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Modification of Piezoelectric Vibratory
Gyroscope Resonator Parameters

by Feedback Control
Philip W. Loveday and Craig A. Rogers

Abstract—A method for analyzing the effect of feedback
control on the dynamics of piezoelectric resonators used
in vibratory gyroscopes has been developed. This method
can be used to determine the feasibility of replacing the
traditional mechanical balancing operations, used to adjust
the resonant frequency, by displacement feedback and for
determining the velocity feedback required to produce a
particular bandwidth. Experiments were performed on a
cylindrical resonator with discrete piezoelectric actuation
and sensing elements to demonstrate the principles. Good
agreement between analysis and experiment was obtained,
and it was shown that this type of resonator could be bal-
anced by displacement feedback. The analysis method pre-
sented also is applicable to micromachined piezoelectric gy-
roscopes.

I. Introduction

Many different vibratory gyroscope designs have
been documented in the literature [1]–[17] during the

last 35 years. In these sensors the effect of Coriolis forces
that act on a vibrating structure, when it is subjected to a
rotation rate, is used to measure the applied rotation rate.
Various geometry’s including, strings, beams, tuning forks,
rings, discs, cylinders, and hemispheres have been used for
the vibrating structure, or resonator. The resonators are
forced to vibrate by actuators, and the displacement of the
resonator is measured by sensors. Typically these actua-
tors and sensors are either electrostatic, piezoelectric, or
electromagnetic.

The principle of operation of these devices is based on
the Coriolis coupling that occurs, between two modes of vi-
bration of the resonator, when a rotation is applied to the
structure. Many of the resonators are designed to have two
vibration modes that, in the perfect resonator, occur at
the same frequency. During operation, one of these vibra-
tion modes is driven at resonance at a constant amplitude.
When a rotation rate is applied, the Coriolis effect couples
energy from this vibration mode into the second vibration
mode. The response of the second vibration mode then
provides a measure of the applied rotation rate. Because
the two vibration modes have the same natural frequency,
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the energy transfer between them is very efficient and pro-
duces a high sensitivity to applied rotations. In practice,
however, small imperfections always occur during manu-
facture, and the two vibration modes will not have iden-
tical natural frequencies. These imperfections degrade the
performance of the gyroscope [18]–[21], and the effect of
these imperfections is usually minimized by a mechanical
balancing procedure. This balancing procedure generally
involves the removal of small amounts of mass from certain
locations on the resonator in order to modify the dynam-
ics of the resonator so that the difference between the two
natural frequencies is reduced. This process is time con-
suming, expensive, and very difficult to perform on small
micromachined designs. As this process is performed once
at a single temperature, changes in the dynamics of the
resonator over time or with temperature will not be ac-
counted for. Also some of these resonators operate in a
partial vacuum but are balanced at atmospheric pressures.
The evacuation process also can effect the dynamics of the
resonator causing an increase in the difference between the
natural frequencies.

A novel method of balancing was developed for gyro-
scope resonators that use electrostatic actuation and sens-
ing [5], [22]. In this method an “electrical spring” is pro-
duced by applying a DC voltage across one of the electrode
gaps. The electrostatic force is proportional to the square
of the gap distance; therefore, a decrease in the gap size
results in an increase in the electrostatic force and vice
versa. Because the variations in gap size during operation
are very small, the effect of the electrostatic field may be
represented (to first order) as a negative linear spring. By
adjusting the value of the DC voltage across the gap the
spring constant may be varied. These electrical springs are
adjusted to minimize the difference in natural frequency
caused by manufacturing imperfections in the resonator
structure.

It has been demonstrated in the literature that the nat-
ural frequencies of cantilever beam-type structures con-
taining piezoelectric actuators may be adjusted by feed-
back techniques [23], [24]. The purpose of this paper is
to demonstrate that, in a gyroscope resonator with piezo-
electric sensing and actuation, an “electrical spring” can
be formed by using position feedback, and an “electrical
damper” can be formed by applying velocity feedback.
Therefore, the electrical springs can be used to decrease
the effect of manufacturing imperfections on the perfor-
mance of a piezoelectric vibratory gyroscope. Large feed-
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back gains would result in large signal amplitudes that are
impractical. Therefore, it is desirable to be able to predict
the gains required. A method of calculating the magnitude
of the feedback gains required is presented. This method
is applied to a cylindrical resonator with discrete piezo-
electric actuator and sensor elements, and the theoretical
predictions are verified by measurement.

II. Theoretical Development

The equations of motion for a resonator, excited by
piezoelectric actuators and sensed by piezoelectric sensors,
may be derived by application of Hamilton’s principle to
the coupled electromechanical system and discretization
by the Rayleigh-Ritz method [25]. The resulting set of
equations has the form:

Mr̈ + Kr −Θν = Bff

ΘT r + Cpν = Bqq
(1)

where M and K are the mechanical mass and stiffness ma-
trices, r is the vector of mechanical generalized displace-
ments, f is the applied force vector, Θ is the piezoelectric
coupling matrix, Cp is the capacitance matrix, ν is the
vector of electrical potential generalized coordinates, q is
the vector of electric charges applied to the electrodes, Bf

and Bq are generalized coordinate conversion matrices for
forces and charges, respectively.

