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Abstract

The structures and properties of two families of lattice-coherent composites, those based on g/g0 Ni3Al and those based on TiAl/
Ti3Al, are shown to have strong similarities. The coherent system of cubic/tetragonal Y2O3±stabilized ZrO2 is then described, and
shown to have strong similarities to the system TiAl/Ti3Al. The phases g TiA` (L1o) and a2 Ti3A` (DO19) are not cubic, and their
anisotropic thermal expansion may lead to ratcheting creep under conditions of thermal cycling. # 2000 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

An earlier paper [1] considered the structure and
properties of two classes of lattice-coherent composite
alloys, the g=g0 superalloys based on Ni3Al, and the
alloys based on TiAl/Ti3Al. In each class there are close
relationships between the crystal structures, and hence
the dislocation structures, of the two phases involved. It
is shown that these relationships are very similar in the
two classes.
We then consider the ceramic system of ZrO2 partially

stabilized by Y2O3, in which colonies of a tetragonal
phase form in coherence with a cubic matrix [2±4].
The similarities between the three systems considered

suggest that new two-phase systems suitable for high-
temperature service may need to show similar structural
features.
Since the phases g TiA` (L1o) and a2 Ti3 A` (DO19)

are not cubic, they have anisotropic thermal expansion.
Alloys based on them will therefore su�er ratcheting
creep under thermal cycling. The mechanism of ratch-
eting creep is discussed using a simple model, and it
seems likely that ratcheting creep may present serious
problems in the system TiA`/Ti3A`.

2. Summary of the plastic properties of the 
/
0 and
TiAl/Ti3Al structures

We summarize here some of the properties described
in more detail in Ref. [1].

2.1. Current superalloys viewed on the scale of the
precipitate particles

The structure consists of cubes of the g0 phase, an
ordered L12 structure based on Ni3Al, stacked in a
simple cubic array in a matrix of g, a disordered face-
centred cubic lattice, also nickel-based. The g0 phase
occupies about 65% of the volume, so the g channels
between them are less than one sixth of the width of the
g0 particles. At working temperatures g0 is the strong
phase, and the structure is somewhat analogous to that
of a ``hard metal''. Both phases have high melting
points, and close-packed structures which probably lead
to low di�usion coe�cients.
An important observation is that, e.g. at 1000�C, a

creep rate of 10ÿ7 sÿ1 occurs in the two-phase structure
only under a stress more than twice that which gives the
same creep rate in the stronger phase. Over a wide range
of temperatures, the ¯ow stress of the g0 phase, but not
of the g phase, anomalously increases with increasing
temperature. At room temperature, most of an applied
load is carried by the g phase, which is a ductile
material; at high temperatures the g phase is weak, and
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the load is carried by the g0 phase. The unconstrained
lattice parameters of the g and g0 structures usually dif-
fer by about 0.3%, but the two phases show lattice
coherence after standard heat treatments.

2.2. Current superalloys viewed on the atomic scale

The great strength of the two-phase structure is com-
parison with either of its components is explained
as follows. In both phases, glide occurs in <110>
directions on {111} planes. In the disordered g phase, with
lattice parameter a, the repeat distance, which is the Bur-
gers vector of a single dislocation, is 1/2 a <110>. In the
ordered g0 structure, the repeat distance is a <110>. If a
single dislocation of the softer g phase penetrates into the
g0 phase, it trails an anti-phase boundary, and it can move
only if an external stress provides the energy of the con-
tinuously expanding anti-phase boundary.
Under operating stresses, the dislocations in the g

phase cannot penetrate the g0 phase, which acts as a
strong reinforcement. Under overload, the g disloca-
tions penetrate the g0 particles, providing ductility.
The mobile element in the ordered phase is a super-

dislocation consisting of two 1/2 a <110> dislocations
coupled by a narrow strip of anti-phase boundary. This
structure of the mobile superdislocation explains the
anomalous temperature dependance of the ¯ow stress of
the g0 phase. The superdislocation is only mobile if both
1/2 a < 110 > components lie on the same close-packed
{111} plane. However, the energy of the anti-phase
boundary is less if the two dislocations lie on a {001}
plane, and elastic anisotropy also drives them into this
plane. The leading 1/2 a < 110 > dislocation therefore
tends to cross slip into a {001} plane, locking the
superdislocation. Since this 1/2 a < 110 > dislocation is
itself weakly dissociated into Shockley partials, and it
does not move readily in the {001} plane which is not
close packed, the cross slip is thermally activated. The
higher the temperature, the more ®rmly the super-
dislocation is locked.

