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Executive Summary

Seismicity causes the most severe loading conditions for tunnel support systems in deep-level

South African gold mines.  The design of such support systems should therefore incorporate the

potential effect of seismicity on support requirements.

Unfortunately, this is presently not possible, as such effects have not yet been adequately

quantified.  Within the current project, an attempt has been made to address this shortcoming.

The findings of rock burst investigations were used to identify support failure mechanisms in

tunnels after large seismic events.  These findings allowed for a qualitative evaluation of support

requirements and support influence and were used as a basis for the actual testing programme.

The main objective of this project was to determine the support capacity of various support

systems and components under dynamic loading conditions.  Deficiencies in the performance of

fabric support were highlighted in these and other investigations.  The lack of adequate criteria

or methods for the design of fabric support is therefore a shortcoming, which needs to be

overcome in order to obtain improved fabric support.

A special testing rig was redesigned in such a way that a tunnel support system could be

incorporated in a realistic rock mass environment.  The effects of repeated impact loading could

be evaluated by monitoring displacements and velocities in response to each impact.  This

evaluation showed the effects of lacing, shotcrete and Evermine on the energy absorption

capacity, deformations and local instabilities.  Tendons, supporting the specimens, were

excessively excited by the impact loads imposed on these specimens, and did not yield.  All the

other support components were however prone to failure, after sufficient deformation was

imposed upon them.  In this respect, it should be emphasized that the differential behaviour

between tendons and typical fabric support correctly reflects the mechanisms involved in a

deep-level mine tunnel in fractured rock.  In sufficiently fragmented rock, the loading demand on

tendons would be limited to the (lower) capacity of the fabric support.  In such cases, the

capacity of the entire support system would thus also be limited to the capacity of the fabric

support.  It is this capacity which was evaluated in these impact tests.

In addition, individual support components such as tendons, mesh and lacing were evaluated

separately in different laboratory tests.  One of the more revealing findings from these tests was

the fact that the capacity of lacing can be significantly reduced by the clamping device used.

This was also observed in the impact tests and may represent a realistic limitation on actual
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support performance.  Nevertheless, the presence of lacing always contributed strongly to the

performance of a support system.

A model for impact testing is also presented here.  With this model, various influencing

parameters can be quantified and the monitored impact tests can be analysed in more detail.

One of the most important parameters in this model is the resisting force, which is made up of

an internal rock mass resistance and a support resistance.  The relationship between induced

displacements and impact energy is also represented by this model.  This relationship is

typically non-linear, a phenomenon which was also observed in the impact tests.  The results

from the impact tests can be interpreted with confidence using this model, as the influence of

various parameters can be assessed directly.

Underground monitoring at a site on Tau Tona, to determine the effects of seismic events on

support systems, has been completed.  The effects of the seismic events, to which this site was

subjected during the monitoring period, were relatively small, compared to the impact testing

results as maximum velocities of 67 mm/s were measured at this site.  Typical laboratory testing

velocities from even the smaller impacts were an order of magnitude larger.  Nevertheless, it

was possible to establish a relationship between induced velocities and tendon support loading

from the underground monitoring data.  This relationship should be extremely useful for the

design of these tendons in relation to seismic activity.

The importance of correct design of fabric support has been highlighted in this project and a

conceptual design methodology has been formulated.  It is considered important that further

testing of fabric type support elements should be carried out, while the design methodology

should be developed and evaluated in more detail as well.
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1 Introduction

In deep-level mining environments, tunnel support systems may be subjected to quasi-static

and dynamic loading.  In this project, the effects of repeated dynamic loading conditions were

specifically addressed.  Both in situ and experimental data were used to investigate the

influence of tunnel support systems on the stability of the supported rock mass structure under

such loading conditions.

While most data was obtained from laboratory tests and physical model evaluations, additional

monitoring data from an underground site was also included.  Owing to the nature of the

problem addressed here, seismic excitation was required to render the underground data

relevant.  A site, with a history of substantial seismic activity, was therefore selected in

anticipation of a continuation of this historical trend.

In order to analyse the interaction between support components and the rock mass under

repeated dynamic loading conditions, a realistic, physical model was developed.  This model

was based on a drop test rig and a simulated rock mass.  Repeated dynamic loading was

induced by multiple impacts of constant magnitudes.  Both the energy absorption capacity of a

particular fabric and the accumulation of deformations, caused by repeated impacts, could thus

be quantified.  It is especially the cumulative nature of these impacts, which determines the

effect of dynamic loading; both the number and the magnitude of impacts are of relevance in

this respect.

Support components were also assessed individually in separate laboratory tests.  A variety of

tendons were subjected to dynamic and repeated axial stretching in a special loading device

(Terra-Tek).  The same device was also used to test different types of mesh and lacing, which

were supported in a separate frame.  While these tests are useful for the determination of the

capacity of support components, they do not enable an immediate assessment of a support

system.  The interaction of the various support components with the rock mass structure will, to

a large extent, determine the effect of the total system.

1.1 Aims and objectives

The main aim of the project was to gain an understanding of the effect of repeated loading on

typical tunnel support systems and to present recommendations on the life of tunnel support

systems under such conditions.  In addition, improved practical design considerations were

investigated.
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A literature survey into current tunnel support design considerations provided a basis for this

work.  The focus of the literature study was on dynamic loading, both its quantification and its

possible effects on support systems.  Loading history is considered to be of major importance

and was therefore also investigated.

Most of the literature used for this project comprised case studies of rockbursts.  It is believed

that these studies provide a unique opportunity to assess “worst case” conditions on which any

realistic design should be based.  Failure of support systems under rockburst conditions needs

to be understood in order to allow any formulation of a design methodology.  As these case

studies only allow for a post mortem analysis, some relevant information such as loading

history, time effects, etc. may be lacking.  However, the mechanisms of support failure may be

clearly identified from these case studies.

Typical support components such as rock bolts and cables, various meshes and lacings were

evaluated under multiple impact loading conditions in suitable laboratory tests.  The purpose of

these tests was to establish the behaviour of these support components under such dynamic

loading conditions.  In addition, the analysis of a model of realistic rock mass – support systems

under controlled laboratory conditions was also included.  This should allow the quantification of

the interaction between support system and rock mass.

In situ monitoring of support behaviour by installation of suitable instrumentation was the third

and final component of data collection.  An underground site at Tau Tona Mine, 100 level was

selected for this purpose.

Based on the data from the case studies, the laboratory tests and the instrumented haulage, a

conceptual model of support behaviour under dynamic loading conditions was formulated.  This

model can be implemented in numerical tools so that comparative studies can be done.  A

methodology for the design of rockburst resistant tunnel support systems was formulated.  This

methodology allows for the cost effective design of a system consisting of tendons and fabric

support.  In addition, practical guidelines for the selection of support systems for different rock

mass and loading conditions were developed (Table 4.1).
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1.2 Research methodology

The project was divided into two phases:

Phase 1

• survey of current practices and knowledge (literature survey and evaluation of current

design processes),

• physical evaluation (laboratory testing of support components, i.e. rock bolts, meshes,

lacings and membrane support components and laboratory testing of simulated tunnel

support – rock mass system), and

Phase 2

• underground evaluation (site selection and in situ evaluation of support system

performance),

• numerical modelling, and

• design recommendations.

2 Literature survey

2.1 Design methodologies

The principal design methods for support systems are based on either containment or the

creation of a reinforced rock mass shell.  Containment of the rock mass is achieved by ensuring

anchorage beyond the limit of rock mass instability in stable rock, with sufficient capacity within

the support system to accommodate the full rock mass loading and deformation.  Alternatively

the support system may act to reinforce the skin of the unstable rock mass and thus create a

reinforced rock mass structure, again capable of withstanding the envisaged loading conditions.

Within most support systems some combination of both these support mechanisms can be

expected to act upon the rock mass.  The principal design considerations as discussed above

are shown in Figure 2.1.

Of importance is the ability to estimate the depth of rock mass instability around the excavation,

to enable the determination of a suitable anchor length.  This may be based on historical data of

anticipated depths of instability, empirical relationships, or numerical modelling analysis.
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The influence of the mechanism of the support system interaction with the rock mass, on the

deformation characteristics of the excavation, is illustrated in Figure 2.2.

cl

unstable
rock mass
zone

anchors

structural containment

Figure 2.1.  Definition of principle methodologies of excavation stabilization
(Gürtunca and Haile, 1999).

unstable
rock mass
zone

anchors

structural containmentcl

Figure 2.2. Generalized deformation characteristics for principal support
methodologies under high loading conditions (Gürtunca and Haile,
1999).
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These deformation mechanisms are clearly illustrated by the rockburst case studies, where

deformations often occurred to the extent that failure of components of the support system

resulted.  Analysis of the case studies indicated the characteristic deformation mechanisms and

also revealed the shortcomings of the current support systems.  The main findings from these

case studies are as follows:

• Bulking of the rock mass between tendons was observed at all rockburst sites.  At 70 per

cent of the sites this bulking resulted in failure of the fabric support.  Unravelling of the

fragmented rock mass around the tunnel could subsequently be observed.

• At only 30 per cent of the sites no failure of the fabric support was observed.  In these cases

the fabric support was capable of retaining the unstable rock between the rock bolts.

• In all rockburst sites investigated the majority of tendons had not failed in either tension or

shear.  In the majority of cases the rock mass had unravelled around the tendons, either due

to fabric support failure, or due to the absence of fabric support.  In these cases the tendons

would not have been subjected to the loads associated with the tributary area theory.

• Tensile failure of some of the rock bolts was observed at 60 per cent of the rockburst sites in

both sidewalls and hangingwalls.  In most cases this could be associated with large block

sizes and a relatively unfractured rock mass.  Failure in tension was often observed on

corroded tendons.  In such cases, discontinuities, which would expose these tendons to a

corrosive medium, were typically present.  Even the interface between shotcrete and the wall

rock was observed to create such a corrosive environment.

• Instability of tunnel hangingwalls was often associated with shear failure of rock bolts.

Consideration of the shear capacity of tendons is not catered for in conventional support

design, but examples of this type of failure were observed in 70 per cent of the rockburst

case studies.  Slip along bedding planes is assumed to induce this type of failure.

• Large, uniform sidewall deformations were observed in the Klerksdorp region.  This type of

failure was associated with a lack of retention due to insufficient tendon length in relation to

the depth of instability and the inability to create a structural shell of sufficient strength for

these particular geotechnical conditions.

• Shotctrete was observed to have a significant effect on the stability of a fragmented rock

mass around a tunnel.  Even a relatively thin layer of shotcrete could stabilize fragmented

rock, where the absence of such a fabric was associated with damage and failure.
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2.1.1 Design based on rock mass retention/ containment

The methodology of excavation stabilization based on retention /containment is considered to

be a robust support design methodology, but it is critical that anchorage of the system within

stable ground be achieved.  The design mechanism often used in deep-level gold mines is the

retention of a rock mass based on the tributary area loading of the rock bolts, and the depth of

instability.  The depth of instability is typically derived from historical data such as rock fall

statistics.  The required demand from fabric support is not considered.

Although the engineer should strive to design the support system in order to maximize the

inherent strength of the rock mass structure, and thus minimize the support requirements, the

support design should allow for the loss of rock mass strength around the excavation.  The

design methodology must therefore carefully consider the interaction of the individual

components of the support system with the rock mass, and the anticipated demand on these

units.  To maximize the inherent rock mass strength, for optimum design considerations, the

yield capacity of the anchors should be compatible with the envisaged rock mass deformation

characteristics.  That is, yield of the anchors must be compatible with the dilation of the rock

mass between anchor points in order to minimize differential deformations.  Incompatibility will

result in loosening within the rock mass structure, particularly between the tendons, with

resultant loss of rock mass strength.  The incorporation of high quality, relatively stiff fabric

support systems would result in a more even load distribution between the rock mass directly

confined by the rock bolts and the potentially unstable rock mass between the rock bolt

reinforcement.  However, if the inherent strength of the rock mass is lost owing to the degree of

rock mass discontinuity, or deformation, then increased demand on the fabric component of the

support system must be considered.