These two equations are referred to as the actuator
equation and the sensor equation. The sensor equation
may be partitioned to separate the voltages at the drive
electrodes from the voltages at the sensing electrodes as
follows:

[
Θd Θs

]T {r}+
[
Cpdd Cpds
Cpsd Cpss

]{
νd
νs

}
= Bq

{
qd
0

}
.

(2)

This equation can be rearranged to give the sensed voltage
as a function of the displacement and the applied voltage.

νs = −C−1
pss[Θ

T
s r + Cpsdνd] (3)

If we feed a combination of the sensed voltages back to
the drive ceramics, this can be regarded as displacement
feedback and can be represented as follows:

νd = Gdνs

= −GdC
−1
pssΘ

T
s r −GdC

−1
pssCpsdνd

= −[I + GdC
−1
pssCpsd]

−1GdC
−1
pssΘ

T
s r

(4)

where I is the identity matrix and Gd is a matrix of dis-
placement feedback gains. The sensed voltage can then be
written as:

νs = −C−1
pss

[
ΘT
s − Cpsd[I + GdC

−1
pssCpsd]

−1GdC
−1
pssΘ

T
s

]
r

(5)

Substituting the drive and sense voltages from (4) and (5)
into the actuator equation yields the undamped equations
of motion for the system including displacement feedback:

Mr̈ + K∗r = 0 (6)

where

K∗ = K + Θd[I + GdC
−1
pssCpsd]

−1GdC
−1
pssΘ

T
s

+ ΘsC
−1
pss

[
ΘT
s − Cpsd[I + GdC

−1
pssCpsd]

−1GdC
−1
pssΘ

T
s

]
(7)

Equation (7) shows that the effective stiffness of the sys-
tem can be altered by feeding back signals that are propor-
tional to the displacement of the structure. Therefore, an
“electrical spring” has been constructed by using feedback
control.

If there is no capacitive coupling between the drive and
sense ceramic electrodes (Cpsd = 0), the equations of mo-
tion simplify to:

Mr̈ + [K + ΘdGdC
−1
pssΘ

T
s + ΘsC

−1
pssΘ

T
s ]r = 0 (8)

Equation (8) shows that leaving the sensing ceramics with
open circuit (or high impedance) boundary conditions and
feeding back signals from the sensing ceramics to the drive
ceramics both contribute to the effective stiffness of the
structure. Calculating the eigenvalues of this system for
different feedback gains provides a method of determining
the influence of the displacement feedback gains on the
natural frequencies of the resonator.

If velocity feedback is included, the voltage applied to
the drive ceramics may be expressed as:

νd = Gdνs + Gν ν̇s (9)

where Gν is a matrix of velocity feedback gains.
Including an arbitrary viscous damping matrix (C) and

again omitting capacitive coupling between the sensing
and actuation ceramics, yields the following equations of
motion:

Mr̈ + [C + ΘdGνC
−1
pssΘ

T
s ]ṙ

+ [K + ΘdGdC
−1
pssΘ

T
s + ΘsC

−1
pssΘ

T
s ]r = 0 (10)

From (10) it is seen that the effect of velocity feed-
back is to modify the damping characteristics of the sys-
tem. Therefore, it is possible to construct an “electrical
damper” by feeding back a signal proportional to the veloc-
ity of the structure. The natural frequencies and damping
factors of this system may be calculated by transforming
the equations of motion to state space and then calculating
the eigenvalues.

III. Experimental Procedure

The feasibility of using feedback techniques to mod-
ify the dynamics of a vibratory gyroscope resonator was
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Fig. 1. Resonator geometry.

Fig. 2. Radial displacements of operational modes.

tested for a vibrating cylinder resonator. This partic-
ular resonator comprises a thin walled, steel cylinder,
closed at one end, with eight discrete piezoelectric ceram-
ics (PZT5A) bonded near the open end. The resonator is
shown schematically in Fig. 1.

The radial displacement patterns of the two operational
modes of vibration are shown in Fig. 2 as viewed from the
open end of the cylinder. During operation the primary
mode is excited to oscillate at the resonance frequency (ap-
proximately 14,500 Hz) at a constant amplitude. When
a rotation is applied about the axis of the cylinder, en-
ergy is coupled from the primary mode into the secondary
mode, and the vibrating pattern appears to shift relative
to the cylinder. The vibration of the secondary mode is
suppressed by actively damping the structure in order to
increase the bandwidth of the gyroscope. In a perfect res-
onator, the primary and secondary mode would have iden-
tical natural frequencies. Imperfections that occur during
manufacture, however, cause a difference in natural fre-
quency and locate the mode shapes relative to the struc-
ture [18].

The experimental set-up selected to demonstrate the
use of feedback to modify the dynamics of the resonator is
shown in Fig. 3. A HP 3562A dynamic signal analyzer was

Fig. 3. Experimental set-up.

used to measure the frequency response of the resonator
by applying random noise excitation and measuring the
response over a 100 Hz frequency range. The resonant fre-
quency and the Q factor of the primary mode of vibration
were then extracted from the measured frequency response
function. The feedback gain and phase were varied so that
displacement and velocity feedback could be investigated.

