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Abstract

A technique to interpret a cluster of seismic events in terms of causative structures is

described. The process consists of moving the located hypocenters of events within their

confidence ellipsoids until a simplified pattern of the seismic event cluster is obtained. This

simplified pattern might then be interpreted in terms of a fault, a system of faults or in

general, as a rock mass discontinuity. The process is tested and demonstrated for three

synthetic sets of data: a single fault, two joined faults and three separate faults.

3. Introduction

A technique to interpret a cluster of seismic events in terms of causative structures is

presented. In the application of the procedure, a successful interpretation crucially depends on

information on the confidence ellipsoid of the hypocenter co-ordinates. The next section

describes in detail the technique for estimating such ellipsoids for local events generated by

mining. The following section demonstrates this technique, giving an example of expected

errors for a certain network configuration. The remaining section illustrates the procedure of

cluster interpretation.

2. Approaches to Confidence Ellipsoid Determination

The error in seismic event co-ordinates might be considered to consist of two components.

The first component is caused by errors in arrival time measurements. The second is caused

by the velocity model used in the location procedure, which is only an approximation of the

real (unknown) model. The proper procedure to evaluate the error ellipsoid of hypocenter co-

ordinates, should take these two components into account.

2.1. Classical Approach : Confidence Ellipsoids from Data Uncertainty.

Let vector θθθθ = (t0, x0, y0, z0)
T  denotes the focal parameters of a seismic event, where t0 is the

origin time, and (x0, y0, z0) are hypocenter co-ordinates in the Cartesian system (x, y, z) and

matrix operator T stands for matrix transposition. The classical theory of inversion says, that
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if the parameters θθθθ are estimated by the least-squares procedure, an approximate confidence

ellipsoid for parameters θθθθ  is of the following form:

,)()(
^

1
^

constantT ≤−− − θθθθ θC                                          (1)

where θ̂ is the estimate of θθθθ, constant is an appropriate quantity from the 2
4χ  distribution,

and θC  is the covariance matrix of the focal parameters θθθθ. By definition of the covariance

matrix, the variances of the parameters θθθθ are equal to the respective diagonal elements of the

matrix θC , where

.)( 11 −−= ACAC t
T

θ                                                     (2)

Ct is the covariance matrix of arrival times t = (t1,…, tn)
T,  ti = t0 + Ti(x0, y0, z0,V) + εi,  Ti(x0,

y0, z0,V) is the travel time from the hypocenter (x0, y0, z0) to the i-th station, V is velocity

model,  εi is the error in the arrival time determination at the i-th station, i = 1,…, n, and n

denotes number of seismic stations. A is the matrix of partial derivatives at the solution
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Assuming statistical independence between arrival times errors determination (i.e. Cov[εi,εj] =

0, for i≠ j, and Cov[εi,εj] = σ 2

it
 for i = j, where σ 2

it
denotes the variance of the arrival time ti

determination at station i, and i, j = 1,…, n), the covariance matrix of the data t is

Ct = diag[σ 2

1t
,σ 2

2t
,…,σ 2

nt
].                                            (4)

The above formulas follows from the classical least-squares inversion procedure developed

for the case where the error in the velocity model is not explicitly taken into account.
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2.2. Generalised Approach : Confidence Ellipsoids from Data Uncertainty and Velocity

Model Uncertainty.

The velocity model parameters are never known exactly. Let us assume that the real

(unknown) velocity model V can be expressed as

,VVV δ+=                                                      (5)

where V is the mean (known) velocity model and δV are the unknown errors reflecting the

deviation of the velocity model from the average one. Let us assume that these errors are of

random Gaussian character with the mean value equal to zero and known covariance matrix

CV. Assuming further that the errors of the velocity model parameters are mutually

independent, the matrix CV becomes diagonal with the elements

CV = diag[σ 2

1V ,σ 2

2V ,…,σ 2

kV ],                                          (6)

where σ 2

iV are the known variances of the velocity model parameters Vi, i  = 1,…, k,  and k is

the number of parameters describing the velocity model V.

It can be shown that the introduction of the errors of velocity model leads to characteristic

disturbance of travel times T, δδδδT, with the mean value
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and variance
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From above relations it follows that if both, the errors of arrival times determination and

the uncertainty in velocity model parameters, are taken into account, the covariance matrix

of the focal parameters θθθθ  is
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where
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matrix Ttt CCC +=~
, and CT is the diagonal matrix with diagonal elements equal to the

travel time variances σ 2

iT , caused by the uncertainty in velocity model V.

The meaning of these relations is simple. As a result of error in arrival times determination

and error in velocity model, the observed and calculated travel times differ by some random

values. Knowing the mean and variances of these uncertainties and by using  (7)-(10), we are

able to estimate the mean value and the variance of the random component of travel times. In

addition, according to the formula (9), we are able to calculate the covariance matrix of the

focal parameters θ, where both sources of errors are taken into consideration.