The current design recommendations for tunnels in deep-level mining (DME, 1996) indicate the

necessity for yielding tendons, particularly under dynamic loading conditions associated with

major seismic events, to ensure sufficient energy absorption capacity.  However, throughout

numerous case studies, it was observed that relatively stiff re-bar rock bolts, with very limited

yield capability and thus energy absorption, would survive the major dynamic deformations and

damage (see Fig. 2.3).

This is due to the poor interaction between the rock bolts and the rock mass in these

environments.  This causes the direct loading of the rock bolts at levels far lower than

anticipated by the design process.  Under these conditions dynamic energy associated with the

unstable rock mass is dissipated through the deformation of the rock mass contained by the

relatively soft mesh and lace fabric support systems, resulting in the often observed bulking
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profile of the tunnel.  This bulking process between the rock bolt reinforcement, and the

associated differential deformations will result in a further reduction of the rock bolt interaction

with the rock mass.  Thus, this mechanism, although not catered for in the design process,

reduces the supporting capacity of the tunnel support system to that of its weakest component,

namely the fabric.  The survival of non-yielding rock bolts under dynamic loading conditions can

readily be explained by this mechanism as well.

Figure 2.3.  Rock mass unravelling between rock bolts (background) and rock
bolt failure (foreground) (Gürtunca and Haile, 1999).

If stiffness and strength of the fabric support were increased in order to limit the deformations of

the rock mass, then the distribution of loading between the fabric and the rock bolts would

change.  This would result in increased direct loading of the rock bolt reinforcement, which in

turn might lead to failure of the rock bolt and subsequent unravelling of the support system

unless yielding tendons with sufficient energy absorption capacity were used.

Of major relevance to these considerations is the nature of the fragmentation of the supported

rock mass.  Massive blocks can be pinned by rock tendons only and may not require additional

fabric.  On the other hand, rock tendons may be totally inefficient in highly fragmented rock, as
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the support capacity would be limited by the capacity of the fabric in that case.  At present, there

is a large discrepancy between the support capacity of a typical tendon (around 100 kN) and

that of a typical mesh for instance.  It is evident therefore that a dominating parameter, namely

fragmentation of fractured/failed rock, is not taken into account in current design considerations.

Although it is inherently assumed that the rock mass is capable of distributing the tendon forces

according to tributary area theory, this assumption is generally invalid. The effect of the

associated forces on the potential for disintegration of the rock mass itself is not considered at

all.  As can be observed from most of the case studies, rock mass disintegration and unravelling

is a very real and serious problem, which renders current design methodologies quite

unrealistic.

The most recent tunnel support design system, developed in projects GAP 335 and GAP 035,

recommends the following main considerations with regard to the design of tunnel support

systems in deep-level mining environments:

• The extent of natural rock mass instability, under conditions of quasi-static and dynamic

stress fracturing, can be estimated in the proposed design analysis.

• The dilation rates for the reinforced and un-reinforced rock mass can be estimated, as a

function of the anticipated stress change over the life of the excavation.  Analysis of the

deformation mechanisms has indicated the importance of the consideration of shear

deformation within the rock mass, particularly in the hangingwall under conditions of a

vertical stress reduction.

• The extent of interaction of the rock bolts within the defined rock mass structure and loading

environment can be estimated, and is dependent on the orientation of the discontinuities.

• The extent of the potentially unstable rock mass volume between the rock bolt

reinforcement can be estimated under static and dynamic loading conditions and hence the

demand on the fabric support.

• The load-deformation characteristics of the fabric support system influences the extent of

interaction between rock bolt units and energy absorption capability of the rock mass itself.

Consideration of the interaction between the fabric support and the rock bolt units is an

important aspect of the support system design that ensures compatibility of the components

of that support system.
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2.1.2 Summary

Observations of the performance of tunnel support systems under rockburst conditions have

allowed a mechanistic evaluation of support behaviour.  Of significance for the improved design

of support systems under rockburst conditions are the following:

• The depth of instability (fracture zone) of the rock mass around the excavation under

dynamic loading conditions can be estimated from empirical data and conceptual models

based on in situ strength-stress ratios.

• Consideration should be given to the loading of the fabric support due to the unstable rock

mass between the rock bolt reinforcement and the influence of the characteristics of the

fabric support.  An important parameter in this respect is the fragmentation of the rock

mass.  Intense fragmentation typically directs the unstable rock mass towards the fabric,

resulting in an ineffective support system in which the tendons are hardly activated.  (The

support resistance of typical fabric is significantly less than that of typical tendons).

• The fragmentation of the rock mass and the orientation and location of discontinuities is

also an important parameter affecting the interaction of the rock bolt reinforcement with the

unstable rock mass volume.  In addition, the yielding capacity, and even strength, of typical

bolts may in practice also be severely reduced due to various factors; corrosion in cracked

rock for instance may cause local weakening, while bonding forces may be larger than

anticipated, so that critical bond length and hence yielding length is reduced.

• The shear demand and capacity of the rock bolt reinforcement should be considered,

particularly in the hangingwall of the tunnel.  Of importance here is the presence and

behavior of bedding planes especially when changes in field stresses are anticipated.

• Consideration should be given to the location of seismically active structures; most of the

violent rockburst damage was observed in the immediate proximity of major dykes or faults.

The relative position of stopes should also be considered, as the associated stress

concentrations could affect tunnel stability.

2.2 Design considerations

In order to consider the influence of repeated dynamic loading on the performance of a support

system for design purposes, estimation must be made of the demand on, and the capacity of

the support system.
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2.2.1 Repeated dynamic demand on the support system

The critical parameters with respect to support system performance are deformation capacity

and support resistance.  Both quasi-static and dynamic loading can be expected to play a role in

deep-level mining environments.  The loading history and the associated deformation history of

a support system must be considered in order to determine current support capacity.  Time

dependent behaviour and stress changes associated with mining will induce deformations into

the support system and thus reduce the remaining deformation capacity.  The anticipated or

historic demand on the support system may be evaluated on the basis of the seismicity, the

mining-induced stress changes and possible time effects to which the excavation is exposed

over its life.  Repeated dynamic loading, the subject of this study, is directly linked to seismicity

and the effects of seismic events.  While it is impossible to quantify exactly the associated

movements, certain relationships between magnitude, relative location and induced movements

and associated forces exist.  It is possible to qualify the potential for seismic excitation on the

basis of seismic history and relative location.  The level of static stress obviously plays an

important role as well, as the dynamic stresses will be superimposed on the former.

2.2.2 Capacity of the support systems

Stacey and Ortlepp (1997) carried out impact tests on panels of containment support 1.6 m x

1.6 m suspended on a 1 m2 rock bolt pattern with and without lacing.  In total, 56 tests were

carried out representing combinations of different types of wire mesh, wire rope lacing, and fibre

reinforced shotcrete.  The simulated rock mass comprised concrete blocks stacked within the

defined rock bolt pattern in the geometry of a pyramid.  The system was loaded dynamically by

means of a drop weight from which the kinetic energy imparted to the system could be defined.

The fabric support systems were evaluated on the basis of deformations associated with

impacts of known kinetic energy.  The maximum (accumulated) kinetic energy, which a system

could sustain prior to substantial loss of fabric integrity, can be obtained from their results.

Figure 2.4 shows the data set from their work.

Although Stacey and Ortlepp (1997) did not consider trendlines to be appropriate, they are used

here to illustrate the concept that a support system may have a critical kinetic energy below

which the support system can absorb the impact energy elastically and thus recover any

deformation.  Thus in Figure 2.4 the intersection of such a trendline with the y-axis would

represent the critical kinetic energy level for zero deflection.  Thus, for a given volume of

unstable rock mass interacting with the support system, a critical impact velocity may be

defined, below which no permanent damage to the support system will be sustained.  Clearly

noticeable is the influence of the lacing in this respect; only the presence of lacing seems to
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lead to a measurable critical kinetic energy magnitude (i.e. velocity).  The absence of lacing

appears to result in negligible critical energy levels, or, in other words, even extremely small

impact energy levels would lead to ultimate failure in the absence of lacing.
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Figure 2.4. Relationship between accumulated impact kinetic energy and
deformation for contained simulated rock mass system (Stacey and
Ortlepp, 1997).

In this laboratory testing programme the kinetic energy, in addition to the constant gravitational

loading of the fabric support, was imparted by a drop weight.  In-situ, it would be the weight of

unstable rock mass that would be accelerated to a maximum velocity (the peak particle velocity

or PPV), from which the kinetic energy would be determined in a typical design process.

The relationship between deflection and kinetic energy in Figure 2.4 may be suitably

represented by a linear fit of a trendline.  However, it should be noted that the kinetic energy is

represented by cumulative values, which could either be obtained by a small number of large

impacts, or a large number of small impacts.  The impact magnitude is not explicitly considered

here, although this parameter can be expected to affect results substantially.  In addition, it

should be emphasized that the last data point within a series does not necessarily represent the

failure of the system, but merely the end of a test.
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Haile (1999) conducted a series of in situ tests on typical mesh and lacing configurations, which

were directly loaded by static forces.  Some of these configurations are similar to those tested

by Stacey and Ortlepp (1997).  If the results of these in situ tests and the impact tests are

compared, substantial differences in energy absorption capacity can be observed.  While the

different boundary conditions in both situations may explain some of this difference, it is

assumed that the bulk of the difference is associated with energy absorption within the rock

mass structure.  In the laboratory tests, this energy absorption can take place in the form of

frictional resistance between blocks and the crushing of blocks.

3 Physical evaluation

3.1 Drop test rig

3.1.1 Introduction

The drop test rig, which was used for this project, was originally designed and used by SRK

Consulting for impact testing on shotcrete panels.  The test rig consists of a crane, which pivots

around a central column and is guided in a circular track.  A special foundation had to be

constructed in order to support the central column, the guiding track and anchoring points for

the pre-stressed lacing.  A hook with a mechanical release mechanism is used to lift and

release the1 ton impact weight.  The lifting mechanism itself is powered by hydraulics and the

hook is suspended from rails along the horizontal beam connecting the central column with the

two other columns in the guiding track.  This structure allows the hook to be positioned

anywhere within the area enclosed by the circular track (see Figs.3.1 a and b)

3.1.2 Description of changes

In order to allow a realistic comparison between the case in which no fabric support was used

and the various support systems, it was decided to redesign the test rig in such a way that the

rock mass itself could also be represented.  This required a substantial modification, enabling

the interaction between a simulated rock mass and a tunnel support system to be analysed

under repeated impact loading conditions.  The interaction between the rock mass and the

support system is of ultimate relevance.  Testing the support system by itself might not provide

a correct estimate of the practical support performance of an entire support system, as the

contribution of the rock mass in resisting deformations and unravelling would be completely

ignored in that case.
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    a          b

Figures 3.1 a and b.  General views of the main test rig.

The rock mass in these tests was represented by a volume of relatively hard bricks which were

suspended by 20 mm bolts from, and confined at the bottom layer by, a reinforcing frame.  For

this purpose special interlocking pavement bricks were selected which could be joined into a

competent assembly.  The resultant simulated rock mass structure was one in which the

weakest discontinuity planes (those separating layers of brick) were normal to the applied

impact load.  When typical fracture patterns around a tunnel are considered, the laboratory set-

up closely simulates vertical loading of the hangingwall or horizontal loading of the sidewall.  A

temporary support structure was used to assemble the bricks around four tendons inside the

confining frame. Upon completion, the tendons were tensioned and confinement was applied by

the confining frame, so that the supporting frame could be removed.  This situation is sketched

in Figure 3.2.
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Figure 3.2.  Sketch of the test frame with artificial rock mass and support system.