2.3. The system TiAl/Ti3Al

In the complicated phase diagram of Ti±Al, a region
likely to have useful mechanical properties is the two-
phase domain containing TiAl and Ti3Al. Both phases
are ordered, and both show slight deviations from the
close packing of spherical atoms. The TiAl phase, called
g, has the L1o structure, a face-centred cubic structure
with a slight tetragonal distortion (c/a=1.02) produced
by the ordering of Ti and Al atoms into alternating 002
layers. As in the face-centred cubic structure, the glide
planes are {111} and the glide directions < 110 >. In
any speci®c family of glide planes, such as (111), the
glide direction �110� is no longer equivalent to the
directions [011] and [101]. In the ®rst, the displacement

1/2 [110] replaces a Ti atom by a Ti atom and an Al
atom by an Al atom. It would be expected that the dis-
location with Burgers vector 1/2 [110] would therefore
glide freely. In fact (e.g. [5]) the critical shear stress for
moving these displocations is not low, and shows an
anomalous temperature dependence. The displacements
1/2 [011] and 1/2 [101] replace Ti atoms by Al atoms and
Al atoms by Ti atoms. The corresponding dislocations
therefore trail anti-phase boundaries, and the mobile
element is the superdislocation composed of (e.g.) two
1/2 [011] dislocations coupled by a narrow strip of anti-
phase boundary. The analogy with Ni3Al is clear. Again
there is a temperature anomaly of the ¯ow stress, and
again the anomaly is explained by the thermally-acti-
vated cross slip of screw dislocations. The details of
the process are di�erent [6±8]. A screw dislocation 1/2
[011] is trapped in a Peierls valley. It can, by thermal
activation, throw forward a loop either on (111) or
on �1�11�. If an expanding loop on one of these planes
meets a loop on the other plane, a pinning point is
formed.
The other phase, Ti3Al, called a2, has the close-

packed hexagonal DO19 structure. The glide plane is the
base plane (0001). The glide directions are the close-
packed directions <2110>. The close-packed rows of
atoms in these directions are composed alternately of
atom sequences . . .TiAlTiAlTiAl . . . and atom sequen-
ces . . . TiTiTiTiTiTi . . . Dislocations in this plane have a
Burgers vector of two interatomic spacings, and the ¯ow
stress for glide on this plane shows a normal dependence
on temperature. In the two-phase structure, there is lat-
tice coherence between these close-packed planes and
the close-packed {111} planes of TiAl. Dislocations of
type a [011]and a [101] in the TiAl phase can pass freely
into the base plane of Ti3Al. Those of type 1/2 a [110]
are partial dislocations of the base plane of Ti3Al, and
can only pass through the Ti3Al phase by dragging an
anti-phase boundary, or in pairs coupled by a strip of
anti-phase boundary. The situation is more complicated
than that in g/g0 Ni3Al, but clearly there are strong
analogies.
The major di�erence between the two systems is that

any of the cube planes {100} can form a coherent inter-
face between the g and g0 phases in a superalloy, and
therefore a three-dimensional structure with cubic sym-
metry can form. A hexagonal crystal of Ti3Al has only
one close-packed basal plane which can interface with a
close-packed plane in TiAl. The resulting two-phase
structure therefore essentially layered, a polysynthetic
twin consisting of alternate slices of TiAl and Ti3Al.

3. Zirconia ZrO2 partially stabilized by yttria Y2O3

The high-temperature phase of ZrO2 containing 4.5
mol% per cent Y2O3 has the cubic ¯uorite structure. A
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face-centred cube of Zr atoms, with 4 Zr atoms in the
unit cell, contains a simple cube of 8 O-atoms. On
cooling to about 1600�C, it precipitates a tetragonal
phase with c/a=1.01 generated by slight displacements
of alternate [001] columns of O-atoms in the �[001]
directions. There are three possible orientations of the c
axis of the tetragonal phase giving precipitates labelled
t1, t2 and t3 which have their c axes along the a1, a2 and
a3 cubic axes, respectively [2] (Fig. 1). To relieve the
transformation strain, these variants form in alternating
lamellar pairs such as (t1t2). The planes of these lamellae
contain the a3 axis. The residual strain energy is further
reduced if the boundaries of a (t1t2) domain take one of
the four forms illustrated in Fig. 1. Since there are three
distinct pairs (titj), there are 12 distinct colonies of pre-
cipitate, each being a polysynthetic twin reminiscent of
the TiAl/Ti3Al structure. The precipitation hardening is
very strong, and is explained by the authors of Ref. [2]
by ``the fact that matrix dislocations with b=1/2 [110]
are partial dislocations in two of the three t±ZrO2 pre-
cipitate variants that make up the 12 possible colony or
®ber variants''. While the authors of Ref. [3] describe
this system as ``ceramic equivalent of g=g0 Ni-based
superalloys'', the analogy with the system TiAl/Ti3Al
seems closer, even though both ZrO2 and g Ni3Al have
disordered matrices, while in TiAl/Ti3Al both matrix
and inclusion are ordered. However, while cubic sym-
metry is destroyed in the interaction between a single
crystal of the ZrO2 matrix and each individual colony, it
is restored in the collective interaction between the ZrO2

