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Abstract

A method for modelling discrete fracture in geomaterials under tensile and compressive stress fields has been

developed based on a Mohr–Coulomb failure surface in compression and three independent anisotropic rotating crack

models in tension. Extension fracturing is modelled by coupling the softening of the anisotropic rotating crack failure

criterion to the compressive plastic strain evolution. Modifications were introduced into an explicit discrete element/

finite element code with an explicit Lagrangian contact algorithm to enforce non-penetration of the surfaces created

when the tensile strength is depleted. The model is applied to triaxial and plane strain tests, as well as punch tests and

borehole breakouts to show that the model is able to quantitatively predict the appropriate load–displacement response

of the system in addition to the observed evolution of discrete fracturing in situations comprising a variety of com-

pressive and tensile stress states.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

In the analysis of the stability of mine excavations, it is vital to be able to determine the degree of

fracturing in the rock and the response of the fractured rock mass to subsequent changes of the stress state,

for a variety of excavation shapes and sequences. The constitutive relationship for quasi-brittle materials in

compression is generally determined by performing conventional triaxial tests ðr1 ¼ r2 P r3Þ, extension
tests ðr1 P r2 ¼ r3Þ and true triaxial tests ðr1 P r2 P r3Þ on small material specimens. Typical experimental

results for rock in compression are presented and discussed by Hallbauer et al. [1], Tapponnier and Brace
[2], Franklin [3], Janach [4], Mogi [5–7], Yumlu and Ozbay [8], Hoek and Bieniawski [9], Brace et al. [10],

Wang and Shrive [11] amongst others. The final failure planes observed in unconfined compressive strength

(UCS) tests or extension tests are generally parallel to the direction of maximum compressive stress,

whereas in standard triaxial tests with confinement they are generally at some specific angle. Similar

observations are made in the mining environment, where the absence of confinement in material adjacent to
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excavations or in mining pillars causes fracturing parallel to the maximum compression direction resulting
in so-called slabbing, as shown in Fig. 1(a) and (b). The ultimate aim of the model is to predict the

development of fracturing around an advancing stop face in a deep level mine. As shown in Fig. 1(c), the

rock mass is extremely fractured, with fractures forming in uniaxial compression at the face and in

extension as the rock moves into the excavated region. In addition, in confined regions ahead of the mining

face the rock fails in a mechanism similar to that of a conventional triaxial test with oblique failure planes

resulting in shear deformation evolve making specific angles with the maximum compressive stress direc-

tion. The model, therefore, must be able to predict the simultaneous formation of fractures due to all these

different mechanisms. It is noted that the extension test, conventional triaxial test and the uniaxial com-
pression (UCS) test only provide insight into the material response to stress states on the boundary of the

full stress domain. Unfortunately, these experiments do not truly isolate the material response, but reflect

the response of the complete experimental system. It is therefore necessary that due consideration be given

to such factors as specimen boundary conditions (end effects), stiffness of the testing apparatus and loading

rate [5,12].
Fig. 1. Equivalence of experiment and in situ mining stress states. (a) The extension test and the unconfined walls of excavations, (b)

the uniaxial compression test (UCS) and unconfined rock pillars and (c) the triaxial test and the highly confined compression zone

ahead of the deep level mining face, after Ortlepp [21].
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The theory of the nucleation and growth of microcracks from pre-existing flaws is attributed to Griffith
[13] and is fundamental to the understanding of the quasi-brittle fracture process. Cracks initiating from

flaws grow and become stable, a process that is repeated for less critical flaws as the stress is raised, resulting

in stable pre-peak inelasticity [10,14–18]. Dilatancy is the most significant manifestation of quasi-brittle

fracture in compression and is defined as the increase in volumetric strain relative to the expected elastic

response [2]. Using acoustic emission Scholz [19] confirmed the observation of Brace et al. [10] that

dilatancy is directly proportional to microfracturing. Crack growth orthogonal to the direction of dilation

(parallel to the maximum compression stress) does not immediately produce a mechanical instability, as

observed in tensile fields. The direction of fracture propagation is necessarily orthogonal to the maximum
extensional strain and generally coincides with the direction of maximum applied compressive stress [15]. It

is this stable fracture process in compression that results in the large differences between tensile and

compressive strengths of quasi-brittle materials. This process ultimately leads to mechanical instability in

the post-peak region resulting in the formation of a macroscopic failure plane from the coalescence and

complex interaction of microcracks and the heterogeneous microstructure [1,2,15,20]. The post-peak drop

in strength that occurs is associated with the rupture of material linkages and the mobilisation of the

macroscopic failure plane.

This creates a global deformation mechanism that is generally associated with significant energy release and
may be the cause of so-called rockbursts, occurring when failure planes extend into mining excavations [21].