By dropping a mass of 1 ton from various heights, dynamic loading of the system was

simulated.  The impact energy was too small to cause failure or yielding of the tendons, but the

brick size was sufficiently small to allow bulging of the “brick mass” in between the tendons.

This deformation mechanism could lead to the fall-out of individual bricks and ultimately the total

disintegration of the brick assembly.

The actual response of the system is strongly influenced by the presence of a support fabric,

which fulfils a containing function.  The magnitude of the impacts obviously plays an important

role as well, while the accumulation of absorbed energy from a number of impacts is another

crucial parameter.  Each test was executed by dropping the mass from a fixed height, until the

brick assembly was deemed to have failed.  The drop height was constant during each test in

order to maintain consistency.  As the effect of an impact is not linearly related to its magnitude,

variations in magnitude, during a test on an individual specimen, might result in non-linear
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responses, which might be difficult to interpret.  Therefore, different drop heights were used in

different tests, so that the effect of the impact magnitude could be evaluated independently.

The artificial rock mass consisted of layers of interlocking concrete bricks, tightly packed in a

volume of approximately 2 m X 1.5 m X 1.0 m (see Fig. 3.2).  All tests were carried out until the

unstable area (see Fig. 3.2) became dislodged.

In the current project, not only shotcrete was evaluated for its potential as fabric support, but

also a membrane support (Evermine) and steel lacing.  The unsupported situation was also

tested and analysed in order to determine the reinforcing effect of a support system on the rock

mass.

3.1.3 Tests performed

In total eleven drop tests were performed.  Each of these tests required a complete reassembly

of the artificial rock mass and the support system, which was a time consuming process.  In

order to obtain consistent results, the drop height during each individual test was maintained

constant.  Only two different drop heights were used, namely 10 cm and 50 cm.  The smaller

value was used for those fabrics which were assumed to be weak, while the greater drop height

was used mainly for the shotcrete.  The brick assembly consisted of nine layers, generating a

height of approximately 1 m.  Horizontal confinement was applied to the bottom layer through

beams which were jacked against the testing frame.  20 mm bolts were used to push the beams

from the testing frame against the bottom layer.  The 20 mm tendons, which supported the brick

assembly, were also pre-stressed so that vertical confinement of the assembly was induced as

well.  While the total length of the test specimens was approximately 2 m and their width about

1.5 m, the spacing between the tendons was approximately 1.5 m in one direction and 1.0 m in

the other direction.  The top layer of bricks was confined by pre-stressed strapping.  The impact

mass was dropped on a steel plate resting on a pyramid of concrete blocks.  This concrete

block structure effectively served as a load spreading device.

Three tests were performed without any fabric support, in order to obtain a datum value for the

strength and deformation characteristics of the simulated rock mass itself.  The only resistance

against the impact in these tests was provided by the nominal confinement induced by the

testing frame and the tendons.  A drop height of 10 cm was used for two of these tests, while a

drop height of 50 cm was used for the third.

The eight remaining tests were performed with varying support combinations.  For fabric

support, a structural membrane (Evermine) and fibre reinforced shotcrete were used.  Evermine

was sprayed onto the bottom layer of bricks while it was assembled in the testing frame.  The
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thickness of the Evermine layers was approximately 5 mm on average.  Shotcrete panels were

prepared separately in a special frame which could support a layer of bricks.  Shotcrete was

sprayed onto the layer of bricks in that frame and after a curing period of at least 48 hours, the

shotcreted layer was placed in the testing frame and the other brick layers were placed on top

of it.  The shotcrete layers were on average 100 mm thick, although relatively large variations in

thickness could be observed.  Lacing was placed across the testing specimen (see Fig. 3.3) in

such a way that it spanned diagonally from one tendon to the other.  The lacing was pre-

stressed and simultaneously pulled tight against the bottom of the testing rig by the use of

special columns, anchoring points and tensioning devices.  The following tests were conducted

in chronological order:

1. Evermine and lacing; drop height 10 cm.

2. Evermine and lacing; drop height 50 cm.

3. Evermine; drop height 10 cm.

4. Lacing; drop height 10 cm.

5. No fabric support; drop height 10 cm.

6. No fabric support; drop height 10 cm.

7. No fabric support; drop height 50 cm.

8. Shotcrete; drop height 50 cm.

9. Shotcrete and lacing; drop height 50 cm.

10. Shotcrete and lacing; drop height 50 cm.

11. Shotcrete; drop height 50 cm.

In test 1, the bottom layer of bricks was flush with the confining beams and the testing

frame.  In this case the lacing was therefore in direct contact with the specimen from the first

impact onwards.  In the subsequent tests, the bottom layer of bricks was placed higher in

the frame in order to maintain confinement and increasingly displaced downward during

subsequent impacts.  As a consequence, an initial gap between the lacing and the bottom

layer was created in the remaining tests.

In test 6 and test 7 the monitoring frame with the telescopic bars was not placed against the

brick assembly during any of the impacts.  As it appeared that this frame affected the results

in test 5, it was decided not to monitor during the impacts, but only afterwards.
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3.1.4 Results

The deformations were measured with the assistance of a special monitoring frame, containing

nine telescopic bars.  These bars were positioned in a vertical direction, in touch with nine

specific locations along the bottom of the assembly.  After each impact, both the maximum and

the permanent deformation of each individual bar were recorded.  The difference between

maximum and permanent deformation is representative of dynamic elastic behaviour, while the

permanent deformations obviously represent inelastic behaviour.

In addition to these deformations, the peak particle velocities (PPVs) were monitored along the

bottom of the testing assembly.  The PPVs generated by repeated dynamic loading were thus

measured on the skin of the simulated tunnel support rock mass system.  A ground motion

monitor (GMM) with eight geophones was used in this experiment. The position of the

geophones with respect to the support is shown in Figure 3.3.
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Figure 3.3.  Plan view illustrating the position of various geophones at the bottom
of an assembly supported with Evermine and lacing.

To improve the dynamic range of the recording system some of the geophones were over-

damped with external resistors.

Three stages of rock mass behaviour are clearly identified in Figure 3.4.  The first stage, drops 1

to 10, is associated with the initial compaction of the bricks used to build the sample.  During

this stage, the PPVs recorded in the middle of the sample (G2) are higher than the PPVs

recorded in the periphery (G1 and G4).  This stage is also characterized by minor or almost no

damage.  The second stage, drops 11 to 28, is associated with the post-compacted period
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where damage of the sample begins to occur.  The PPVs at all geophones during this stage are

more consistent.  There is no evidence of lacing yield during this stage.  The third stage, drops

29 and above, is characterized by extensive cumulative damage, which spreads outward from

the centre of the sample towards geophone G4 where PPVs are significantly higher.  The effect

of lacing support during this stage is demonstrated by the lower PPVs recorded at geophone

G 2, which is located very close to the lacing intersection.  The increased velocities at G4 can

be associated which increased damage and a limited support influence.  The general variations

in the PPVs shown in Figure 3.4 ranged from 200 to 600 mm/s.  This compares to impact

velocities of 1400 mm/s for this particular experiment.
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Figure 3.4.  Peak particle velocities measured on the surface of the sample with
Evermine and lacing.

3.1.5 Discussion of the results and Conclusions

The test results provide a relatively realistic reflection of the interaction between a tunnel

support system and a rock mass subjected to (impact) loading.  The fact that this interaction can

now be quantified renders these tests valuable from a practical point of view.  While the vast

majority of results can be explained in a very logical manner, they could definitely not have been

predicted in any detail.  The test results thus allow a quantitative evaluation of the effectiveness

of various fabrics.
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In the drop test rig, the tendons can be assumed to be rigid for all practical purposes.  During

the impact, a certain percentage of the impact energy is used to mobilize boundaries between

individual bricks and to accelerate a potentially unstable region of bricks.  Parameters subject to

variation may be the shear and normal stiffness and the frictional resistance across the brick

interfaces.  Increasing deformations and associated damage can be expected to affect these

parameters in particular.  In addition, support resistance may change with increasing

deformation, while the difference between various support systems should be reflected in the

actual support resistance provided.

The effect of support and fracturing on the PPVs was clearly illustrated in Figure 3.4, where less

supported areas remote from the support were associated with higher PPVs in a fractured

environment.  Similar behaviour was measured underground during the simulated rock burst

experiment (SIMRAC project GAP 530). The results from these measurements are shown in

Figure 3.5.
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Figure 3.5.  In situ relationship between PPVs and distance from a rock bolt
reinforcement unit (Haile and Le Bron, 2001).

 

 The general trend of increased PPVs with increased distance from the rock bolt reinforcement is

clearly illustrated.  This trend is in accordance with measurements at other tunnel sites (Haile et

al., 1998) under conditions of natural seismic events.
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 Figures 3.6 and 3.7 show the results of all impact tests performed, for 10 cm and 50 cm drop

height respectively.
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 The termination of each test does not necessarily coincide with total specimen failure.  In fact

most of the tests resulted in the fall-out of a limited area only.  Damage was often difficult to

quantify, especially in those tests in which lacing was used.  In these tests, the removal of lacing

typically led to massive additional fall-out, which could not be anticipated correctly.  Even the

displacement monitoring frame, with its telescopic bars, appeared to have a considerable

influence on stability in the absence of any fabric support.  Removal of the frame also led to

additional fall-out.  The amount of damage or the degree of instability at the termination of each

test is therefore not equivalent for all tests.  However, it can be stated that all specimens were

subjected to damage which would be far in excess of any acceptable standard.

 The conclusions based on the impact tests can be summarized as follows (see also Figs. 3.6

and 3.7):

• Deformations accumulate with the number of impacts.

• The magnitude of accumulated deformation controls the stability of individual fragments

(bricks in this case).

• The maximum deformation before failure is increased by the use of a structural membrane

(Evermine in this case) or shotcrete.

• The magnitude of accumulated deformation is strongly reduced by the presence of lacing

and/or shotcrete; the system stiffness increases noticeably, even in response to a

relatively small lacing force.

• The use of fibre reinforced shotcrete of approximately 100 mm thickness resulted in a

substantial improvement in energy absorption capacity (Note: a lack of manufacturing

control of shotcrete thickness led to considerable performance differences between

individual shotcrete panels).

• The best performance could be obtained with a combination of shotcrete and lacing; large

fragments of shotcrete, which stabilize the small fragments (bricks), remain stabilized by

the lacing, even when subjected to very large deformations.

• A large drop height has more influence on deformation than a number of small drop

heights with equivalent total impact energy.

Lacing only becomes activated once sufficient deformation has been induced into the lacing.

While the lacing was pre-stressed in all the tests, this is not likely to have a significant effect, as

the lacing first has to assume a curved shape in order to provide effective support pressure.
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Failure of the lacing did occur in test 10 (shotcrete and lacing) at deformations in excess of

200 mm. It is of interest to note that in test 2 (Evermine and lacing) the lacing did not fail at

similar deformations, although the specimen itself was assumed to have failed due to excessive

brick fall-out.  Owing to the geometry of the testing frame, there was an initial gap between the

lacing and the bottom surface of the specimen.  Variations in this gap resulted in variations in

lacing response; i.e. a larger gap required more deformation in order to activate the lacing.  The

difference in results from tests 1 and 4 can be explained by the difference in the initial gap of

around 50 mm.