matrix crystal and its twelve colonies, whereas the Ti3Al
matrix itself has only hexagonal symmetry.
As a result of this, structures based on TiAl/Ti3Al,

unlike the other two systems described, are liable to
show ratcheting creep in thermal cycling.

4. Creep under thermal cycling

Sections 4.1 and 4.2 give simpli®ed physical discus-
sions of the processes involved in creep under thermal

cycling, which may be useful introductions to the formal
mathematical treatments which have been published. In
Section 4.3 it appears that the data required to estimate
the magnitude of the e�ects in the system TiA`/Ti3A`
are not all available, but that the e�ects may well be
severe.

4.1. Thermal ratcheting creep in an elastic/perfectly
plastic bicrystal

As a heuristic model, we take a two-dimensional
bicrystal subjected to a small stress �a parallel to the
join of the two crystals (Fig. 2). At any stage, the stres-
ses in the components are �1 and �2. The ``principle'' of
de St. Venant requires that

�1 � �2 � 2�a: �1�

Fig. 1. The four con®gurations of a coherent tetragonal inclusion of ZrO2/Y2O3 in a cubic matrix which are based on a single pair t1 and t2 of the

three tetragonal variants t1, t2 and t3 (reproduced by permission from Ref. [2]).

Fig. 2. A bicrystal of an anisotropic material of length `. When the

applied stress is �a; the stresses in the two components are �1 and �2.
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The coe�cients of thermal expansion of the two
crystals parallel to the axis of stress are �1 and �2. We
write

A � �1 ÿ �2: �2�

In this heuristic model, we assume that the two crys-
tals have the same Young's modulus E parallel to the
stress axis, and the same plastic ¯ow stress �f (T), which
decreases linearly with temperature from its value �R at
room temperature TR to zero at a temperature To

(which will generally lie above the melting temperature).
Thus,

�f �T� � To ÿ T

To ÿ TR
�R: �3�

We assume (Fig. 3) that the crystals are formed under
zero stress at the melting temperature TM: Initially, dif-
ferential thermal expansion will produce thermoelastic
stresses at a temperature T below TM given by

�1 � 1
2EA�TM ÿ T� �4�

and

�2 � ÿ 1
2EA�TM ÿ T�; �5�

as shown by the lines AL and AB in Fig. 3.

These stresses will reach the ¯ow stress at a tempera-
ture T1, given by

1
2EA�TM ÿ T1� � To ÿ T1

To ÿ TR
�R:

If we write

K � 2�R

EA�To ÿ TR� �6�

this gives

T1 � TM ÿ KTo

1ÿ K
: �7�

Clearly K>0, and it follows from (7) that plasticity will
occur above room temperature only if

K <
TM ÿ TR

To ÿ TR
< 1: �8�

We shall assume this to be the case.
On further cooling from T1 to room temperature TR,

the stresses follow the plastic lines LM, BC.
The small external stress �a is then applied. Crystal 1

remains plastic under stress �R; while according to (1)
the stress in crystal 2 moves from C to D, with the value

Fig. 3. Stresses during the thermal cycling of a bicrystal. The ¯ow stress at room temperature is �R; and decreases linearly with temperature to

vanish at a hypothetical temperature To. The bicrystal is formed stress-free at the melting temperature TM. As it cools in the absence of external

stress, thermoelastic stresses follow the elastic lines AB, AL, followed by the plastic lines BC, LM. An external stress �a is applied at room tem-

perature, and crystal 2 moves to point D. On heating, the crystals follow the elastic lines DE, MN, until crystal 2 becomes plastic along the line EF,

terminating at the upper operating temperature TU. Meanwhile, crystal 1 moves elastically along NO. On cooling, the crystals move elastically along

OP and FG, until crystal 1 becomes plastic at P. The crystals then move along PM and GD. Later thermal cycles repeat the stress cycles DEFGD

and MNOPM, in which the links EF and PM involve plastic deformation.
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�2 � ÿ�R � 2�a: �9�

The ®rst half-cycle of heating from TR to an upper
working temperature TU begins with both crystals
expanding elastically along the lines DE and MN.
The stress in crystal 2 vanishes at T2, where that in

crystal 1 is 2�a; while at T4 the stress in crystal 1 van-
ishes and that in crystal 2 is 2�a:
Crystal 2 becomes plastic at E, at a temperature T5

given by

ÿ�R � 2�a � 1
2EA�T5 ÿ TR� � To ÿ T5

To ÿ TR
�R; �10�

which gives

T5 � 2KTo

1� K
� 1ÿ K

1� K
TR ÿ 4

1� K

�a
EA

: �11�

If the upper operating temperature TU is below T5,
temperature cycling between TU and TR is completely
elastic. We now consider the behaviour when TU is
greater than T5.
Crystal 2, which shed 2�a of its compressive stress on

loading at TR as a result of the plastic yielding of crystal
1, comes to its tensile plastic limit at T5, and as the
temperature increases from T5 to the upper operating
temperature TU its stress follows the plastic line EF,
while, in accordance with (1), the stress in crystal 1 fol-
lows the line of opposite slope NO.
At TU we have

�2 � �F�TU� � To ÿ TU

To ÿ TR
�R; �12�

while at O, from (1),

�1 � 2�a ÿ To ÿ TU

To ÿ TR
�R: �13�

On cooling from TU, crystal 1 contracts elastically
along OP, until the temperature T6 is reached at which
crystal 1 becomes plastic . Here

2�a ÿ To ÿ TU

To ÿ TR
�R � 1

2EA�TU ÿ T6�

� To ÿ T6

To ÿ TR
�R: �14�

This gives

T6 � ÿ 2K

1ÿ K
To � 1� K

1ÿ K
TU � 4

1ÿ K

�a
EA

; �15�

�1 � To ÿ T6

To ÿ TR
�R

� EAK

2�1ÿ K� ��1� K��To ÿ TU� ÿ 4�a=EA� �16�

and

�2 � ÿ EAK

2�1ÿ K� ��1� K��To ÿ TU� ÿ 4�a=EAK�: �17�

On further cooling to TR, crystal 1 moves along the
plastic line PM, while crystal 2 moves elastically along
GD in accordance with (1). Subsequent cycles follow the
paths DEFGD and MNOPM.
In each cycle, there are two plastic regions. In one

region, crystal 1 deforms from P to M, and in the other,
crystal 2 deforms from E to F.
While crystal 1 deforms from P to M and crystal 2

from G to D, the two crystals remain of equal length,
and the elastic strain remains constant at �a/E. The dif-
ference in thermal strains A�T6 ÿ TR� is accommodated
by a plastic extensional strain A�T6 ÿ TR� in crystal 1,
representing a plastic strain of the length as a whole of
1
2A�T6 ÿ TR�:
Similarly, when crystal 2 deforms from E to F and

crystal 1 from N to O, the smaller thermal expansion of
crystal 2 is compensated by its plastic extensional strain
of A�TU ÿ T5�; representing a plastic strain of the
bicrystal as a whole of 1

2A�TU ÿ T5�:
Thus the total plastic strain of the bicrystal in each

thermal cycle is

1

2
A�T6 ÿ TR � TU ÿ T5�

� A ÿ 2KTo

1ÿ K2
ÿ TR

1� K
� TU

1ÿ K

� �
� 4�a
E�1ÿ K2� : �18�

Again, since TU > T5; it follows from (11) that the
term involving square brackets in (18) is greater than

ÿ 4�a
E�1ÿ K2� ;

so that (18) is always positive.
However, if TU is ®nitely greater than T5; (18) gives a

®nite strain per cycle even if �a is vanishingly small. This
unphysical result follows from the assumption that the
material is elastic/perfectly plastic. As a result, crystal 1
remains elastic while crystal 2 is plastic during heating
from T5 to TU, while crystal 1 is plastic and crystal 2
elastic during cooling from T6 to TR, however small
the positive value of �a. If �a is given a small negative
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value, the shapes of the stress-temperature cycles change
discontinuously. To obtain a realistic estimate of the
plastic strain per cycle, it is necessary to smooth this
abrupt change.