Many complex numerical models invoking the concepts of elastoplasticity, damage mechanics and sta-

tistical methods have been presented in the computational literature [22,24–26], but many are not widely

used due to the difficulty in determining material parameters and the high level of technical expertise re-

quired by the user. The aim of this paper is to present a pragmatic and relatively simple numerical model for

the degradation and subsequent discrete fracturing of quasi-brittle materials in compression. To this end the

widely used Mohr–Coulomb failure criterion is adapted and coupled with a fully anisotropic tensile smeared

crack model. The Mohr–Coulomb criterion is able to recover the salient features of the quasi-brittle response
within engineering accuracy, including dilation and has the advantage of being based on parameters that are

easily determined experimentally. Fracturing due to dilation is accommodated by introducing an explicit

coupling between the inelastic strain accrued by the Mohr–Coulomb yield surface and the anisotropic

degradation of the mutually orthogonal tensile yield surfaces. The introduction of discrete fractures into the

material is achieved by modification of the finite–discrete element code ELFEN [23,27], which allows the

finite element continuum to fracture into discrete blocks based on the selected failure criterion. The existing

fracture and contact logic was designed for tensile fracture with little post-fracture interaction of the frac-

tured rock, and had to be modified for the compressive stress regime where fractured subregions interact and
slide relative to each other after the initiation of fracturing. The proposed model represents a phenome-

nological approach in which micromechanical processes are only considered in terms of the average global

response. Isotropy of strength in compression is justified by assuming uniform material heterogeneity, while

accrual of inelastic strain and associated degradation of the tensile strength is necessarily anisotropic and

dependent on the loading direction. The effectiveness of the proposed numerical model will be assessed by

application to problems such as triaxial and plane strain rock tests, borehole breakouts and strip punch tests.
2. Modelling of discrete fracture

2.1. The discrete/finite element method

The spatially discretised form of the dynamic equilibrium equations at time N t is given by [23,24,28],

M€uðN tÞ þ C _uðN tÞ ¼ f extðN tÞ � f intðuðN tÞÞ: ð1Þ
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The diagonal mass matrix, M is defined by,

M ¼ A
nelem

e¼1

Xnnode
i¼1

Z
eV

eqNT
i ½N1;N2; . . . ;Nnnode�dV ð2Þ

and C is the diagonal damping matrix ðC ¼ aMÞ defining the viscous damping term with constant factor a.
It is apparent that at discrete time N t equations (1) represent a coupled system of second order linear

differential equations with constant coefficients. The relevant class of initial boundary value problems is
recovered by invoking (2) and the necessary boundary conditions and initial values. Using a central dif-

ference time integration scheme and adopting a diagonal damping matrix C recovers the algebraic equation

for the velocity of the degree of freedom ui at time Nþ1t, giving,

Nþ1
2 _ui ¼

2Mii � Cii
NDt

2Mii þ Cii
Nþ1Dt

N�1
2 _ui þ 2Nþ1

2Dt
f ext
i ðN tÞ � f int

i ðuðN tÞÞ
2Mii þ Cii

Nþ1Dt
: ð3Þ

The displacement at time Nþ1t is given by,

Nþ1ui ¼ Nui þ Nþ1
2 _ui Nþ1Dt: ð4Þ

The amount of damping selected depends on whether the problem is dynamic or quasi-static. For quasi-
static analyses, a dynamic relaxation approach is taken with a higher damping value of 0.3 leading to

convergence to the static solution after sufficient timesteps. It is noted that the use of difference equations

requires special consideration for initial conditions and prescribed quantities. The objective Green–Naghdi

stress update procedure [29], rotates the spatial state variables to the reference configuration in which

classical (material-non-linear-only) elastoplasticity is invoked to update the stress rate. It has been observed

that the Green–Naghdi stress rate is suitable for materials under small elastic strain conditions [24,30,31].

The kinematics of a general quasi-brittle discrete system is that of large displacements, large rotations and

small strain. The clear separation between kinematic non-linearity and material non-linearity, permits the
use of a small strain inelastic stress update in the reference configuration. The updates for the compression,

tension and extension stress regimes are described in the following sections.

2.2. Mohr–Coulomb model for compression

The Mohr–Coulomb criterion is used for the failure envelope in compression as a first order approxi-

mation equating the shear failure stress s to the sum of the internal friction and the inherent material

cohesion c0, giving,

jsj ¼ c0 � rn tan/ ¼ c0 � rnl; ð5Þ

where / is the internal friction angle and l is the coefficient of friction. It is noted that the normal stress rn

acting on an inclined plane is defined here to be negative in compression.