IV. Results and Discussion

The procedure for obtaining the coupled equations of
motion for the vibrating cylinder resonator was applied
to the resonator as described in [20]. In that work the
resonator cylinder was assumed to have a clamped bound-
ary condition at the closed end of the cylinder. This as-
sumption resulted in the model over-predicting the nat-
ural frequencies. The model has since been extended to
include flexibility in this boundary condition, thus mak-
ing it possible to adjust the boundary condition until the
correct natural frequencies are obtained. The piezoelectric
ceramics were soldered to the cylinder, at a temperature
of approximately 335◦C, then polarized. The value of the
piezoelectric coefficient (e31) for the ceramics in this con-
dition is not certain, so the response of the resonator at a
frequency of 1 kHz was used to calibrate this parameter.
Decreasing this constant, by 15% from the catalogue value
of −5.4 Coulomb/m2, gave good agreement at 1 kHz.

The experiment described in Section III was simulated
using the theory presented in Section II. The predicted and
measured effect of displacement feedback on the resonant
frequency of the primary mode is shown in Fig. 4. The
results indicate that, by varying the feedback gain from−2
to 2, a change in the resonant frequency of approximately
10 Hz can be produced. This change in frequency is larger
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Fig. 4. Resonant frequency change caused by displacement feedback.

than the difference in frequency caused by manufacturing
imperfections.

The slope of the curve is dependent on the square of
the piezoelectric coupling coefficient of the piezoelectric
ceramic material as this coefficient influences the magni-
tude of the sensed voltage (through matrix Θs) and the
effect of the drive voltage (through matrix Θd).

Positive displacement feedback gains caused a decrease
in the resonant frequency rather than an increase as would
be expected. This occurs because, for the mode of interest,
there is a 180◦ phase difference between the displacement
of the structure at the sensing ceramic element and the
displacement of the structure at the drive ceramic element
as shown in Fig. 2.

If the feedback control loop was disconnected so that
both the sense and drive ceramics had open cicuit bound-
ary conditions, the voltages generated at these ceramics,
due to displacement of the primary mode, would be equal
in magnitude but would have opposite phase. This situ-
ation is identical to connecting the feedback control loop
with a displacement feedback gain of −1 and, therefore,
would be expected to cause the same change in resonant
frequency. This experiment was performed, and it was
found that changing the electrical boundary condition of
the drive ceramic from closed circuit to open circuit in-
creased the resonant frequency by 2.5 Hz. This is equal to
the frequency shift that was obtained by applying a feed-
back with gain of −1, therefore, it is a very simple method
of experimentally determining the slope of this curve with-
out performing any closed loop experiments.

The effect of velocity feedback is to modify the damp-
ing of the system. The damping of a resonator usually
is quantified by the Q factor, which is inversely related
to the mechanical damping factor (ζ) by the expression
Q = 1/2ζ [26]. Fig. 5 shows the effect of changing the
velocity feedback gain on the Q factor of the resonator.
The arbitrary viscous damping included in the model was

Fig. 5. Q Factor change caused by velocity feedback.

adjusted to give agreement with the experimental values
when no feedback was applied. Positive velocity feedback
gains cause an increase in the Q factor (decrease in damp-
ing) because of the phase difference between the velocities
of the sense and drive ceramics. As the velocity feedback
gain is increased, the total damping in the system tends
toward zero and the Q factor increases rapidly toward in-
finity. Increasing the velocity feedback gain further results
in instability of the linear system. Applying a velocity feed-
back gain of −1 resulted in a change in Q factor from 3300
to 1500, which represents a modification in the mechanical
damping factor from ζ = 0.00015 to ζ = 0.000334. Velocity
feedback is commonly used to increase the bandwidth of
vibratory gyroscopes, and the method presented here can
be used to determine the velocity feedback gain required
for a particular bandwidth.

The difference between the theoretical and measured
results can be almost completely eliminated by decreasing
the piezoelectric coupling coefficient by a further 10%. It
appears that the method of calibrating this coefficient by
using the response at 1 kHz has overestimated this coeffi-
cient because the contribution of other vibration modes to
the response at 1 kHz has not been included in the model.

V. Conclusions

A method has been presented for calculating the mod-
ification to the dynamic characteristics of a piezoelectric
resonator that can be achieved by applying displacement
and velocity feedback. The method was applied to a vibrat-
ing cylinder resonator, with discrete sensing and actuation
piezoelectric ceramics, and the calculated results agreed
with experimental results, thereby verifying the method.
The resonator considered here showed a change in resonant
frequency of approximately 2.5 Hz per unit displacement
feedback gain. This is sufficient for balancing of this type
of resonator to be performed using displacement feedback
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instead of the conventional mechanical mass removal. It
also was demonstrated that a simple experiment can be
performed to determine the effect of displacement feed-
back on the natural frequency of a resonator without the
use of any feedback electronics.
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