4.3.  Special Case  : Half-Space Velocity Model.

All above relations are of a general nature. Let us consider one of the most important special

cases of the above formalism, viz. when velocity model V is characterised by only one

parameter: P-wave velocity in half-space (the more complicated case when both P- and S-

wave velocity parameters are considered is treated in the Appendix).  Clearly, in such a case

the P-arrival time is described by the formula

ti = t0 + Ti + εi,                                                    (11)

where the travel time from the hypocenter (x0, y0, z0) to the ith seismic station with co-

ordinates (xi, yi, zi) is
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where di is the hypocentral distance, Vi denotes an unknown P-wave velocity, and  i =  1,…,

n. Assuming that the P-wave velocities between the hypocenter and seismic stations are

different but oscillates around the same, known value of V , relations (7) and (8) take the

simple form
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Since the mean value of the travel time T + ∆T takes the simple form

,
*

2

V

d
V

d
q
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d
TT
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where )1/( 2* qVV += , the matrix of the partial derivatives
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and the covariance matrix of the data is a diagonal matrix with diagonal elements equal to

{ } 2
2

2
2~~

q
V

d
c i

tiitt i
+=≡ σC ,                                       (15)

where i = 1,…, n. Relation (9), together with (13)-(15), form the basis for the determination

of  the covariance matrix of the focal parameters θθθθ, where both sources of errors are taken

into consideration. The diagonal elements of the covariance matrix (9) are the variances of the

estimated focal parameters, correspondingly. Thus,
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where 
0000

and,, zyxt σσσσ  denotes respectively expected errors of origin time t0, and

hypocenter co-ordinates x0, y0, z0 .

3.  Numerical Example of Expected Location Errors

Figures 1-3 show the expected errors of hypocenter co-ordinates x0, y0 and z0 determination by

hypothetical seismic network of 12 seismic sensors similar to that at the one of deep gold

mines in South Africa. In all subsequent numerical examples we assume standard deviation in

arrival time determination equal to σt = 0.05 sec, the half-space velocity model with the mean

value of the P-wave velocity V = 5.925 km/sec, and its standard deviation σV = 0.15 km/sec.

The assumption is made that every seismic event is recorded at all stations. Of course this
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Figure 1. Expected error of co-ordinate x0 determination by a network of 12

sensors depending on the seismic event epicenter position. Seismic sensors

are marked by dots.
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Figure 2. Expected error of co-ordinate y0 determination by a network of

12 sensors depending on the seismic event epicenter position. Seismic

sensors are marked by dots.
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assumptions is not required and even not true, since we know that the farther stations, which

are usually not recording the event, do not influence the solution strongly.

4. The Technique for Rock Mass Discontinuities Identification.

Conceptionaly, the technique is simple. The core of the technique is based on the knowledge

of the confidence ellipsoid of the hypocenter co-ordinates determination. For each seismic

event, one has to find all other events whose hypocenters lie within this hypocenter ellipsoid.

The site with the co-ordinates equal to the mean co-ordinates of all of these events is then

calculated, and the event is shifted in the direction of this mean-site. The procedure is applied

for each event and repeated several times, until the minimum in the misfit between the

distribution of shifted hypocenters and 2
3χ  is obtained. The number of degrees of freedom in

the 2χ  distribution was reduced from 4 (eq. 1) to 3, because in our procedure we are using

only 3 spatial components of the 4-dimensional ellipsoid.

Figures 4 to 6 demonstrates the procedure for different sets of synthetic data.
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Figure 3. Expected error of seismic event depth determination by a

network of 12 sensors depending on the seismic event epicenter
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Figure 4. (a) The location of seismic events synthetically generated by a fault. (b) The

location of the fault that generated the synthetic events as well as the relocated positions of

these events (red).
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Figure 5. (a) The location of seismic events synthetically generated by two joined faults. (b)

The location of the joined faults that generated the synthetic events as well as the relocated

positions of these events (red).
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Figure 6. (a) The location of seismic events synthetically generated by three faults. (b) The

location of the three faults that generated the seismic events as well as the relocated positions

of these events (red).
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Figure 5(a) and (b) represents the case of two joined faults. From Figure 5(b) it can be seen

that the event locations converge towards both faults, thus delineating the  causative

structures.

Figures 6(a) and (b) demonstrates the case of three sources of seismic events, with the

procedure capable of delineating all three causative structures.

It should be strongly emphasised that the above procedure is far from unique, and that the

problem of identification of rock mass discontinuities in a cluster of seismic event

hypocenters can be solved by the application of several alternative techniques. For example,

to infer the orientation of active fault planes, the procedure of principal parameters can be

used. Essentially, the method involves the sliding of a temporal window of a fixed number of

events and the estimation of the eigenvalues and eigenvectors of a spatial matrix for each

window-set. Such analysis of the sequence of seismic events makes it possible to isolate and

select different trends of seismicity patterns. Usually, the trends are consistent with one of the

focal planes of the fault plane solutions and the method offers a simple way to infer the

average active fault geometry from the hypocentral location only.

Another procedure for finding statistically significant planes of any orientation in a cluster of

seismic events is based on the analysis of the distribution of observed directions with respect

to some fixed direction, axis, or plane. Several statistical tests are based on this concept and

they require computation of the cumulative distribution function for isotropically distributed

directions. Based on this concept it is possible to design a simple graphical procedure which

makes it possible to answer the question, whether a set of direction vectors are clustered with

respect to particular directions, axes or planes.