The Mohr–Coulomb failure criterion in principal stress space is given by,

1
2
ðrmax � rminÞ þ 1

2
ðrmax þ rminÞ sin/ ¼ c0 cos/; ð6Þ

where rmax and rmin are the maximum (most tensile) and minimum (most compressive) principal stresses

respectively, and are shown in Fig. 2. The linear approximation of the Mohr–Coulomb model is poorest at

low confinement, where the experimental strength-confinement curves exhibit greatest non-linearity (con-

vexity), but for many materials is a reasonable approximation for confinements below the brittle–ductile

transition. The Mohr–Coulomb failure criterion is independent of the intermediate principal stress r2

resulting in the failure plane manifesting itself necessarily parallel to this direction. The poor approximation
of the tensile region of the conventional Mohr–Coulomb yield surface to the mutually orthogonal tensile



Fig. 2. The compressive fracture model. (a) The isotropic Mohr–Coulomb yield surface with softening anisotropic tensile planes and

(b) Pi-plane representation indicating possible return-mappings.
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planes is a major shortcoming in terms of application to quasi-brittle fracture and is addressed later in this

paper.
It is necessary to introduce so-called mobilised material parameters that realise hardening/softening with

respect to some hardening parameter such that the permissible elastic domain depends on the current state

of inelastic strain as well as the history of evolution. The effective plastic strain �ep is adopted here and at

time t is defined by,

�epðtÞ ¼
Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_ep : _ep

r
dt; ð7Þ

where _ep is the inelastic strain rate tensor. The form of the hardening/softening curves for the mobilised

cohesion c0ð�epÞ and the mobilised friction angle /ð�epÞ are established by considering laboratory test data. A

non-associative implementation of the Mohr–Coulomb elastoplasticity model is required for the recovery

of the correct physical dilation response in compression. Replacing the friction angle / in the Mohr–
Coulomb yield function (6) by the so-called dilation angle w, such that w < /, recovers the widely adopted

plastic flow potential W given by,

Wðr;�epÞ ¼ 1
2
ðrmax � rminÞ þ 1

2
ðrmax þ rminÞ sinw� c0 cosw; ð8Þ

where c0 ¼ c0ð�epÞ, w ¼ wð�epÞ. The relationship between the dilation angle w and observed dilatancy is

defined by the constant dilatancy observed near the peak stress. After the formation and subsequent
mobilisation of a macroscopic failure plane the dilation tends to zero.

Stress states falling outside the elastic domain are non-permissible and are returned to the yield surface

through the so-called return-mapping procedure that is associated with the accrual of inelastic strain. It is

the dependency of the yield surface on the inelastic strain that renders the return-mapping non-linear and

necessitates the adoption of an iterative Newton–Raphson solution scheme. The flow rule defines the

evolution of inelastic strain through the concept of the subgradient of a function and is referred to as

Koiter’s rule for the case of multisurface plasticity [32], giving,

_ep ¼
Xm
a¼1

_kaorWaðr; jÞ; ð9Þ

where Waðr; jÞ is the plastic flow potential function and ka is the corresponding plastic consistency

parameter (or plastic multiplier) for the yield function faðr; jÞ, with a 2 ½1; 2; . . . ;m�. For non-associative
plasticity Waðr; jÞ 6¼ faðr; jÞ for some a 2 ½1; 2; . . . ;m�. The Kuhn–Tucker complementary (loading/
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unloading) conditions are the optimality conditions for the closest point projection minimisation problem

and for all a 2 ½1; 2; . . . ;m� are given by,

_ka P 0; faðr; jÞ6 0; _kafaðr; jÞ ¼ 0: ð10Þ

The consistency (persistency) condition is given by,

_ka _faðr; jÞ ¼ 0: ð11Þ

If madm 6m is the number of constraints at a certain point ðr; kÞ 2 oEr, with associated indices belonging to

the set Jadm ¼ fb 2 ½1; 2; . . . ;m�jfbðr; jÞ ¼ 0g, then the actual active constraint set Jact is defined by,

Jact ¼ fa 2 Jadmj _faðr; kÞ ¼ 0g: ð12Þ

It is the determination of the actual active constraint set Jact that is one of the principal algorithmic concerns

in multisurface plasticity.

2.3. The tensile fracture model

The multiple fixed crack model [33] and the microplane model [34] are attempts to overcome the limi-

tations of the fixed crack [34] and rotating crack [37] concepts. The differences between these models are

discussed in detail elsewhere [24,36]. In fixed crack models, the elastic properties degrade or plastic strain

accumulates across a pre-defined plane inducing a coupling between the shear and normal stresses. The

rotating crack concept has no memory of the crack direction and damage accrues in the direction of the

current principal stresses [36].