Variations in results from the different shotcrete tests can partly be attributed to variations in

panel thickness.  Although care was taken to construct panels of uniform and constant shotcrete

thickness, relatively large variations in both the average panel thickness as well as local

thickness could be noticed.  Each shotcrete panel consisted of a single layer of bricks, which

was sprayed with shotcrete on one side.  The panels were manufactured in a special mould, but

their relatively large size created some practical difficulties, which may have accounted for the

inconsistencies.

The assembly of bricks in the testing frame was not supposed to be subject to variation.

However, it should be appreciated that the results are probably very sensitive to the interface

stiffness and frictional resistance.  Therefore, small variations in interface conditions between

individual bricks may also have affected the results to a certain extent.

The differences between test 5 and test 6, in which unsupported bricks were tested, is explained

by the influence of the displacement monitoring frame.  As no elastic rebound took place in test

5, the telescopic monitoring bars remained in continuous contact with the bottom layer of bricks

after every impact.  Removal of the monitoring frame at the end of test 5 resulted in a

substantial additional fall-out.  It was decided to detach the monitoring frame from the test

specimen during the impacts in a similar test.  In test 6 the displacement was measured after

each impact and the telescopic bars did not affect the deformations.  While the effect of the

monitoring frame was intentionally minimized, it is possible that the combined resistance of the

nine telescopic bars may be as much as 1 kN.  Such a small force can apparently affect the

results to a large extent in the absence of any support resistance.  Test 7 was conducted in a

similar fashion as test 6, namely with a detached monitoring frame.  Due to the larger impacts

only two drops could be accommodated by this particular specimen.

The effect of a structural coating is difficult to evaluate in a test like this.  The support resistance

of such a coating is relatively small and its effect is mainly to prevent individual blocks from

dislodging.  Test 3 shows that a support consisting of Evermine does not reduce overall
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deformations, but it does enable larger deformations to occur before failure is deemed to have

taken place.  Compared with fibre reinforced shotcrete, it is clear that the support system

consisting of Evermine and lacing (test 2) lacks initial stiffness, although its final performance is

similar to that of shotcrete without lacing (tests 8 and 11).  Another consideration in this respect

is the effect of ejected blocks on the entire system.  While a structural membrane may prevent

individual blocks from being ejected, more energy will be contained within the system than if the

blocks had been ejected.  This may explain the difference between test 3 and test 5.  In test 3

more impact energy is absorbed by the system as no blocks are dislodged, while the results of

test 5 reflect a reduction in impact energy, which is effectively dissipated by ejected blocks.

It is difficult to estimate the critical minimum energy below which no damage is induced to the

support system.  Permanent deformations and associated damage appear to occur in all tests,

from the first drop onwards.  The minimum impact used in these tests is 1 kJ and it is therefore

concluded that the critical minimum energy must be less than this.  It is possible that the

shotcrete panels might not have been damaged by 1 kJ impacts; however this was

unfortunately not assessed.

The critical deformation for assemblies without fabric support is approximately 150 mm, while

Evermine and shotcrete allow deformations of more than 200 mm.  Both shotcrete and lacing

increase the stiffness of the system.  Although large variations, associated with differences in

individual test specimens, were observed, these trends are obvious.  Without support, stiffness

ranges from 0.04 kJ/mm to 0.33 kJ/mm.  Results with Evermine show a stiffness of 0.12 kJ/mm,

shotcrete increases the stiffness to values between 0.43 kJ/mm and 0.80 kJ/mm.  Lacing leads

to stiffness values which range from 0.9 kJ/mm to 1 kJ/mm, while the combined effects of lacing

and shotcrete result in a stiffness ranging from 0.8 kJ/mm to 5.4 kJ/mm.  By comparison, a

single tendon which is stressed to 20 tons, would only show a theoretical stiffness of 0.2 kJ/mm.

In this respect it should be recalled that only a small portion of the impact may have to be

absorbed by inelastic deformations in the fabric support, and actual stiffness values are thus

proportionally smaller.  The above evaluation therefore only serves to identify relative changes

between different types of support.

3.2 Laboratory evaluations

3.2.1 Introduction / Methodology

In order to evaluate individual components of typical tunnel support systems, a laboratory

testing programme involving repeated loading was designed.  The purpose of this testing
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programme was to determine the contribution of each component with respect to strength,

stiffness and yielding capacity.

3.2.2 Tests performed

3.2.2.1 Tendons

Initial laboratory work was carried out in the Terra-Tek rapid loading machine (see Fig. 3.8), in

order to establish the effect of repeated loading on individual support units.  Two types of

loading were used, namely quasi-static and cyclic dynamic loading on three different types of

rock tendons.  Re-bar, smooth bar and wire cable specimens were stretched until failure (see

Fig 3.9.).  These tendons were anchored by clamping jaws, spaced at 1 m, so that an effective

tendon length of 1 m was obtained.  Varying loading rates from 1 mm/sec to 20 mm/sec were

used and the results are presented here.  Note that the tendons were not grouted and that the

loading velocities were relatively low when compared to expected maximum rockburst

velocities.  However, these velocities are within the range of commonly measured PPVs.

Deformation curves for the re-bar show that the yield range and the peak loads are very similar

in all tests (see Fig 3.10).  A stiffer elastic response can be observed with the 20 mm pulse

loading, something which is not evident with the 10 mm pulse.  The indicated yield range

associated with the pulse loading may be larger than the actual yielding range.  As the forced

deformations related to the final pulse were recorded in total, the exact deformation at which

failure occured during this last pulse may not be reflected.  The actual yield range is obviously

limited by the deformation at which failure takes place.
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Re bar

Servo-
controller

Figure 3.8.  Servo controller with 2000 kN capacity.

Figure 3.9.  Various types of elements to be tested and mechanism of locking jaw.
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Figure 3.10.  An example of re-bar testing results

Figure 3.11 shows an example of various deformation curves for smooth bar, the graph

indicates an almost similar response for all loading conditions.  No effect of pulse loading can

be observed from these results.  The final failure of both support units is controlled by necking,

which results in a planar surface in the smooth bar and a more irregular surface in the re-bar

(see Fig. 3.12).  The maximum elongation of the re-bar was approximately 15 per cent while the

maximum elongation of smooth bar was approximately 20 per cent.  These values represent a

considerable yielding range and hence energy absorption capability.  It was observed that

yielding occurred over the full tendon length of all specimens, as a considerable reduction in

diameter was evident at the end of each test.  It is clear that this yielding range is directly

associated with the mechanical properties of the steel used in these tendons.  The choice of an

appropriate steel is therefore crucial to the performance of tendons, especially in rock burst

conditions.  It is highly recommended that this issue be thoroughly investigated in order to

design more efficient rock tendons.

The re-bar has a 20 per cent higher strength than the smooth bar.  However, because of a

smaller yielding range, the energy absorption capacity of re-bar is slightly less than that of

smooth bar (see Figs. 3.15 and 3.16).

Re bar (quasi static)

Re-bar (10 mm )

Re-bar (20 mm)
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Figure 3.11.  Deformation curve of the smooth bar.

Smooth bar
failure

Re bar failure

Figure 3.12.  Failure mechanisms of smooth and re-bars.

Results from tension tests on wire cable do not demonstrate an effect of the type of loading

applied either (see Fig. 3.13).  The failure mechanism of the cable is associated with

consecutive failure of individual strands of wire (see Fig. 3.14).  This type of failure is induced by

the clamping jaws, which effectively cut the strands at the circumference of the cable.  The

yielding range of the wire cable is noticeably less than that of the re-bar and smooth bar.

Although this is most likely associated with the cutting effects of the jaws, it may nevertheless

be quite representative of underground conditions as well.

Smooth bar (quasi static)

Smooth bar (10 mm)

Smooth bar (20 mm)
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Figure 3.13.  Deformation curve of the wire cable.

Failed wires

Figure 3.14.  Failure mechanisms of wire cable.
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The energy absorption capacity of each support unit is graphically expressed as well.

Deformation curves of the re-bar show that the values range from 12.7 kJ to 16.1 kJ (see

Fig. 3.15).  Again, no correlation between loading rate and results could be observed.

Figure 3.15.  Energy absorption capabilities of re-bar under different types of
loadings.

Deformation curves of the smooth bar show energy absorption capacities of about 17.1 kJ,

17.9 kJ and 18.8 kJ, for quasi-static, 10 mm pulse and 20 mm pulse dynamic loading conditions

respectively (see Fig. 3.16).
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Figure 3.16.   Energy absorption capabilities of smooth bar under different types
of loadings.

More results of tests with re-bar and smooth bar are shown in Figures 3.17 to 3.20.  These

results indicate more clearly that the variation in results is not associated with the loading rate,

but most likely with variations in the test specimens themselves.  The fact that the spread in

results is larger for the re-bar than for the smooth bar may be explained from a larger sensitivity

to variations in the manufacturing process.

 The results can be summarized as follows:

• The type of loading appears to have no noticeable effect on energy absorption capacity in

steel tendons at the loading rates applied (up to 20 mm/s).

• Differences between individual specimens should be attributed to the manufacturing

process.

• Stranded wire cables are approximately 100 per cent stronger than solid tendons of similar

diameter, but their yielding range is about 50 per cent smaller.

• Re-bar is approximately 20 per cent stronger than smooth bar, but has a smaller energy

absorption capacity due to a reduced yielding range.
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Figure 3.17.  Deformation curves for all re-bars tested.

 

Figure 3.18.  Deformation curves for all smooth bars tested.



SIMRAC PROJECT

GAP 616

32

 

Figure 3.19. Cumulative energy absorbed (kJ) by all re-bars tested.

 

 

Figure 3.20. Cumulative energy absorbed (kJ) by all smooth bars tested.
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3.2.2.2 Mesh

 Testing of diamond and welded mesh was performed with a special testing frame in which a

mesh panel could be clamped.  The mesh consisted of mild steel with a diameter of 3.15 mm

spaced at 100 mm, the dimensions of the testing frame being 600 mm x 600 mm.  Varying

loading rates, ranging from quasi-static to 2 m/s, were applied by the Terra-Tek to load the

panel in the middle, in the direction perpendicular to the panel.  The results are shown in

Figures 3.21 to 3.24.

 

Figure 3.21.  Deformation curves for all diamond meshes tested.

 The diamond mesh is about three times stronger than the welded mesh, and its energy

absorption capacity is about 75 per cent more.  In the case of the welded mesh, stress

concentrations at weld points limit the overall performance, whereas, in the case of the diamond

mesh, deformations can follow a more natural course.

The variability in results with welded mesh is also associated with the presence of random

stress concentrations and the limited potential for stress redistribution.  The diamond mesh does

not demonstrate this variability and is consistently stronger and more yieldable.

Test 10

Test 15
Test 11

Test 13

Test 14

Test 16Test 12
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Figure 3.22. Cumulative energy absorbed in all diamond meshes tested.

Figure 3.23.  Deformation curves for all welded meshes tested.

Test 10

Test 11

Test 16

Test 15

Test 12

Test 13

Test 14

Test 5

Test 3

Test 1
Test 4

Test 2
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Figure 3.24. Cumulative energy absorbed in all welded meshes tested.

 

Loading rate variations from quasi-static to 2 m/s do not appear to affect the energy absorption

capacity in a steel mesh.

 Ultimate loads, in a panel of 0.4 m2, can reach up to 20 kN, but are typically much lower in

welded mesh.

It should be noted that in all tests on the welded mesh, the mesh was clamped near its four

corners only.  A similar clamping arrangement resulted in excessive deformations in the

diamond mesh, where a maximum load was not reached after 500 mm of deformation.  All

subsequent tests on diamond mesh (shown in Fig. 3.21) were therefore conducted on mesh

which was clamped along the full length of all its sides.  While it was obvious that the diamond

mesh is less stiff than the welded mesh, such behaviour is unfortunately not reflected in the

results shown in Figures 3.21 and 3.23.

