Using quality requirements to systematically de-
velop a national accessibility portal. In Proceedings of the International Science and Technology Con-
ference, Vanderbijlpark, South-Africa (2006).

Ambler, S. (2002). Agile modeling: Effective practices for eXtreme programming and the unified process.
Wiley Computer Publishing. ISBN 0-471-20282-7.

Avison, D. & Fitzgerald, G. (2006). Information systems development: Methodologies, techniques and
tools (4th ed.). UK: McGraw-Hill Education. ISBN 13-978-0-07-711417-6.

http://www.agilealliance.org/

Practical Implications of Rapid Development Methodologies

244

Beck, K. (2000). eXtreme programming explained: Embrace change. Addison-Wesley. ISBN 201-61641-6.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A.,Cunningham, W., et al. (2001). Manifesto for agile
software development. Agile Manifesto Web site. Retrieved 10/12/2006 from http://agilemanifesto.org/

Dijkstra, E.W. (1968). The structure of the THE-multiprogramming system. Communications of the
ACM, 11(5), 341-346. ISSN 0001-0782. doi: rmhttp://doi.acm.org/10.1145/363095.363143.

Dijkstra, E.W. (2001). The end of computing science? Communications of the ACM, 44(3), 92. ISSN
0001-0782. doi: rmhttp://doi.acm.org/10.1145/365181.365217.

Fowler, M. (2004). Is design dead? Retrieved 4/12/2006 from
http://www.martinfowler.com/articles/designDead.html

Fowler, M. (2005). The new methodology. Retrieved 10/12/2006 from
http://www.martinfowler.com/articles/newMethodology.html

Introna, L.D. & Whitley, E.A. (1997). Against method-ism: Exploring the limits of method. Information
Technology and People,10(1), 235-245.

Jacobson, I., Booch, G. & Rumbaugh, J. (1999). The unified software development process. Addison-
Wesley.

JBoss.com. (2006). JBoss discussion forum - Seam UML diagrams thread. Retrieved 6/12/2006 from
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=96447

Kassler, J. (1997). What do you mean, you can't tell me how much of my project has been completed? Pre-
sented at the 7th Annual International Symposium of the International Council of Systems Engineering
(INCOSE). Retrieved 5/12/2006 from http://www.unisa.edu.au/seec/people/Jk/Pubs/crip.pdf

Martin, J. (1989). Information engineering (3 volumes). Prentice-Hall.

Martin, J. (1991). Rapid application development. Macmillan. ISBN 0023767758.

Merise. (2006). Merise: Initiation al la conception. Retrieved 10/12/2006 from
http://www.commentcamarche.net/merise/concintro.php3

Myers, M.D. (1999). Investigating information systems with ethnographic research. Communication of the
AIS, 2(Article 23), 1-20.

OSDP. (1997). Integrated national disability strategy white paper. Retrieved 10/12/2006 from
http://www.polity.org.za/html/govdocs/white_papers/disability1.html

Parnas, D. (1972). On the criteria to be used in decomposing systems into modules. Communications of the
ACM, 15, 1053 - 1058.

Parnas, D.L. (1978). Designing software for ease of extension and contraction. In ICSE '78: Proceedings
of the 3rd International Conference on Software Engineering (pp. 264-277). IEEE Press.

Pressman, R.S. (2005). Software engineering: A practitioner's approach (6th ed). McGraw-Hill Interna-
tional. ISBN 0-07-285318-2.

Satzinger, J.W., Jackson, R.B., & Burd, S.D. Systems analysis and design in a changing world (2nd ed.).
Course Technology: Thomson Learning, ISBN 0-619-06309-2.

Sommerville, I. (1982). Software engineering (2nd ed.). Addison-Wesley Publishing Company. ISBN 0-
201-14229-5.

SSADM. (2003). Structured systems analysis and design methodology (SSADM). Retrieved 10/12/2006
from http://www.ogcio.gov.hk/eng/prodev/essadm.htm

Weiner, L.H. (1978). The roots of structured programming. In P8apers of the SIGCSE/CSA Technical
Symposium on Computer Science Education (243-254). New York, NY: ACM Press. doi:
rmhttp://doi.acm.org/10.1145/990555.990636.

http://agilemanifesto.org/
http://www.martinfowler.com/articles/designDead.html
http://www.martinfowler.com/articles/newMethodology.html
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=96447
http://www.unisa.edu.au/seec/people/Jk/Pubs/crip.pdf
http://www.commentcamarche.net/merise/concintro.php3
http://www.polity.org.za/html/govdocs/white_papers/disability1.html
http://www.ogcio.gov.hk/eng/prodev/essadm.htm

 Gerber, van der Merwe, & Alberts

 245

Whitten, J.L., Bentley, L.D. & Dittman, K.C. (2001). Systems analysis and design methods (5th ed.).
McGraw-Hill Higher Education.

Biographies
Aurona Gerber is at present a Senior researcher in the Inclusive envi-
ronments group within the Meraka Institute. She has approximately 7
years teaching and research experience, and was active as developer
before that for more than 10 years doing software system design, de-
velopment and project management.

Alta van der Merwe is an associate professor at the University of
South Africa. She completed her Ph.D in 2005 in the requirements
elicitation of generic process model structures. Her current research
interest is in ontology engineering, with a special interest in the combi-
nation of ontologies and process engineering.

Ronell Alberts is a senior researcher at the Meraka Institute in the “In-
telligent Environments for Independent Living” research group. She is
actively involved in research and development activities and is respon-
sible for analysis activities in the research group. Her research interests
include software development methodologies and software engineer-
ing.