The fixed crack model is observed to be overly constrained with induced shear stresses unable to invoke

effective reorientation of crack directions, as is the physical manifestation. Conversely, the rotating crack
model is under constrained, exhibiting much-reduced shear stresses (for coincident rotation of principal

stress and strain). The crack direction reflects the current state of damage and not the damage history. In

oscillating stress fields that realise large rotations of the principal directions, it is possible that the intro-

duced discrete fractures will not reflect the previous history of directions in which damage was accrued. The

multiple fixed crack model and the microplane model allow simultaneous cracking in multiple orientations

which relieves excessive shear constraints while introducing strong path dependence. However, these

models are overly complex for the simplifying assumptions on which they are based and generally exhibit

arbitrary coupling between damage directions and spurious energy dissipation.
The stabilised rotating crack model is now proposed that realises crack band orientations defined by the

weighted average of the extensional strain directions invoking damage. The crack band remains fixed

during unloading and reloading, with the average orientation reflecting the cracking history and thus

constraining spurious rotation. Reorientation of the crack band in response to a build up of shear stress

relaxes the fixed crack constraints during loading and more closely resembles the physical manifestation.

To determine the crack direction, consider a two-dimensional configuration at time N t consisting of a

single crack band with normal n at an average angle Nthav to an appropriate reference frame (global or local

element) given by,

Nthav ¼
PNt

t¼0 D
txnn

the1PNt

t¼0 D
txnn

; ð13Þ

where D txnn is the increment of scalar damage in direction n at time t and the1 is the angle of the first
principal strain direction with respect to the reference frame at time t. Generally, the orientation of

maximum applied strain he1 does not coincide with the crack band normal orientation hav, but with damage
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accrual in a given direction they are convergent. In 3-D the average orthotropic orientation is more

complicated, but can be derived in terms of direction cosines.

It is apparent that the stabilised rotating crack model violates the form invariance condition due to the

general non-coincident rotation of the principal axes of stress and strain. However, for systems which

experience large arbitrary rotations of crack bands due to dynamic effects, unloading or post-failure

interaction, the error introduced due to the omission of shear coupling terms is negligible compared to that

introduced through spurious crack band orientations. It is noted that fracture is an extensional process and

the modelling of the normal behaviour is of primary importance.
The manifestation of deformation during fracturing is accomplished with a crack band model [34,35,38].

This model exhibits a constant strain distribution and a linear variation of displacement across the width of

the band, whereas a cohesive crack model [39–41] exhibits a Dirac delta (spike) strain function and a

corresponding displacement jump across the crack. The crack band description is therefore more realistic at

the initiation of softening, where material damage is dispersed, while a cohesive crack is more realistic at the

end of softening, where dispersed damage coalesces to form a localised discrete crack. The deformation in a

crack band is equivalent to that of a cohesive crack if the fracturing elongation DLf ¼ efhc is identified with

the cohesive crack opening displacement w, such that w ¼ efhc. Identical stress-elongation curves for the
crack band model and the cohesive crack model require a correspondence between the constitutive func-

tions. It would appear that although the cohesive crack model and the crack band model are equivalent, the

crack band model has an extra parameter in the crack band width hc. Recognising that the crack band

width hc is used in defining the specific fracture energy, the crack band model is equivalently defined in

terms of a tensile strength ft and a specific fracture energy Gf that defines the amount of energy dissipated

per unit cross-sectional area of the crack band.

The crack band model can be formulated with many different strain-softening curves to describe the

energy dissipation. In general, exponential curves appear to yield better results when applied to concrete
systems [4,13,18,41], although this is not necessarily true for brittle fine-grained rocks and ceramics.

Nonetheless, the linear softening curve is able to recover the salient features of the quasi-brittle structural

response and is applied here as a useful first order approximation. For an arbitrary finite element mesh

strain-softening will necessarily localise into a single element of local length scale (average dimension) hðeÞc

and mesh objective dissipation of the specific fracture energy Gf is achieved here using a linear strain-

softening curve defined by,

r ¼ /ðefÞ ¼ ft 1
�

� ef=efðeÞc

�
; ð14Þ

where efðeÞc is the element critical fracturing strain given by,

efðeÞc ¼ 2Gf

hðeÞc ft
: ð15Þ

For the crack band model with linear strain softening, the constant softening modulus H of the element has

a bi-linear behaviour given by,

H ¼ dr
dep

¼ � hðeÞc f 2
t

2Gf

for efðeÞ 6 efðeÞc ;

H ¼ 0 for efðeÞ > efðeÞc ;

ð16Þ

where hðeÞc is the local element lengthscale (average dimension) and Gf is the specific fracture energy.
The selected implementation of the anisotropic rotating crack band model consists of three orthogonal

tensile planes

f ri
i ðrÞ ¼ ri � fti � HhDepi i ¼ 0 ð17Þ
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that act independently in each of the principal stress ri directions and can thus realise anisotropic softening

in the material. Fig. 2(a) shows the coupling of the orthogonal, anisotropic tensile planes and the isotropic

Mohr–Coulomb yield surface, while Fig. 2(b) shows the Pi-plane representation of the composite yield

surface. The incremental update of the tensile strength in each of principal stress direction is given by,

nþ1fti ¼ nfti þ HhDepi i for i ¼ 1; 2; 3; ð18Þ
where ÆÆæ are the McAuley brackets returning zero for negative (compressive) inelastic strain increments
Depi , and

0fti ¼ ft. Tensile strengths associated with the principal stress directions at the end of the previous

timestep are associated with the current principal stress directions according to the relative proximity of

orientation. The assumptions on which the rotating crack band model is based restrict approximate validity

to only small rotations of the stress field. Any violation of tensile constraints, whether by the elastic trial

state or induced during the standard Mohr–Coulomb return-mapping, necessarily introduces the possibility

of a consistent return-mapping to any feasible combination of the tensile planes and the Mohr–Coulomb

yield surface. This is a consequence of the anisotropy of the tensile response, that no longer ensures the

validity of the constraint r1 P r2 P r3 for the updated principal stresses.