3.2.2.3 Lacing

 Various types of lacing were tested in the same testing frame used for the mesh.  Used lacing

was obtained from Kloof Gold Mine and new lacing was obtained from Haggie Rand.  Clamping

of the lacing was done either by two jaws at each end of a length of lacing, or by using typical

Test 1

Test 2

Test 3

Test 5

Test 4
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cable friction clamps.  Varying loading rates were used to load each cable in the middle and

perpendicular to its axial direction.

 The performance of the lacing is strongly controlled by the clamping device, e.g. the use of jaws

results in stress concentrations at individual strands rather than a homogenous stress

distribution along the lacing.  This leads to a reduced performance as individual strands fail

prematurely.  On the other hand, the use of friction cable clamps result in a maximum clamping

force which is far lower than the tensile strength of the lacing; sliding of the cable through these

clamps could be observed at relatively low loads.  (Note: Similar behaviour may be expected in

underground applications).

 The results are highly variable, as can be appreciated from the following Figures 3.25 to 3.27.

Figure 3.25.  Lacing tested with clamping jaws.

 

Figure 3.26.  Lacing tested with a single friction clamping device.
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Figure 3.27.  Lacing tested with three friction clamping devices.

 

The peak resistance forces obtained in these laboratory tests range from 35kN to 120kN.  This

was achieved under controlled conditions and across a relatively small span of 600mm.  The

displacements associated with friction clamping devices were extremely large as peak loads

were only obtained at displacements in excess of 300mm.  Such behaviour reflects a very soft

support response.  The use of clamping jaws leads to a stiffer response, but a more brittle post

failure behaviour is observed in this case.  Lacing typically acts as a passive support unit, and

relatively large deformations are generally required before lacing units are loaded.  If lacing

elements could be used more efficiently their support capacity could be improved substantially.

Two aspects need to be addressed in this respect.  The first is the initial interaction between the

lacing and the rock mass.  A minimum amount of rock mass dilation should meet with

immediate lacing resistance.  The second aspect deals with the limiting capacity of the clamping

devices used.  Sliding of the lacing in the friction clamp has been observed to occur at stress

levels which are far below the tensile strength of the lacing.  Jaw clamps induce brittle tendon

failure at relatively low stress levels, although they allow a stiffer initial response.  It appears that

the performance of lacing support could be substantially improved if more efficient clamping

devices, inducing yield at higher stress levels, could be identified.  It is strongly recommended

that further research be conducted for this purpose.  In addition it is recommended that the

underground performance of lacing elements be investigated, in order to identify potential in situ

problems with the lack of efficiency of such elements.
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4 Preliminary design recommendations

Under rockburst conditions tendons should be able to accommodate large shear and axial

deformations (by yield).  In the case of a relatively massive rock mass, in which only large

blocks can be dislodged, tendons can be designed according to the original concept of block

retainment.  The function of fabric support may be limited to that of a safety net in such case.

The presence of bedding planes in the hangingwall needs to be considered as they may cause

shearing of tendons.

In the case of a relatively fragmented rock mass, the effect of tendons is reduced, as

deformations of the rock mass will be concentrated in the areas in between the tendons.

Bulking and unravelling of the local rock mass may lead to overall instability.  This situation

requires an appropriate fabric support.  Relatively stiff fabric such as shotcrete appears to give

the best results, as deformations are limited to minimum values.  Under more demanding

conditions, additional yieldability may be obtained from fibre reinforcement and lacing.  Other

support systems such as mesh and lacing do not provide similar initial stiffness, and may,

therefore, cause initial instability under relatively low loading conditions.  Nevertheless, mesh

and lacing can provide resistance against large deformations, which may prevent total

instability.

The results from the testing programme demonstrate the capacity of various support units and

systems.  The drop tests showed the superior performance of reinforced shotcrete and lacing in

providing support resistance.  The effect of a flexible membrane such as Evermine was not

directly reflected in these results, as its influence on overall resistance is relatively small.

However, with the use of Evermine, larger deformations could be accommodated before local

failure occurred.  As the capacity of lacing was found to be strongly affected by the clamping

devices used, it is strongly recommended that the efficiency of lacing be thoroughly

investigated.  The lack of initial stiffness of lacing systems should also be addressed; it might be

possible to develop more efficient systems by appropriate pre-stressing and curving of the

lacing.  Welded mesh appears to be less suitable than diamond mesh under rock burst

conditions.  Compared to diamond mesh, both its strength and its yield range are small.  Mesh

is typically used as a passive support and is therefore not truly integrated with the support

system.  Its relative weakness, compared to tendons, lacing and shotcrete render it less suitable

in highly fragmented rock under rock burst conditions.  Mesh should be regarded as acting

independently of the support system in a similar fashion to a safety net.  Individual blocks may

be contained by the mesh, but large amounts of fragmented rock may require improved support

under rock burst conditions.
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The demand on any support system is obviously determined by the loading conditions.  As has

been discussed previously, these loading conditions can vary largely and are strongly controlled

by local seismic activity.  In addition, the local rock mass conditions and stress environment

largely determine the extent of the fragmentation of the rock mass around the excavation.  The

fragmentation of the rock mass in turn largely determines the requirements for areal support,

while the potential for seismic excitation determines the required energy absorption capacity of

the rock tendons.  As a rough guideline the following table contains support recommendations

for various combinations of seismic excitation and rock mass fragmentation:

Table  4.1.  Support recommendations.

       Intensity of frag-
                mentation

Ground motion

Low Medium High

Low Pinning of key

blocks

Pinning of key

blocks plus a safety

net

Adequate anchorage plus

complete areal coverage

with active fabric support

(shotcrete or Evermine)

Moderate Pinning of key

blocks with

yielding tendons

Pinning of key

blocks with yielding

tendons plus active

fabric support

(shotcrete or

membrane)

Adequate anchorage with

yielding tendons plus

complete areal coverage

with active and competent

fabric support (reinforced

shotcrete and lacing)

High Pinning of key

blocks with

yielding tendons

of sufficient

capacity plus a

“safety net”

Pinning of key

blocks with yielding

tendons of sufficient

capacity plus a

competent and

active fabric support

(reinforced

shotcrete, lacing and

membrane)

Either a system with high

capacity tendons and

reinforced shotcrete plus

lacing or an alternative in

the form of a competent

shell.
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5 Detailed underground evaluation

5.1 Site selection / history

A site at Tau Tona Mine was instrumented and monitored during this project.  Two seismically

active faults are located near the site and repeated dynamic loading of the support system was

therefore expected.  Seismic data recorded by the mine’s seismic network was collected around

the monitoring site. A hypocentral map of the seismic events recorded by the mine network

during the period of observation is shown in Figure 5.1.

Site PositionSite Position

Figure 5.1.  Mine layout, geological structures and seismicity around the site.
Data from the Rock Mechanics Department, Tau Tona Gold Mine.
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It can be seen from Figure 5.1, that the majority of the seismic events are associated with the

active working faces and the geological weaknesses. The overall seismic activity in this area

was found to be relatively high. The monitored area was also modelled to assess the stress

environment from the virgin stress through the subsequent mining steps.  To improve the stress

conditions a de-stressing slot was mined out at 5 m above the tunnel.  Figure 5.2 shows a plan

view of the tunnel and the de-stressing slot and the position of the monitoring instrumentation is

also indicated.
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Figure 5.2.  A plan view of the monitoring site and de-stressing slot.
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5.2 Evaluation of support system performance

5.2.1 General

One of the objectives of this project was to evaluate the support performance along a monitored

section on 100 Level in the 3c cross-cut south.  Monitoring was done with the aid of two strain

gauged hollow bars, various geophones, closure measurements and visual observations.

Owing to the expected direction of the major principal stress, dilatation was expected to occur in

the sidewalls of the excavation.  To obtain quantitative data on the forces induced by these

dilatational movements, two instrumented tendons were end-grouted with resin and

subsequently pre-tensioned.  The tendons were located at the monitoring site as indicated in

Figure 5.2.

The tendons consisted of smooth hollow bar with a length of 2.5 m with three pairs of strain

gauges evenly distributed along their length to ensure reliable data collection.  Each tendon was

installed in a hole drilled through the existing integrated support comprising Shepherd Crooks,

wire mesh, rope lacing and shotcrete.

As illustrated in Figure 5.3, each instrumented tendon was incorporated into an integrated

monitoring system that allowed for both dynamic and quasi-static measurements.

Figure 5.3.  Instrumented rock tendons.
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The stress history was analysed and related to overall conditions in the subject tunnel, which

was supported in accordance with Tau Tona Mine support standards.

The monitored area was modelled to assess the changing stresses imposed on the tunnel.  The

tunnel was developed in the down-dip abutment of a longwall and subsequently overstoped by

a 20 m wide de-stressing slot 5 m in the hangingwall as schematically illustrated in Figure 5.4.

Figure 5.4. Layout of excavations and position of de-stressing slot.

In calculating principal stresses, a k ratio of 0.5 was assumed and the slot geometry was taken

into account for a three-dimensional stress distribution.  Although the numerical simulation was

done with DIGS, which is a two-dimensional plane strain boundary element method, the out of

plane dimension of the de-stressing slot was indirectly included by proportional reduction of the

stress distribution onto the face of the slot.

The orebody dips at approximately 25 degrees and a fault is present - dipping at about

45 degrees, as illustrated in Figure 5.4.  The double arrows indicate the position of the strain-

gauged bar.  The de-stressing off-reef slot, as shown in Figures 5.2 and 5.4, was developed

away from the fault with advance rates ranging from about 7 m to 14 m per month.
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Seven mining steps were used in the numerical simulation of the slot cutting above the

monitored tunnel.  It was found that the monitored tunnel experienced a theoretical change in

field stress from approximately 85 MPa to about 121 MPa.

The location of the strain gauged bars is indicated in Figures 5.2 and 5.4 and is referred to as

monitoring site in Figure 5.2.  Position 2 is located approximately 20 m west of this monitoring

site, while position 3 is located approximately 6 m east of it.

Simulated principal stresses representing the changing stresses are listed in Table 5.1 for three

benchmarks.  These benchmarks are located at the following positions:

• Position 1: furthest away from the tunnel face which is being developed to the east.

• Position 2: 20 m east of position 1.

• Position 3: 26 m east of position 2, and 6 m east of the strain gauged bars

Table 5.1.  Stress history for monitoring positions along 100-3c cross-cut south.

Benchmark Mining

Step 1

Mining

Step 2

Mining

Step 3

Mining

Step 4

Mining

Step 5

Mining

Step 6

Mining

Step 7

Principal stress history, MPa

1 94 112 121 40 40 40 40

2 88 97 99 116 103 40 40

3 85 91 92 94 97 103 118

5.2.2 Observations and monitoring

Closure measurements at position 1 showed insignificant deformations of the tunnel walls.

Between October 2000 and January 2001:

• No sidewall closure was observed.

• Average hangingwall – footwall closure of only 2 mm was recorded.
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Such small rock movement did not cause any notable damage to the supported tunnel as

illustrated in Figure 5.5.  Measuring points on the hangingwall and sidewall of the excavation

can be seen in the photo as well.

The presence of the de-stressing slot above and good quality support installed prior to the

cutting of the slot that started in June 2000, are responsible for the relatively good tunnel

condition.

Figure 5.5.  Overall tunnel condition around monitoring position 1. (October
2000).

The monitoring position 2 which is located 20 m east of position 1 in the direction of the tunnel

end, showed slightly larger closure.  Between October 2000 and January 2001:

• About 20 mm sidewall to sidewall closure was measured.

• About 5 mm hangingwall to footwall closure was measured.

The way sidewall to sidewall and hangingwall to footwall closure measurements were taken is

illustrated in Figures 5.6 and 5.7, respectively.
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Figure 5.6.  Overall tunnel condition around the monitoring position 2.

