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Abstract—If a stress σ is applied to a polycrystal of grain size L, the mode of creep deformation depends on
the answers to the following questions: (I) Does σ exceed the Peierls stress σp; (II) Does L exceed the disloca-
tion spacing in a Taylor lattice stabilized by σp; (III) Does Lσ exceed the value required for a Frank–Read or
Bardeen–Herring source to operate within the grain? (IV) Does L1/2σ exceed the Hall–Petch value required for
slip to propagate across a grain boundary? The (L, σ) plane is thus partitioned into regions in which different
creep modes predominate. © 2000 MAIK “Nauka/Interperiodica”.
1. DIFFUSIONAL CREEP 
AND HARPER–DORN CREEP

In diffusional creep, transport of matter occurs by
the migration of vacancies from grain boundaries
roughly normal to a tensile stress to boundaries roughly
parallel to this stress. The migration occurs either
through the body of the grain [1, 2] or along the grain
boundaries [3]. In Harper–Dorn creep, vacancies
migrate from edge dislocations with their Burgers vec-
tors roughly parallel to the tensile axis to edge disloca-
tions with their Burgers vectors roughly perpendicular
to the tensile axis. The spacing l between adjacent dis-
locations, which are modeled as forming a Taylor lat-
tice, reaches an equilibrium value such that the stress
each dislocation exerts on its neighbor is of the order of
the Peierls stress σp [4, 5]. Thus,

, (1)

and Harper–Dorn creep is possible only if l < L, i.e.,

(2)

When this condition is satisfied, the diffusion paths
for Harper–Dorn creep are shorter than those for diffu-
sional creep, and Harper–Dorn creep will be faster than
Nabarro-Herring creep provided that [6]

(3)

Different modes of creep will operate depending on
whether the product Lσ is or is not large enough for
Bardeen–Herring climb sources to operate within or on
the surface of the grain. If the line tension of a disloca-
tion is Γ, sources can operate freely if

(4)

With Γ ≈ b2µ/2, where µ is the shear modulus, this
becomes

(5)

bµ/2πl σp, l bµ/2πσp≈≈
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1063-7834/00/4208- $20.00 © 21456
The authors of [7, 8] interpret this kind of formula
in the following way. As diffusional creep occurs, edge
dislocations climb along the grain boundaries. Inequal-
ity (5) represents the condition that, if these disloca-
tions are removed, they can be replaced by new dislo-
cations generated by Bardeen–Herring sources in the
grain boundaries. This interpretation seems to be incor-
rect on two grounds. First, a typical large-angle bound-
ary contains edge dislocations all of the same sign sep-
arated by distances of the order of b/3. If these disloca-
tions all climbed out of the boundary and were not
replaced, the total deformation would be of the order of
30%, larger than that normally observed in diffusional
creep. In fact, the dislocations will not disappear, but
will, statistically, continue to climb in adjacent grain
boundaries. Second, it is not clear why Bardeen–Her-
ring sources should operate preferentially in grain
boundaries. When inequality (5) is satisfied, sources
can operate within the grains, probably even more
freely than in the grain boundaries.

Inequality (5) should rather be interpreted in the fol-
lowing way. The equilibrium spacing l of Eq. (1) is
achieved by a balance of the multiplication of disloca-
tions by the operation of Bardeen–Herring sources
within the grain and the annihilation of dislocation
pairs under their mutual attraction. This process occurs
and Harper–Dorn creep is possible if inequality (4) is
satisfied. If the inequality is not satisfied, dislocations
climb into the grain boundaries and are absorbed, and,
after a possible transient, diffusional creep, rather than
Harper–Dorn creep, occurs.

2. STRESSES ABOVE THE PEIERLS STRESS

When the applied stress σ exceeds the Peierls
stress σp,

(6)σ σp,>
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dislocations can move freely by glide.
If, in addition, inequality (5) is satisfied, disloca-

tions will multiply by glide within the cell much more
rapidly than they can annihilate by climb. Harper–Dorn
creep gives way to power-law creep [9]. If the product
L1/2σ is less than the Hall–Petch stress-intensity fac-
tor kHP

(7)

glide cannot percolate from one grain to its neighbor.
A possible mode of deformation is then that consid-

ered by Spingarn and Nix [10], which can be outlined
as follows. The reduced stress is large enough to sup-
port glide on only one system in each grain. Coherence
between the grains is maintained largely by sliding on
the grain boundaries. This sliding is impeded by ledges
formed on the boundaries by pile-ups of dislocations.
The rate-controlling process is the smoothing of these
ledges by the diffusion of vacancies between adjacent
ledges. The distance λ between adjacent slip planes in
a grain is likely to be of the order of the dislocation
passing distance, given by

or

(8)

Allowing for the piling-up of dislocations, the work
done by the external stress when a vacancy is trans-
ferred from the head of a pile-up is easily seen to be of
the order of 

(9)

On average, a vacancy travels a distance λ/4 to
relieve the local strain, and so the thermodynamic driv-
ing force on a vacancy is

(10)

If the effective diffusion constant is De, the flux φ of
vacancy is De/kT times the thermodynamic force, or

(11)

At high temperatures, diffusion will occur through
the bulk, De will be the bulk coefficient of diffusion D,
and the flow of vacancies at each step will occur
through an area of order Lλ/2 = Lbµ/4πσ. The volume
V of matter transported at each step in unit time is then

(12)

The time t taken to remove a step is

(13)

The shear strain is b/λ, and so the strain rate  is
given by

(14)

L
1/2σ kHP,<

bσ b
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λ bµ/2πσ.=

W Lb
2σ2

/2µ.=
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2
kT .=

V Lbµφ/4πσ L
2
b

2σ2
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t bλL/8V µ2
kT /16πLσ3
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ε̇ b/λ t 32π2
Lσ4

D/µ3
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At low temperatures, D is replaced by the grain-
boundary diffusion coefficient Db, and the flux of
vacancies occurs over an area of order Lb. The strain
rate is then

(15)

Both processes occur within the normal range of
power-law creep.