2.4. Explicit coupling between degradation in compression and tension

Starting from the assumption that quasi-brittle fracture is extensional in nature, any phenomenological

yield surface is effectively divided into regions in which extensional failure can be modelled directly, as in

the case of tensile stress fields and indirectly, as in the case of compressive stress fields. The violation of

either region of the yield surface should result in the realisation of inelastic extensional strain (cracks

opening). In both cases the definition of this inelastic strain is identical, it is the micro-mechanism that
produces the strain that differs. Fig. 3 depicts the dilation response of compressive failure in quasi-brittle

materials and clearly indicates the extensional inelastic strain directions associated with fracture. The vector

of principal increments of inelastic strain obtained from the single vector return-mapping to the Mohr–

Coulomb main-plane is given by [24],

D�ep ¼
Dep1
Dep2
Dep3

8<
:

9=
; ¼ Dka

1þ sinw
0

sinw� 1

8<
:

9=
;; ð19Þ

where the increment of inelastic strain Dep1 in the first principal stress direction is extensional. An explicit

coupling is therefore proposed between the extensional inelastic strain associated with the dilation response

of compressive failure and the tensile strength in the dilation direction, even in the absence of tensile stress.
Fig. 3. (a) Compressive loading with confining stress, (b) relationship between applied and volumetric strain and (c) compressive

failure with associated lateral extensional (positive) inelastic strain causing fracture and dilation.
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Various methods have been applied for modelling of biaxial stress states e.g. [25,26,36]. The proposed
implementation of an explicit coupling between compressive stress induced extensional strain and tensile

strength degradation permits the realisation of discrete fracturing in purely compressive stress fields. Such

increments of extensional strain must be associated with tensile strength degradation in the parallel

direction, giving,

fti ¼ ftiðepi Þ where epinþ1
¼ epin þ Depi ; ð20Þ

where fti is the tensile strength in the ith principal stress direction. Thus, for the example shown in Fig. 3c,

i ¼ 1. In pure, triaxial, tension, the strength degradation will occur in all three principal stress directions.

For a biaxial state of stress with one direction in tension, and the orthogonal direction in compression, the

degradation will occur perpendicular to the tensile stress, with the possibility of additional damage

occurring in the same direction if the compressive stress exceeds the strength.
The update of the tensile strength is only performed once consistency has been achieved for a return-

mapping including a compressive yield surface. It is noted that the tensile strength in a particular direction

is not updated if the associated tensile yield plane is included in the consistent return-mapping. The

principal stress return-mapping is a specialisation of the standard elastic predictor/plastic corrector schemes

widely employed in computational plasticity [29], with the return-mapping procedure (associated with the

plastic corrector phase) carried out in the principal stress space. This differs markedly from the Mohr–

Coulomb implementations generally encountered in the literature that adopt the invariant representation of

the model. The principal stress approach adopted here results in a far simpler and more efficient compu-
tational implementation. It appears that most non-linearities of the return-mapping are confined to the

spectral decomposition, whereby the principal stresses are evaluated as non-linear functions of the stress

tensor. The feasible return-mappings are numbered in Fig. 2(b) and detailed by Klerck [24]. The two

algorithms proposed by Simo et al. [42] for calculating the return to the active yield surface assume that the

final successful return-mapping includes the initial set of trial constraints. This is not always the case for the

current model and so an algorithm proposed by Peri�c and de Souza Neto [44] is adopted that assumes

nothing about the nature of the successful return-mapping and exhibits the ability to attempt all permissible

constraint combinations. Generally it is impossible to predetermine which return-mapping will be suc-
cessful and it is therefore necessary to design an algorithm that is able to attempt all return-mappings in

turn until consistency is achieved. In an attempt to maximise computational efficiency it is possible to order

the return-mappings with respect to feasibility and eliminate return-mappings that are known not to be

feasible. A discrete crack is introduced when the tensile strength in a principal stress direction reaches zero

and is orientated orthogonal to this direction.

2.5. The topological update

A discrete crack is introduced when the tensile strength in a principal stress direction reaches zero and is

orientated orthogonal to this direction, as already described with respect to the crack band model. The

insertion of discrete cracks into the quasi-brittle continuum follows three steps.