.

Figure 5.7.  Measuring hangingwall – footwall closure at monitoring position 2.
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The monitoring position 3, which was situated about 46 m east of position 1 and 6 m east of the

strain gauged bars, is the only one of three monitoring positions which was not located under

the de-stressing slot during the monitoring period.  Again, no significant closures were

measured at this position:

• Approximately 15 mm sidewall to sidewall closure was measured.

• Approximately 5 mm hangingwall to footwall closure was measured.

The closure measurements were done with telescopic bars.  Although the accuracy of such

measurements should be in the order of millimetres, it is conceivable that due to the roughness

of the tunnel walls, a reduced accuracy may have been obtained.  Therefore, the inelastic

deformations of the tunnel walls were assumed to be negligible for all practical purposes during

the monitoring period.

According to the numerical simulations the stress changes during the monitoring period were as

follows:

Section 1 No stress change

Section 2 6 MPa drop in principal stress

Section 3 15 MPa increase in principal stress (almost vertical -dipping at 860)

The overall good condition of the excavation in the immediate vicinity of position 3 is shown in

Figure 5.8.  No visible damage to the excavation or support  (including a relatively brittle

shotcrete) was observed.

Figure 5.8. Section of monitored excavation in proximity of position 3.



SIMRAC PROJECT

GAP 616

48

More detailed pictures of a supported hangingwall in this section are shown in Figures 5.9 and

5.10.

It should be noted that despite the generally poor rock conditions the hangingwall appears to be

stable and well controlled by the integrated support system as will be described later.

Figure 5.9.  Close-up of the hangingwall condition adjacent to position 3.

Figure 5.10.  Overall stability of hangingwall in the vicinity of position 3.
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5.2.3 Support used in the monitored area of the 100-3c-x/c south

Primary support in the monitored excavation (with dimensions of approximately 3.0 m x 3.0 m)

comprised seven smooth bar 16 mm diameter, full column grouted tendons for each row of

support.  Maximum spacing between rows was about 1.5 metres (1.5 m square pattern).  Two of

the support tendons were installed into the top corners of the excavation at approximately 450.

In each row of support two tendons (one per sidewall) were installed below the grade line

oriented downwards at about 300.

In addition, diamond wire mesh and 10 mm – 12 mm diameter rope lacing was incorporated into

the support system as shown in Figure 5.11.  It also illustrates a layer (from about 10 to 75 mm

thick in places) of shotcrete.  Shotcrete was applied in two phases.  The second layer of

shotcrete was applied after the installation of the tendons, mesh and rope lacing support.

Figure 5.11.  Wire mesh, rope lacing and shotcrete integrated support.

To further ensure that the monitored cross-cut remained stable despite expected stress

changes and seismicity, additional support in the form of bird-caged, full column grouted cable

anchors was installed.  The 25 ton strands, with diameter of about 16 mm were pre-stressed to

a maximum load of about 10 tons.  The tendons were full column grouted.  The cable anchors

were 4 m long with effective grouted length of about 3.8 m.  They were installed at 3 m spacing

in the side and hangingwalls.  An example of such a tendon together with wire mesh and lacing

is illustrated in Figure 5.12.
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Figure 5.12.  Pre-tensioned and post-grouted cable anchor.

It should be noted that the overall condition of the 100-3c cross-cut south, along the monitored

length schematically illustrated in Figure 5.4, and for the calculated stress history as given in

Table 5.1, appears to be well controlled by the integrated support system comprising full column

grouted smooth bar Shepherd’s Crooks, 4 m cable anchors, wire mesh, rope lacing and

shotcrete.  Despite the presence of relatively high stresses, both the general condition of the

excavation as shown in Figure 5.13, as well as the condition of a relatively brittle shotcrete

layer, which is shown in Figure 5.14, appear very stable.

It should be noted that two similar tunnel drives, which were excavated previously and further

back from the current longwall face, were damaged in previous rockbursts and inaccessible.

Figure 5.13.  General condition of the hangingwall in the 100-3c cross-cut south.
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Figure 5.14.  A close-up of the hangingwall condition.

Figure 5.15 shows the only local support failure, which has been observed in this tunnel.  The

location is however quite far away from the monitoring area and the failure appears to be

associated with stress concentrations due to the presence of a pillar above the tunnel (see

Figure 5.4).

Figure 5.15.  Rehabilitated area, exposing a brow.
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5.3 Underground monitoring results

5.3.1. Quasi-static and dynamic monitoring

The monitoring programme collected quasi-static and dynamic data, which relates PPVs and

deformation to support behaviour.  The tunnel support system consisted of a primary set of

Shepherd Crooks and an initial layer of shotcrete, complemented by a secondary system

consisting of 3.8 m end-anchored, stranded cables, which were pre -stressed, mesh, lacing and

a second layer of shotcrete covering the mesh.

The instrumentation consisted of two geophones and specially designed strain gauged tendons

installed in boreholes in both sidewalls of the tunnel. One geophone was placed on the sidewall

and the other one on the hangingwall of the tunnel.  Each tendon had three pairs of strain

gauges located along their length, one at the beginning, one at the middle and one at the end of

each tendon.  A cross-sectional view of the tunnel with the position of the instrumentation is

shown in Figure 5.16.

GHW

GSW

T1 T2

S1 S2 S3 S4 S5 S6

GHW

GSW

T1 T2

S1 S2 S3 S4 S5 S6

Figure 5.16.  A cross-sectional view of the tunnel and the position of the
monitoring instrumentation; GSW and GHW are geophones, S1 to S6 are
strain gauges and T1 and T2 are tendons.

The site was monitored from 26 of July until 29 of December 2000.  During the monitoring

period 2684 seismic events were recorded.  The PPVs of these events are shown in

Figure 5.17.
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The PPVs shown in Figure 5.17 ranged between 0.01 mm/s and 67 mm/s.  Both sidewall and

the hangingwall show similar behaviour in the PPVs.  However, most of the higher PPV values

were recorded on the sidewall.

Figure 5.17.  PPVs recorded on the hangingwall and the sidewall of the tunnel.

The strain measured in both tunnel walls as indicated by the strain gauges in the tendons is

shown in Figures 5.18 and 5.19.  The strain is plotted as a function of the advance of the de-

stressing slot 5 m above the tunnel.
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Figure 5.18.  The strain at site T1 as the face of the de-stressing slot progressed
towards the instrumentation.
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Site  T 2
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Figure 5.19.  The strain at site T2 as the face of the de-stressing slot progressed
towards the instrumentation.

The different pattern and level of the strain clearly indicated in Figures 5.18 and 5.19 may be

due to the asymmetric loading of the tunnel associated with the geometry of the de-stressing

slot and the monitored tunnel. The T1 site has experienced higher strain then site T2.

It is interesting to note that as the tunnel was overstoped and the vertical stress reduced, the

strain in the tendon reverted to zero.

There was no permanent deformation in the tendon due to repeated, though small, dynamic

loadings.

The dynamic strain induced during the propagation of the seismic waves through the site was

inferred from the readings from the strain gauges.  This strain was compared to the PPVs

recorded on the hangingwall to estimate a trend. The results are shown in Figures 5.20 and

5.21.

It is clearly indicated in Figures 5.20 and 5.21 that small PPVs close and below the noise level,

0.3 mm/s, have no correlation with strain changes.  A linear relationship between strain and

PPV was found for PPV values above 3 mm/s at both sidewalls. Extrapolating this relationship

and assuming a uniform distribution of velocities and deformations, relevant velocities may be

determined.  Assuming a tendon yield strain of 10-3, it follows that velocities, which induce

higher strains, are associated with irrecoverable deformations.
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Strain vs. PPVs at site T1
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Figure 5.20.  The dynamic strain measured in site T1 as function of the PPVs
measured on the hangingwall.
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Figure 5.21.  The dynamic strain measured in site T2 as function of the PPVs.
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A threshold PPV, beyond which yielding strains are induced in the tendon, can be inferred from
Figures 5.20 and 5.21 for both monitoring sites. Threshold velocities of 0.8 m/s at site T1 and
0.6 m/s at site T2 appear to be reasonable estimates.

The relationship between the PPVs and the rock-mass strain is assumed to be associated with
the volume of rockmass restrained by the tendon. In highly fractured and damaged rock this
volume may be relatively large, while in solid rock no restraining function is required from the
tendons. The threshold velocity is therefore indicative of the local rockmass damage and tendon
action. The restrained rock mass can be derived from the principle of energy conservation:

δyt FMv
2
1

2
1 2 =

where tv  is the threshold velocity

yF  is yield force

δ  is the deformation of the tendon

l is the length of the tendon and

    M is the restrained rock mass

Permanent strains are induced beyond the threshold velocity and can be quantified as:

δyt FvvM
2
1

)(
2
1 2 =−

where v  is the peak particle velocity

Relationships between PPV’s and permanent strains are graphically illustrated in Figure 5.22 for
various threshold velocities, using estimated tendon properties.
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Figure 5.22  Relationship between velocities and non recoverable strain

Velocities in excess of 0.8 m/s were found to be associated with damage at the wall of an
underground tunnel in a simulated rockburst experiment (Milev et al. 2001). This value is
represented in Figure 5.22 as well.  Although this observation is strictly related to the ejection of
rock, it may nevertheless be of use in quantifying the relationship between velocities and
induced deformations.
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6 Impact test model

6.1 Parameter study on support requirements for impact
loading

A model, describing the impact tests, is presented here.  This model makes use of a minimum

amount of parameters, namely the maximum impact force, impact duration and the resisting

force.  As the impact force and duration are directly related to the system stiffness (i.e. rock

mass, tendons, fabric and lacing), these parameters will change from system to system.  The

resisting force is related to the support resistance and an internal rock mass component.

While these parameters may vary between subsequent impacts, due to induced damage and

deformation, they are assumed to remain constant during a single impact.  In this way, a

particular system can be calibrated by matching monitored deformations and or velocities with

model predictions.  The model can thus be used for improved analyses of the impact tests.  It

should be emphasized here that the modelled deformations are permanent, non recoverable

deformations associated with a single impact.  The effect of multiple impacts is cumulative and

reflects the effect of repeated dynamic loading due to seismicity in underground applications.

The impact of the drop weight on the artificial rock mass induces a dynamic force.  By

quantifying this force, as well as the resisting forces, it is possible to determine the associated

velocities and displacements.

In order to derive suitable expressions, it is necessary to make certain simplifying assumptions

about the impact forces and the resisting forces.  The following assumptions are used in the

impact model:

• Rise and decline of the impact force are linear and equivalent.

• Different impact magnitudes cause congruent (self-similar) impact force-time relationships,

therefore the ratio 
dt

tdF )(
 is constant (C ).                                             (6.1)

• The resisting force is made up of an internal shear component and a support force

component.
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• The impact can be related to the force amplitude F̂  by:

                                   TFmv ˆ
2
1= ,                                                                                     (6.2)

                                  where by T  is the duration of the pulse.

Figure 6.1 shows the assumed relationship between the impact force and time.  In this figure,

the resisting force is indicated by *F .  This resisting force consists of some internal frictional

resistance and a support resistance.  Both of these components may change with increasing

deformation and increasing damage, but it is assumed that they are constant during one single

impact.  Positive values of *)( FtF −  are conducive to relative movements between the

potential “wedge” and the surrounding material. These movements can be computed from the

impact by using (6.1) and (6.2) in combination with Figure 6.1.  The following additional

relationships can be found:

                                                             
2

ˆ CT
mvCF == ;

                                                              
C

F

C

mv
T

ˆ2
2 ==                                                       (6.3)
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Figure 6.1.  Relationship between the impact force, resisting force, and time.