Another procedure, conceptionaly close to the last one, is the technique where the dominant

directions of the distribution of hypocenters are described by the deflections of straight lines

connecting the hypocenters of every two consecutive events, where directions are measured

from a certain fixed axe. In case of the lack of any a priori information about the process, the

series of deflections can be analysed and quantified by a non-parametric probability

distribution function.



13

6. Conclusion

A technique involving the confidence ellipsoids of seismic event locations was illustrated to

be useful in the interpretation of a cluster of seismic events in terms of causative structures.

Determination of the confidence ellipsoids by means of the generalised approach takes errors

in arrival time measurements as well as velocity model uncertainties into account. The half-

space velocity model forms an important special case of the generalised approach.

Using the calculated dimensions of the confidence ellipsoids, a relocation algorithm was used

to alter the locations of the seismic events. The relocation algorithm has the effect of

delineating the source of generation when the scatter of events about the source is assumed to

be random.
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Appendix
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Modelling of the expected errors of epicenter location in

the presence of S-waves

The time residuals of location errors consist of two components:  reading errors of arrival

time (say δtR), and  travel time anomalies due to the incorrectness of the crustal model (say

δtM).

The P-arrival time residual at each station is

δtP = δtR(P) + δtM(P),                                                     (1)

and the respective S-arrival time residual is

δtS = δtR(S) + δtM(S).                                                     (2)

Let us consider the simplest case of a velocity model, viz. the half-space with P-wave velocity

equal to VP and S-wave velocity equal to VS. Clearly, the respective travel time anomalies for

P and S-waves are equal to

P
P

PM V
V

d
t δδ

2)(

−=     and    S
S

SM V
V

d
t δδ

2)(

−= ,                                   (3)

where d is the hypocentral distance and δVP and δVS denote the respective anomalies of the P

and S-waves velocities.

Let us assume that the expected travel time anomaly values of the P and S-waves are equal 0,

viz. E(δtM(P)) = 0, E(δtM(S)) = 0, and that the parameter ρ denotes the ratio between the VP  and

VS, so that δVS = δVP/ρ. With the variances of δtM(P) and δtM(S) being equal to

2
2

2

)( ][ q
V

d
tVAR

P
PM =δ                                                    (4)

and
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where q = σVp/VP = σVs/VS  and σVp and σVs denote respectively the standard deviation of the P

and S-velocity, it is easy to show that the covariance Cov[δtM(P), δtM(S)] is equal to

[ ]
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22
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                                            (6)

If  the P and S-arrival time reading errors at the same station are not correlated, one obtains

Cov[δtR(P), δtR(S)] = 0,                                                (7)

and 

E[δtR(P)
2] = E[δtR(S)

2] = σ 2
t ,                                           (8)

where σt is the standard deviation of arrival time determination.

The least squares procedure for the location of a seismic event is equivalent to the

minimization of functional 

(tobs – tthe)T 1−
tC (tobs – tthe),                                                 (9)

where tobs = 





obs
S

obs
P

t

t
  denotes a (2n x 1) vector of observed arrival times at a number of n

stations . The first n elements of vector tobs are the P-arrival times and are denoted as obs
Pt .
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The last n elements of vector tobs are the S-arrival times and are denoted as obs
St . Vector tthe

denotes respective theoretical P and S-arrival times. By definition, the covariance matrix, Ct,

of the data, t, is equal to

Ct ≡  Cov(t) =  





][],[

],[][

SPS

SPP

VarCov

CovVar

ttt

ttt
,                                       (10)

where, following (1)-(8), all four sub-matrixes Var[tP], Var[tS], Cov[tP,tS], and  Cov[tS, tP] are

(nxn) dimensional and diagonal with diagonal elements equal to

{ } ,][ 2
2

2
2 q

V

d
Var

P

i
tiiP +=σt                                            (11)

{ } ,][ 2
2

2
2 q

V

d
Var

S

i
tiiS +=σt                                            (12)

{ } { } ,],[],[ 2
2

q
VV

d
CovCov

SP

i
iiPSiiSP == tttt                              (13)

where di is the distance from hypocenter to station i, and i = 1,…,n.   

The main point in developing above formalism is to show that if the P and S-arrival times are

used in the location procedure of local seismic events, the covariance matrix of data, Ct,

contains non-diagonal elements, which are responsible for a correlation between P and S-

arrival times recorded at the same station. These elements depend on the expected errors of

arrival times, distances from the hypocenter and the uncertainty in P and S-velocities. The

analytical form of such elements is given by equation (13). It can thus be seen that when both

the P- and S-waves are used in the procedure of modelling the expected errors of epicenter

location, one cannot assume that the travel time residuals of these two waves are independent

variables (as can be done with the errors in arrival times). The travel-time anomalies of P and

S-waves recorded at the same station are strongly correlated. This fact is a non-trivial matter

and must be taken into account during the procedure of modelling of the expected location

errors.