At higher stresses, several glide systems operate in
each grain, and dislocation cells are formed having
widths w given approximately by

(16)

Under these conditions, power-law creep with an expo-
nent 4–5 is observed. As the discussion in [11] shows,
simple mechanisms of creep in this structure lead to the
“natural” exponent of 3. An exponent of 5 can be
obtained by assuming that diffusion occurs along the
cores of dislocations, which are present with a density
proportional to σ2, but such a process would have an
activation energy of only about half the observed value,
which is close to that for the lattice self-diffusion. Other
models of power-law creep [12, 13], which take into
account the formation of dislocation cells within the
grains, involve rather arbitrary assumptions.

3. POWER-LAW BREAKDOWN

When inequality (7) is not satisfied, a slip in one
grain can transfer to a neighboring grain. While there is
still some thermal activation of the slip process, as is
shown by the slow decrease in flow stress with increas-
ing temperature, the rate of deformation is no longer
controlled by diffusion, but is a rapidly increasing func-
tion of stress. This is the domain of power-law break-
down.

4. NUMERICAL VALUES

The quantities entering this analysis are b and µ,
which are well determined, and σp and k. Both theoret-
ical and experimental values of the Peierls stress σp fall
into two classes, with one class being several hundred
times greater than the other. There are reasons to
believe that, in problems of progressive plastic defor-
mation, it is the values of the lower class that are rele-
vant [14], and we use these. There are no satisfactory
theoretical estimates of the Hall–Petch coefficient k,
and we use values from the review by Hansen [15].

For aluminum, the relevant parameters are b =
2.86 × 10–10 m, µ = 26 × 109 Pa, σp = 2.5 × 10–5 µ, kHP =
0.53 × 105 Nm–3/2, and the relevant diagram is shown in
Fig. 1.

The present analysis does not apply to very high
stresses, where the lattice may break down, or at high
stresses and very small grain size, where the Hall–
Petch criterion may not apply because a pile-up of sev-

ε̇ 128π3
Lσ5

Db/µ4
kT .=

w 10.5bµ/σ.=
0
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eral dislocations within the cell is not possible. The
regions where the analysis does not apply are indicated
in the figure.

When Lσ is below the Bardeen–Herring limit, dislo-
cations cannot multiply within the grain even if σ > σp.
Dislocations are swept into the grain boundaries, and
only diffusional creep is possible in the steady state.
Above the Bardeen–Herring limit, Harper–Dorn creep
occurs when σ < σp, and the grain size is not too small,
or, more precisely, for very large grain sizes where
L1/2σ is large enough to allow dislocations to cross the
grain boundary. For σ somewhat below σp, the
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Fig. 1. The plane of grain size L and applied stress σ is
divided into domains of different creep models in aluminum
by four boundaries: the Peierls stress σp, the grain size at
which Harper–Dorn creep becomes possible (or becomes
faster than diffusional creep), the product Lσ above which
Bardeen–Herring (or Frank–Read) sources can operate
within the grain, and the Hall–Petch product L1/2σ above
which glide can percolate between grains.

Fig. 2. A creep-mode diagram for copper similar to that of
Fig. 1 for aluminum. There is a new domain, in which σ <
σp. Lσ exceeds the Bardeen–Herring limit, but L1/2σ is
below the value at which Harper–Dorn creep is faster than
diffusional creep.
P

Bardeen–Herring limit occurs at about log(L/b) = 6,
corresponding to L = 290 µm, in reasonable agreement
with the value of 400 µm estimated by Mohamed [16]
from the experimental data. Power-law creep occurs in
the region bounded by the Bardeen–Herring limit, the
Peierls stress, and the Hall–Petch stress line. The region
above both the Bardeen–Herring and the Hall–Petch
lines is that of a power-law breakdown.

For copper, b = 2.56 × 10–10 m, µ = 48 × 109 Pa, σp =
10–5 µ, kHP = 1.6 × 105 Nm–3/2, and the resulting diagram
in the (L, σ) plane is shown in Fig. 2.

The topology of the diagram is different from that of
Fig. 1. There is a region that lies below the Peierls
stress, above the Bardeen–Herring limit, and at grain
sizes so small that Harper–Dorn creep is either impos-
sible or slower than diffusional creep. In this new
region, diffusional creep will dominate.

5. INFLUENCE OF DISLOCATION CELLS
The discussion so far has assumed that the only

obstacles to dislocation motion are the Peierls stress
and the grain boundaries. However, dislocations can
also assemble into cells of width w(σ), where [11]

(17)

and usually do so provided that w < L. On the rather
drastic assumption that the cell walls are as effective
barriers to dislocation motion as grain boundaries, L
must be replaced by w(σ) in the preceding discussion.
In Fig. 3, the diagram for aluminum is augmented by
the line w(σ). At large grain sizes, where the Hall–
Petch line lies above the line w(σ), the effective grain
size is w(σ), and power-law breakdown occurs at a con-
stant stress given by the intersection of the w(σ) and H–
P stress lines. Then, as is observed, the regimes of

w σ( ) 10.5bµ/σ≈
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Fig. 3. Diagram for aluminum augmented by the line w(σ)
determining the dislocation cell size. Where w < L, power-
law breakdown occurs at a stress independent of grain size.
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Harper–Dorn creep and power-law breakdown are sep-
arated by a regime of power-law creep. It appears that
this regime covers a factor of several hundreds in stress,
in agreement with the observations reported by Wu and
Sherby [17].
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