Step 1. Create a non-local failure map (weighted nodal averages).

Step 2. Determine fracture feasibility and the order of discrete crack insertion.

Step 3. Perform the topological update (remeshing).

The most meaningful quasi-brittle damage indicator or so-called failure factor is the ratio of the inelastic

fracturing strain ef to the critical fracturing strain efc. The local fail factor Fk at Gauss point k is given by,

Fk ¼ ðef=efcÞk; ð21Þ
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where Fk is associated with a local fracture direction hk, which is normal to the local failure (softening)

direction. Discrete fracture at the Gauss point level is effectively realised on dissipation of the complete

fracture energy (zero strength) and corresponds to a failure factor greater than unity. However, the nodal

basis of the finite element discretisation renders discrete crack insertion simpler if associated with nodal

failure factors. It is with this motivation that a non-local failure map is sought, based on the weighted

nodal averages of immediately adjacent element (Gauss point) failure factors and fracture directions. The

weighted-average failure factor F p and fracture direction �hp at node p are given by,

F p ¼
XNadj

k¼1

Fkwk

,XNadj

k¼1

wk; �hk ¼
XNadj

k¼1

�hkwk

,XNadj

k¼1

wk; ð22Þ

where Nadj is the number of immediately adjacent Gauss points and wk is a weighting factor usually taken as

the element volume.

A discrete fracture will necessarily be realised through a nodal point if the nodal failure factor is greater
than unity. The possibility of adjacent nodes reaching failure factors greater than unity within the same

time increment renders it necessary to determine a discrete fracture sequence prior to updating the

topology. It is apparent that the sequence can affect the final fracture pattern. The physical manifestation of

multiple crack propagation is firmly based on energetic feasibility, with the most energetically feasible

fracture propagating first. The magnitudes of the failure factors represent the numerical analogy of ener-

getic feasibility and their relative magnitudes determine the sequence of topological update.

The discrete crack insertion and the associated topological update commences with the definition of a

fracturing plane through the failed nodal point and in the direction of the weighted average fracture
direction, as shown in Fig. 4(a). The plane represents the actual discrete crack orientation and does not

generally coincide with the existing element sides. Insertion of the actual crack direction therefore requires

local remeshing and the possible creation of new elements, as shown in Fig. 4(b). This intra-element

fracturing may result in the creation of unfavourably dimensioned sliver elements if the underlying dis-

cretisation is simply split and may decrease the time increment stability limit. In this case local adaptive

mesh refinement must be undertaken to achieve an acceptable element topology. Alternatively, an element

threshold dimension can be defined below which the discrete crack is snapped to the most favourably

orientated existing element side, as shown in Fig. 4(c). Inter-element fracturing in which no remeshing is
considered is not usually desirable, requiring very fine meshes to capture the fracture directions accurately.

Following discrete crack insertion the failed elements are reinitialised under the assumption that the

element damage is coalesced into the discrete crack formation. Ideally only the damage normal to the dis-

crete crack should be zeroed, but with remeshing and the creation of additional elements the complexity of

state variable mapping is avoided by assuming that all state variables in the failed elements are reinitialised.

The contact response of the newly created surfaces is of vital importance to the stability of the solutions

after fracture initiation. The conventional approach for discrete contact in finite element methods is to
 , θp pF

(a) (b) (c)

Fig. 4. (a) Weighted-average nodal failure direction, (b) intra-element fracturing and (c) inter-element fracturing (the dashed lines

denote the potential crack planes and the arrows indicate the fracturing strain direction).
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apply the penalty method to approximately satisfy the contact displacement constraints for finite penalty
coefficients [27,43]. This results in the finite penetration of contact surfaces and an effective reduction in the

volume of contacting entities. This causes an instability when the region is in compression resulting in

spurious energy release. Thus, the correct contact description requires the exact satisfaction of the dis-

placement constraint. The explicit Lagrangian method was proposed for the determination of the contact

forces that satisfy the displacement constraints exactly [45,46]. The classical Lagrange multiplier method

evaluates the contact forces exactly, but is not compatible with the explicit integration operator. Explicit

compatibility is established by referencing Lagrange multipliers (contact forces) one time increment ahead

of associated surface contact displacement constraints. The explicit Lagrange multiplier method is not
purely explicit because a coupled system of equations must be solved to obtain the Lagrange multipliers.

The equation solving strategy adopted here is the symmetric Jacobi method, in which non-linear contact

force conditions (normal tension limit and tangential friction) are enforced during each iteration [24].