Assumed impulse and resisting force
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The force is expressed as follows:

                                       CttF =)(  for 
2
T

t ≤

                                        )
2

(ˆ)(
T

tCFtF −−=  for Tt
T ≤≤
2

                                          0)( =tF  for Tt ≥

If *ˆ FF ≥ , the following conditions apply as well:

                                         
C
F

F

TF

F

FTT
tA

***

ˆ2
)

ˆ
1(

22
==−−= ;

                                          
C
F

T
F

FT

F

FTT
tB

***

)ˆ2(
2

)ˆ1(
22

−=−=−+= ;

                                           
C

F

F

CT

F

F

F

F
TtC 24

)ˆ42

ˆ
(

*

*

2*

* +=+=

Associated velocities can now be computed by integration.  A mass ,M  representing the

potentially unstable region, has to be identified so that the acceleration induced by the impact

force can be quantified.  The relevant velocity for this particular problem is thus:

                                            ∫
−=

M

FtF
tv

*)(
)(

At A, the velocity is zero;

                                           0=Av ;

From A to 
2
T

, the velocity can be expressed by:

                                            
M

tC
tv

2
)(

)(
2*

* = ,

                                            where by *t  is the time from At .
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At 
2
T

t = , 





−=

F

FT
t ˆ1

2

*
*  and the velocity is:

                                           
( )






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From 
2
T

 to B, the velocity can be expressed by:

                                           
M
tC

t
M

FF

F

F
M

CT
tv

2
)()ˆ(

ˆ
1

8
)(

2*
*

*2*2
* −−+





−=

                                            where by *t  is the time from 
2
T

.

At Bt = , 





−=

F

FT
t ˆ1

2

*
* and the velocity is:

                                           
( )
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
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From B to T, the velocity can be expressed by:

                                           
M
tC

F

F
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CT
tv

2
)(

ˆ1
4

)(
2*2*2

* −


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                                            where by *t  is the time from B.

At Tt = , 





=

F
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*
*  and the velocity is thus:
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From T to C, the velocity can be expressed by:
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At Ct = , the velocity is zero and 
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Figure 6.2 shows the relationship between velocity and time for an example with the following

parameters:        sT 1= ; kgM 5000= ; NF 100ˆ = ; NF 40* =
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Figure 6.2.  Relationship between impulse velocity and time for given parameters.

The permanent displacements associated with a single impulse can be derived from further

integration:

At A, the displacement is zero, as the resisting force has not yet been exceeded;

                                                    0)( =As ;

From A to 
2
T

; the displacements are expressed as:

Impulse velocity distribution
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From B to T, the displacements can be expressed by:
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The last expression indicates the permanent deformation associated with a single impact.  This

parameter has been recorded for all tests and the model can thus be calibrated.

Equation (6.4) is shown in Figure 6.3 in graphical form for selected parameters.
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Figure 6.3.  Relationship between impulse displacement and time for given
parameters.

It should be emphasised that the model can be calibrated for a single impact only.  Parameters

such as internal resistance and support resistance may not remain constant, but could be

affected by increasing deformations and associated damage.

In the drop test rig, the tendons can be assumed to be rigid for all practical purposes.  During

the impact, a certain percentage of the impact energy is used to mobilise boundaries between

individual bricks and to accelerate the bottom layer of bricks.  Part of the impact energy is

expected to be lost in elastic deformation, local crushing and other, non-specified deformation

processes.  Equations (6.3) are therefore not strictly valid, but serve as an indication.

6.2 Discussion and Conclusions

Using the model described in Section 6.1, parameters can be calibrated for a particular impact.

These model parameters must be expected to vary with increasing deformation and damage.  If

all parameters remained constant, a linear relationship would be obtained between deformation

and applied energy.  The fact that these relationships are typically non-linear (see Figure 3.6

and Figure 3.7) indicates variations in certain parameters.  A reduction in internal resistance for

instance would be associated with an exponential relationship between deformation and

cumulative energy, while increasing support resistance would have the opposite effect.
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Figure 6.4.  Model of impact testing.

The sketch shown in Figure 6.4 allows for visualization of the model and its controlling

parameters. The relationship between impact energy and displacements is not necessarily

linear such as in Figure 6.1.  The shape of the impulse controls to a large extent the theoretical

relationship between impact magnitude and the resulting displacements.  In addition, the actual

driving force is that force which exceeds the combined resisting forces in the system.

Therefore, the difference between impact force and resisting force has to be considered and not

just the impact force itself.  This is an important issue, as the quantification of cumulative energy

is directly affected. In order to avoid these complications, all tests were executed with constant

impact magnitudes; by dropping the same weight from the same height in each individual test.

In the proposed model, the shape of the impact pulse was assumed to be self-similar for

different impact magnitudes, while a triangular pulse shape was assumed as well.  As can be

appreciated from the derived expressions, the relationship between displacements (6.4) and

impact magnitude becomes rather complicated and depends on parameters such as restraining

force and rise time.  In order to obtain simpler relationships, to allow a more direct comparison

between displacements and impact energy, consider a pulse with zero rise time.  The

rectangular shape of this pulse is associated with a constant force and results in the following

expression for the ultimate displacement:
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As the impulse can be related to the impact force by:

                                                       TFmv ˆ=                                                                            (6.6)

and the velocity can be expressed by:

                                                       ghv 2= ,                                                                         (6.7)

relationships between drop height and displacements can be established.  Two extremes are

considered here; the first one assumes a constant impulse time, while the second one assumes

a constant impact force.

If the drop height is increased by a factor a , the velocity, as well as the impact force, increase

by a factor a  (from Equations 6.6 and 6.7), if the impulse time remains constant. Inserting in

(6.5) and replacing 
*

ˆ

F

F
 by X  ( 1≥X ), it follows that the ratio between the two displacement

values is:

                                                   
XX

aXaX

−
−

2

2

                                                                         (6.8)

Relatively large values of X  would result in a relationship between drop height and

displacement which approaches linearity. However, smaller values of the ratio lead to a

relationship with varying values.  Figure 6.5 shows how the relationship between drop height

and displacement is affected by the ratio 
*

ˆ

F

F
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Figure 6.5.  Displacement magnification factors for different ratios between
impact force and resisting force with increasing drop heights.

From Figure 6.5 it is clear that the relationship between drop height and displacement is not

linear.  Depending on the ratio between impact force and resisting force, the exponent α  in the

expression:

                                                   αhCS
~=                                                                               (6.9)

can reach values in excess of 1.0 and even in excess of 2.0 for relatively low values of 
*

ˆ

F

F
.

If the impulse force were to remain constant, the ratio between the two displacement values

would be equal to the multiplication factor a  and a linear relationship would exist between drop

height and induced displacement.  If the impulse shape were not affected, both impulse time

and impulse force would increase in response to increasing impact magnitudes.  The effect

would then be anything between the two extremes described above, so that the exponent in

(6.9) would always be larger than 1.0.  Although not explicitly demonstrated, a similar behaviour

could be expected from the actual model used here.  The results from the drop tests indicated

that a large drop height has more influence on deformation than a number of small drop heights
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with equivalent total impact energy.  This observation is thus confirmed and substantiated by

the current model.

The model could be further calibrated if the impulse time were monitored.  In addition it should

be emphasized that the resisting forces would be dependant on the deformations.  Larger

deformations typically lead to a reduction in internal resistance and may have various effects on

the support forces.  Increasing deformation would for instance result in an exponential increase

in lacing resistance, while the resistance offered by a shotcrete panel will increase linearly until

a maximum is reached at relatively small deformation levels.  The deformation of tendons does

not play a role in these particular tests, but could in principle also be incorporated into the

model.  The results from the drop tests can be readily explained from the current model if these

considerations are taken into account as well.

Monitored velocities showed peak values of around 500 mm/s, while the velocities in the

example reach a maximum value of 3.5 mm/s.  The observed and modelled displacements

show a smaller difference; observations varied between 1.2 mm and 60 mm per blow and the

model predicts a value of 2.5 mm.  Model parameters can be adjusted to match these

observations by reducing the impulse time and increasing the impulse force.  In order to obtain

a hundredfold increase in velocity, it is necessary to increase the impact force by the same

amount.  Any additional reduction in impact time should be accompanied by an equivalent

additional increase in impact force in order to maintain constant velocities.  The displacements,

however, are differently affected by impact force and time.  A one thousand fold increase in

impulse force, accompanied by a hundredfold decrease in impulse time and a tenfold decrease

in affected rock mass would result in peak velocities of around 350 mm/s and maximum

displacements of around 2.5 mm/s.  An impact amplitude KNF 100ˆ =  and an impact time

sT 01.0=  result in matching values, while the impact energy is of an equivalent magnitude

(10 cm drop height).  As only test 1 has been monitored by geophones, the calibrated

parameters may be different for the other tests.  This can also be appreciated from the results

shown in Figure 3.6 and 3.7.

The support resistance of the lacing can be estimated from its elastic properties.  The lacing is

assumed to be clamped at the tendons and no initial gap between lacing and assembly is

considered.  The total lacing force can be approximated from the displacements in the centre of

the assembly as follows:

( )MNFl 112 2 −+= δ
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a displacement of for instance 100mm would thus generate a force of approximately 100 kN.

This force would balance the impact force.  The yield force of the lacing configuration could

however not be established clearly.  From the results, it appears that some variation occurs and

that yielding initiated at displacements ranging from 30 mm to 220 mm; initiation of yielding is

assumed to occur when no further stiffening of the system takes place.  Associated yield forces

would therefore range between 30 kN and 220 kN.  Fibre reinforced shotcrete can be expected

to offer a similar peak resistance.  Tests conducted by Kirsten (1992) show that similar

shotcrete panels can withstand such loads as well.  However, shotcrete would gradually lose

this capacity with increasing deformation, after its peak resistance had been reached.  The

results indicate that deformations around 50 mm may be associated with such a peak

resistance as the stiffness of the system decreases beyond this value.  As variations in the

results are relatively large, the influence of the different support systems cannot be determined

with great accuracy.  The occurrence of such large variations under controlled laboratory

conditions suggests even larger variations in underground applications.  This should obviously

be an important consideration.  The following conclusions on support effect are based on the

results of the laboratory tests:

• Lacing provides a yield support resistance ranging between 30 kN and 220 kN.

• 100 mm Shotcrete provides a peak resistance of similar magnitude (around 100 kN).

• Evermine prevents local fall-out (stability), but does not affect overall deformations.

• Shotcrete provides an immediate stiffness, while lacing needs to be deformed first.

• Without fabric support, total failure occurs when deformations exceed 150 mm.

• The use of Evermine increases the damage threshold to 200 mm.

• The use of fibre-reinforced shotcrete increases the damage threshold to 250 mm.

• Velocities of around 500 mm/s and impact forces of around 100 kN appear to be associated

with a drop height of 0.1 m.
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7 Formulation of design criteria

The performance of various support fabric components was evaluated with the drop tests.  From

those observations it is clear that the combination of shotcrete and lacing provides the most

competent fabric support.  Shotcrete increases the initial stiffness of a system while it also offers

a substantial peak resistance.  Lacing is initially less stiff, but it is able to supply a similar

resistance as the fibre-reinforced shotcrete.  Evermine and lacing appear to provide a similar

ultimate resistance as fibre-reinforced shotcrete, although the initial stiffness, associated with

shotcrete, is lacking.

The tests were conducted in a relatively fragmented, blocky, medium, which seems to be fairly

representative of fractured rock around deep level tunnels.  The results of these tests

demonstrate how such an assembly is destroyed because of support fabric failure.  It can be

argued that the support capacity of the fabric should at least match the support capacity of the

rock tendons under these circumstances.  If the fabric support fails before the tendons reach

their yield strength, tendons are not effectively employed and are in fact under-utilised.  This

consideration should be reflected in any realistic design criterion.  Rock tendons and fabric have

to be compatible in the sense that the fabric strength exceeds the yield strength of the tendons.