4.2. Relaxation of the elastic/perfectly plastic condition

The result of the previous calculation is determined by
situations in which the stress in one crystal is the ¯ow
stress � �f �T�: Then, if �a is very small, it follows from
(1) that the stress in the other crystal is very close to �
�f �T�: It is not realistic to assume that one crystal will be
perfectly plastic and the other perfectly elastic. It is
more realistic to assume that the two crystals will both
deform plastically, the plastic strains in the two being
proportional to ��a � �f� : ��a ÿ �f�:
Consider the segment EF in Fig. 2. For an increase in

temperature �T; crystal 1 would increase in length by
A`�T more than crystal 2 if the two were not connected.
This di�erence is accommodated by a plastic compres-
sion of crystal 1 and a plastic extension of crystal 2, the
sum of these being A`�T: Thus the plastic compression
of crystal 1 is

�a ÿ �f

2�f
A`�T; �19�

while the plastic extension of crystal 2 is

�a � �f

2�f
A`�T: �20�

These plastic deformations accommodate the di�er-
ence of thermal expansions, while there is an overall
plastic extension of

�a
2�f

A`�T: �21�

The total plastic strain along EF is then

A�a
2

�TU

T5

dT

�f �T� �
�a
EK

`n
To ÿ T5

To ÿ TU
: �22�

Similarly, the total plastic strain along PM is

�a
EK

`n
To ÿ TR

To ÿ T6
; �23�

and the total plastic strain in a cycle is

�a
EK

`n
�To ÿ T5��To ÿ TR�
�To ÿ TU��To ÿ T6� : �24�

Now To>T5 and T6>TR, so (29) is always positive.
Since �a has been assumed small, the terms in �a in (11)
and (15) may be neglected, and (24) may be written

2�a
EK

`n
1ÿ K

1� K

To ÿ TR

To ÿ TU

� �
: �25�

The analysis so far has considered the thermal stresses
arising between the crystals with their axes of greatest
thermal expansion orthogonal. If the angle between
these axes is � the thermal stresses will be reduced by a
factor sin2�. Thus the value of A in (6) should be
reduced by a factor <sin2 �>=2

3, leading to an e�ec-
tive value of K given by

Keff � 3�R

EA�To ÿ TR� : �26�

The theory of thermal ratcheting creep in a poly-
crystal was developed by Anderson and Bishop [9],
Greenwood and Johnson [10] and Pickard and Derby
[11]. Experimentally, the evidence is limited, but obser-
vations on zinc [12] show that the creep rate during
thermal cycling may greatly exceed that which occurs
under the same load at a steady high temperature.

4.3. Acceleration of creep when thermal stresses do not
induce plasticity

The discussion so far has assumed that thermal stres-
ses become so large that the materials becomes fully
plastic, and the stressed sample undergoes a ®nite
deformation in each thermal cycle. Anderson and
Bishop treated also the case in which the thermal stres-
ses exceed the applied stress but fall below the yield
stress.
Then if we assume power-law creep with

"
: � R�n; n � 4:5; �27�

the creep rate in the absence of internal stresses is

"
: � R�na : �28�

If there are random internal stresses ��i the creep rate
is of order

"
: � 1

2R ��i � �a�n ÿ ��i ÿ �a�n� �

and, if �ij >> �a;j this is approximately

"
: � nR�nÿ1i �a; �29�

a steady creep rate greater than that (28) which would
occur in the absence of thermal stresses.
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4.4. Thermal cycling in TiAl/Ti3Al

The physical properties of TiAl have been reviewed by
Yoo and Fu [13]. Consider polycrystalline TiAl cycled
between 300 and 1200 K. The mean thermal expansion
coe�cients in this range are about 13.1 � 10ÿ6 Kÿ1

along [100] and 11.8 � 10ÿ6 Kÿ1 along [001]. A tem-
perature change of 900 K results in a di�erential ther-
mal expansion strain of about 1.2 � 10ÿ3. With Young's
modulus about 170 GPa, this represents internal stresses
of order 200 MPa, leading to resolved shear stresses of
order 100 MPa. The critical resolved shear stresses are
of order 100±150 MPa. It seems that polycrystalline
TiAl cycled between 300 and 1200 K will lie on the
borderline between creep accelerated by thermal cycling
and thermal ratcheting creep.
Similar data do not seem to be available for Ti3Al.

Since TiAl is very nearly cubic at all temperatures, it
seems likely that Ti3Al polycrystals or TiAl/Ti3Al two-
phase materials thermally cycled in this range will show
full thermal ratcheting creep.

5. Summary

Two suggestions are made concerning the likely devel-
opment of two-phase materials for high-temperature

service. Firstly, three systems of current interest have
structural features in common, and so it is likely that any
successful new system will show similar structural fea-
tures. Secondly, non-cubic structures, including TiA`/
Ti3A`, will show accelerated creep, probably of impor-
tant magnitude, when thermally cycled under load.
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