Tangential displacement constraints (friction) are enforced using the penalty method. For a stable solution,

the explicit Lagrange multiplier method requires a reduction in the critical time step to one-tenth of the

critical timestep for the continuum analysis. The classical non-associative Coulomb friction law defining a

critical tangential force proportional to the normal contact stress, fn and frictional coefficient l is applied

once the fracture has been placed in the finite element mesh.
Discrete fracture is realised after localisation of damage into crack bands and is therefore prone to the

discretisation dependence of the smeared crack models. This affects the positioning and the spacing of

fractures, but not the predicted orientation. The orientation is determined by the non-local averaging of

local element failure directions and is effectively independent of the discretisation. As already mentioned,

discretisation dependence can be minimised by utilising high-density, non-biased meshes of low order

elements. The context in which discrete fracturing has been introduced so far has been that of localised

failure in individual crack bands. This type of failure generally originates from structural features that

concentrate stress. Generally, objective fracture energy dissipation for distributed failure requires the use of
regularisation methods that ensure objective dissipation over finite volumes through the introduction of a

spatial lengthscale, which have been considered elsewhere [24].
3. Numerical examples

3.1. The strip punch test

Consider the strip punch test investigated experimentally by Dede [47] for quartzite rock to simulate the

failure of stabilising pillars in deep level gold mines. Prismatic quartzite specimens of dimensions 80 · 80 · 80
mmwere machined on one side to produce a bisecting 1mm high and 10 mmwide strip, as shown in Fig. 5(a).

The normal loading of the raised strip was performed within a triaxial loading cell, with 4.5MPa of confining

pressure applied to the specimen sides. To reduce friction all loading surfaces were coated with stearic acid

and so the platen friction coefficient is set to 0.005. The material friction coefficient is selected to be 1.2.

Although the stress state is three-dimensional, the geometry can be well described in plane strain. The

adopted plane strain finite element mesh is shown in Fig. 5(b) and consists of a graded distribution of three-
noded, linear elements with single point Gaussian quadrature. The mesh is observed to be refined in the

region of the punch strip, with elements of dimension 1 mm. The 4.5 MPa confining pressure is applied to

the specimen via discrete steel platens (shown in dark) and the normal strip load or axial load is applied via

a prescribed velocity of 0.1 m s�1. Material properties for quartzite are defined by Dede [47]. The input

material parameters and the evolution of the cohesion, friction and dilation were found by matching the

results of a single element triaxial test simulation with the data [47] and are given in Table 1. The Young’s

modulus is 68 GPa, the Poisson’s ratio is 0.17, the density is 2800 kgm�3, the tensile strength is 27 MPa.



Fig. 5. (a) Strip punch geometry and loading configuration, after Dede [47] and (b) plane strain finite element model.
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As mentioned in Section 2.5, the introduction of discrete fracturing requires a reduction in the critical

time step to a tenth of the continuum value. The timestep for the discrete fracture model is 0.49E)8 s and

the model takes 8.5 h to run on a 1.8 GHz computer, compared to 57 min for the continuum models. Thus,

the effect of varying the fracture energy was studied using continuum analyses to save time and to provide a

comparison to evaluate the effect of introducing the discrete fractures. Fig. 6(a) shows a typical plot of the
experimental normal punch stress versus the specimen axial strain and the plots recovered from

the numerical system. The initiation of purely compression induced microfracturing occurs at the edges of

the punch strip, where high compressive stress concentrations exists. The first significant feature of the axial

stress–strain response defined in Fig. 6(a) is the drop in stress experienced between points A and B. This

stress drop is associated with the localisation and coalescence of material degradation about the periphery

of the conical microfracture zone to form the macroscopic failure zone shown in Fig. 7(a). The hardening of

the axial stress–strain response between points B and C is attributed to the continued formation and

mobilisation of the conical failure zone and the initiation of the downward wedging action. The purely
tensile nature of the stress field propagating the cleavage crack is verified by observing the absence of

significant compressive inelastic strain vectors beneath the conical microfracturing zone, as shown in Fig.
Table 1

Evolution of material parameters with plastic strain for three rock types

Quartzite

Plastic strain 0 0.0005 0.001 0.0015 0.002 0.004 0.008 0.03

Cohesion (MPa) 53 50 45 42 37 28 10 10

Friction angle (�) 5 28 34.8 38.8 43.2 46 46 46

Dilation angle (�) 0 28.4 28.4 28.4 28.4 28.8 20 20

Sandstone

Plastic strain 0 0.0005 0.001 0.0015 0.002 0.008 0.01 0.03

Cohesion (MPa) 20 19 18 17 16 4 0 0

Friction angle (�) 17 31.5 40.5 52.5 52.5 52.5 52.5 52.5

Dilation angle (�) 0 5.75 11.5 17.25 23 23 18 4

Tyndall limestone

Plastic strain 0 0.0005 0.002 0.0055 0.011 0.02 0.022 0.03

Cohesion (MPa) 14 14 13 11 8 4 4 4

Friction angle (�) 4.4 22.4 27.2 29.2 29.6 30.4 30.4 30.4

Dilation angle (�) 0 19.6 19.6 19.6 19.6 19.6 5 5
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Fig. 6. (a) Numerical axial stress vs. axial strain plot for compressive fracture models with different parameters. Experimental data

after Dede [47]. (b) Numerical axial stress vs. axial strain plot for tension only fracture model.