In order to achieve practical improvements to an existing support system, the fabric support

resistance should be increased.  The main parameter to consider in any practical situation is the

fragmentation or at least the potential for fragmentation of the tunnel walls.  Identification of

bulging between tendons would be an indication of high fragmentation and associated

unravelling.  The second parameter to consider is the magnitude of seismically induced

velocities.  Identification of seismic potential and location of seismically active structures may

assist in quantifying potential velocities.  A combination of high fragmentation and high

velocities is considered to be particularly dangerous and warrants attention in the form of

improved fabric support.

The main function of support in highly stressed tunnels in hard rock is to stabilize rock blocks.  If

these blocks are relatively large, this can be achieved by effectively pinning them.  However

when the rock is more fragmented, fabric support is required in order to provide a more uniform

support distribution.  The loads, which have to be considered, are gravitational forces and

excitations due to seismic activity.  The support is typically not required to control squeezing

conditions, as tunnels would remain open in the absence of support pressure.  Only the stability

of the fragmented skin of the tunnels needs to be considered.
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In exceptional circumstances, when extremely weak rock is encountered, squeezing conditions

may occur and support pressure will be required to ensure overall tunnel stability.  Required

support pressures may be relatively large in that case and can be quantified with a design

procedure similar to that used in soft ground conditions.

The demand on a support system in seismically excited hard rock depends mainly on the

location and magnitude of the seismic event and the volume of unstable rock (depth of

fragmentation).  As seismic events cannot be predicted, potential excitations at certain locations

have to be estimated.  Such estimates may be based on seismically active structures in the

surroundings of a particular tunnel.  Induced support forces can be derived by using empirical

relationships, which have been established for seismic activity.  A methodology for establishing

support requirements and designing fabric support was formulated in Miningtek’s Step project

Y2263, titled: “Tunnel Support Design Methodology”.  This methodology enables the matching

of support components by requiring that the combined fabric/ rock mass strength should exceed

the yield strength of the tendons.  By using this methodology minimum required tendon spacing

are initially determined for various tendons.  In the next step the fabric properties can be

determined.  As the fabric requirements are strongly related to the tendon spacing, a reduction

in tendon spacing would typically lead to a reduction in fabric requirements.  On the other hand,

a reduction in tendon spacing would obviously lead to in increase in tendon costs.  Optimum

combinations can be found for different design conditions.

From relationships such as shown in Figure 7.1, seismically induced forces on the support

system can be determined.  Figure 7.2 shows how the strength of wire mesh reinforced

shotcrete (WMRSC) is related to tendon spacing.  The yield strength and yielding range of

tendons can easily be derived from appropriate laboratory tests and a matching type can be

selected based on support requirements and fabric strength.  As Figure 7.2 shows, the strength

of the wire mesh reinforced shotcrete depends on its thickness and the panel span (=tendon

spacing). Many combinations of tendons and fabric may satisfy the imposed support

requirements, but obviously the most cost effective combination should be selected.  Figure 7.3

shows an example of a cost analysis, which can be conducted after the support requirements

have been determined.  An increase in panel strength can be obtained by reducing the panel

span and/or by increasing the panel thickness.  An increase in panel thickness results in

increased fabric costs, while a decrease in panel span is associated with denser tendon spacing

and thus increased tendon costs.  An optimum tendon spacing applicable for a particular

combination of fabric and tendon, can be derived from this analysis.  While any of these

spacings would satisfy the support requirements, only one of those is associated with a

minimum total cost.  The graphs shown here are only applicable to certain selected conditions

and support systems and serve to demonstrate the methodology.  In order to establish similar
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graphs for different applications, the methodology as described in the project report Y2263

should be used.

Table 4.1 can be used as a guideline for support requirements in seismically active regions,

while the methodology as developed in step project Y2263 can be used for actual design

purposes.

effect of seismic events
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Figure 7.1.  Relationship between distance from the seismic source and the
induced stresses in solid rock and induced forces (volume of 1 cubic
metre) for various magnitudes.



SIMRAC PROJECT

GAP 616

74

0
100
200
300
400
500
600
700
800
900

1000

0.5 1 1.5 2 2.5 3

Tendon Spacing/ Panel Span (m)

P
ea

k 
S

tr
en

g
th

 (
K

N
)

50mm 
100mm 

150mm

200mm

250mm

Figure 7.2.  Theoretical relationship between strength and span for varying
thicknesses of uniformly loaded WMRSC, based on a single
calibration test.

cost of support

0
100
200
300
400
500
600
700
800
900

1000

0 0.5 1 1.5 2

tendon spacing (m)

co
st

 (
R

/s
q

u
ar

e 
m

et
er

)

shotcrete

tendons

total

Figure 7.3.  Cost analysis graph for cone bolts and WMRSC.



SIMRAC PROJECT

GAP 616

75

8 Recommendations for future work

Testing of additional support systems and components, including tendons and alternative

support systems is recommended to complement these tests.  In order to avoid large variations

in test results, extreme care has to be given to specimen preparation, control and monitoring.

Support components should be monitored individually so that their contribution can be

evaluated directly.  While the impact tests provided valuable and practical information on the

deformation and failure mechanisms, it should, in principle, suffice to conduct static tests on

individual components.  The need for relatively large loading magnitudes may however present

a practical obstacle in such tests.

In addition it is strongly recommended that statistically relevant data be obtained from

underground sites.  The current design criteria are based on indirect and sparse information and

are likely to be inaccurate and irrelevant.  Site specific design criteria, based on local seismicity,

fragmentation and stress changes should result in more efficient use of support.  Monitoring of

local seismic activity can be done with fairly simple and cheap instruments, which are only

triggered at relatively high accelerations.

Failure of support systems in highly fragmented ground is associated with the failure of the

fabric, irrespective of the capacities of the tendons.  The influence of fabric support may

therefore be largely underestimated as it is often considered as a passive, containment support

component.  However, as has been highlighted before, fabric is most often the critical support

component in highly fragmented rock and its support resistance should ideally exceed that of

the tendons.  This is typically not the case with current support systems and it is highly

recommended that this inefficiency be addressed by research into cost effective solutions and

improved safety.

The rock mass fragmentation has been identified as the major parameter determining fabric

requirements.  While this parameter is currently not quantifiable, only estimations can be made.

It is therefore highly recommended that rock mass classification methods allow for a realistic

quantification of the fragmentation, in such a way that it represents the potential for unravelling

of a particular rock mass into an excavation such as a tunnel.

As the dynamically induced support forces are directly related to the system stiffness, there is a

large potential to reduce these forces by reducing the system stiffness.  Low fabric stiffness may

be less desirable as it quickly leads to rock mass disintegration.  However, reduced tendon

stiffness does not necessarily cause disintegration and appears to be the preferred option for

the reduction of dynamically induced support forces and associated requirements.
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By addressing this aspect of support design mayor improvements may be expected, without

increased costs.  While the reduced stiffness obviously leads to larger deformations, these

deformations may be recoverable as they are not associated with unravelling and disintegration

of the rock mass, which is typically the cause of damage and injuries.

The in situ performance of support components should be monitored.  Identification of

premature failure may prevent subsequent failure of the support system.  Tendons often

corrode or shear or may not be properly installed.  Any monitoring method or device, which

could identify such deficiencies, is highly recommended.

Alternative support systems and/or components may offer more efficient solutions in highly

fragmented rock which is subjected to seismic activity.  The most important criteria for any

support system are:

• Provide a support pressure which is as uniformly distributed as possible.

• Absorb the imposed dynamic energy.

• Keep the fragmented skin in position during seismic events.

The new Miningtek tunnel support design methodology attempts to address these issues and

requires further evaluation from additional laboratory tests and in situ monitoring.

Possible alternative support systems, which may prove to satisfy the above criteria, may be

found in structural shells, improved fabric and, possibly, weaker and/or softer tendons.

The in situ monitoring at Tau Tona mine could provide useful data in future as the site is in an

area of relatively high seismicity.  Funding would be required for data collection and

interpretation.  The costs of this exercise should be relatively low since the instruments are

already in place.  Miningtek is currently continuing the monitoring, but it is recommended that

SIMRAC considers this in its 2001 budget.
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Appendix A
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Figure A.1.  Preparation of bricks assembly.

Figure A.2.  Preparation of brick assembly.

 

Figure A.3.  Brick assembly completed.

Figure A.4.  Ready for testing.
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Figure A.5.  Ready for testing.

Figure A.6.  Evermine and lacing 50 cm. drops.

Figure A.7.  Evermine and lacing 50 cm. drops.

Figure A.8.  Evermine and lacing 50 cm drops.
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Figure A.9.  Evermine and lacing 50 cm. drops.

Figure A.10.  Evermine and lacing 50 cm. drops.

Figure A.11.  Evermine and lacing 50 cm. drops.

Figure A.12.  Evermine and lacing 50 cm. drops.
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Figure A.13.  Evermine and lacing 50 cm. drops.

 

Figure A.14.  Evermine and lacing 50 cm. drops.

Figure A.15.  Evermine and lacing 10 cm. drops.

Figure A.16.  Evermine and lacing 10 cm. drops.



SIMRAC PROJECT

GAP 616

84

Figure A.17.  Evermine and lacing 10 cm. drops.

Figure A.18.  Evermine and lacing 10 cm. drops.

Figure A.19.  Evermine and lacing 10 cm. drops.

Figure A.20.  Evermine and lacing 10 cm. drops.



SIMRAC PROJECT

GAP 616

85

Figure A.21.  Evermine 10 cm. drops.

Figure A.22.  Evermine 10 cm. drops.

Figure A.23.  Evermine 10 cm. drops.

Figure A.24.  Evermine 10 cm. drops.
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Figure A.25.  Evermine 10 cm. drops.

.

Figure A.26.  Evermine 10 cm. drops.

Figure A.27.  Evermine 10 cm. drops.

Figure A.28.  Evermine 10 cm. drops.
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Figure A.29.  Evermine 10 cm. drops.

Figure A.30.  Evermine 10 cm. drops.

Figure A.31.  Evermine 10 cm. drops.

Figure A.32.  No fabric support 10 cm. drops.
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Figure A.33.  No fabric support 10 cm. drops.

Figure A.34.  No fabric support 10 cm. drops.

Figure A.35.  No fabric support 10 cm. drops.

Figure A.36.  No fabric support 10 cm. drops.
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Figure A.37.  Lacing 10 cm. drops.

Figure A.38.  Lacing 10 cm. drops.

Figure A.39.  Lacing 10 cm. drops.

Figure A.40.  Lacing 10 cm. drops.
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Figure A.41.  Detail of lacing.

Figure A.42.  Shotcrete 50 cm. drops.

Figure A.43.  Shotcrete 50 cm. drops.

Figure A.44.  Shotcrete 50 cm. drops.
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Figure A.45.  Final failure of shotcreted assembly.

Figure A.46.  Final failure of shotcreted assembly.

Figure A.47.  Final failure of shotcreted assembly.

Figure A.48.  Shotcrete and lacing 50 cm. drops.



SIMRAC PROJECT

GAP 616

92

Figure A.49.  Shotcrete and lacing 50 cm. drops.

Figure A.50.  Shotcrete and lacing 50 cm. drops.

Figure A.51.  Shotcrete and lacing 50 cm. drops.

Figure A.52.  Pull test diamond mesh (A).
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Figure A.53.  Pull test diamond mesh (A).

Figure A.54.  Pull test diamond mesh (B).

Figure A.55.  Pull test diamond mesh (B).

Figure A.56.  Pull test diamond mesh (B).
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Figure A.57.  Pull test diamond mesh (B).
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