Fig. 7. (a) Initiation of material degradation at the edges of the punch strip, (b) plastic strain vectors describing the conical micro-

fracture zone beneath the punch strip, (c) full mobilisation of the conical microfracture zone beneath the punch strip and completed

formation of the axial cleavage crack, (d) the observed fracture pattern and (e) discrete fracture pattern for a tension only model.
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7(b). The formation of the axial cleavage crack and the full mobilisation of the conical zone beneath the
punch strip produces a global deformation mechanism resulting in the complete failure of the specimen

between points C and D with a fracture pattern as shown in Fig. 7(c). The numerical discrete fracture

pattern compares very well with the typical experimental fracture pattern presented by Dede [47] and shown

in Fig. 7(d). The en-echelon fractures about the periphery of the conical zone are clearly observed, as is the
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axial cleavage crack. Some coalescence of the en-echelon fractures is observed in the numerical fracture
pattern, although it is noted that the spacing of cracks is necessarily set by the mesh and the recovery of a

complete failure surface on which sliding can be realised would require considerable mesh refinement. The

conical zone beneath the punch strip in the numerical model is observed to be longer than that observed in

experimental results. This difference is attributed to the effect of mesh alignment on the local numerical

model. The data presented by Dede [47] shows the overall deformation of the test machine and the loading

platens. The deformations were multiplied by a calibration factor of 0.24 to produce the response across the

sample only.

The graph in Fig. 6(a) also shows three stress–strain curves from continuum models, with different values
of fracture energy Gf , where the discrete fracturing has not been activated. As expected, the lowest value of

Gf , corresponding to the expected value for the quartzite, produces the most brittle response, with no

regaining of the load after failure. Higher values of Gf results in deformation at almost constant stress levels

prior to the final stress drop, which happens gradually. The model with fracturing activated also shows

deformation at constant stress, but a much more sudden stress drop at the final failure. The stress levels and

deformations agree well with the experimental data.

It is observed that the compressive fracture model, exhibiting explicit compressive–tensile coupling and

the softening of the orthogonal tensile planes, produces the most brittle response, as expected.
In order to investigate the effect of including the compressive fracture model on the load deformation

response and the fracture pattern, an analysis was performed with only tensile fracturing active i.e. by

setting the compressive strength to a very high value. Fig. 7(e) shows the final fracture pattern when a

purely tensile rotating crack model is adopted as the material model. It is apparent that only the axial

cleavage crack is correctly recovered, with a complete absence of material degradation in the vicinity of the

punch strip. This explains the excessive peak stress recovered (1300 MPa) and it is concluded that accurate

numerical modelling of all punch or indenter processes requires the accurate modelling of material deg-

radation obtained with the compressive fracture model in both tensile and compressive stress fields.

3.2. The plane strain and triaxial compression tests

Yumlu and Ozbay [8] tested 30 · 30 · 10 mm prismatic specimens of coal, sandstone, norite and quartzite

in plane strain and triaxial conditions, of which only the experiments on sandstone will be considered here.

Fig. 8(a) shows the plane strain finite element model. For the plane strain experiments, the confining

pressure was applied via a stiff system of discretely defined steel platens. The use of a threaded bolt across

the sample (shown in the schematic diagram of Fig. 8(b) to provide confinement in the plane strain test)
provides a constant stiffness and not a constant stress boundary condition. In the model (Fig. 8(a)), the

confinement is applied with an initial applied displacement to the outside of the loading platen and the

stiffness of the platen determines the subsequent system stiffness. Fig. 8(c) depicts the quarter symmetry

triaxial finite element model. The hydraulic confinement of the triaxial test is modelled using a soft, applied

stress condition as shown in Fig. 8(c). In both models, the ends of the specimen are loaded axially via

prescribed velocities of 0.1 m s�1. A uniform mesh of linear plane strain elements of average dimension 0.5

mm and single point Gaussian quadrature is adopted. Material properties for the sandstone are defined by

Yumlu and Ozbay [8] and the evolution of the cohesion, friction and dilation is given in Table 1. The
Young’s modulus is 28 GPa, the Poisson’s ratio is 0.25, the density is 2800 kgm�3, the tensile strength is 4

MPa and Gf ¼ 100 Jm�2. The explicit Lagrangian contact algorithm is adopted for discrete contact, with

the platen friction coefficient being 0.01 and the material friction coefficient is 1.3.

The best fit of the Mohr–Coulomb response to the triaxial test is used to determine the evolution of the

cohesion, friction and dilation during the test. Fig. 9 shows the axial stress–strain curves obtained from the

experiments on sandstone and the models. The experiments exhibit an initial non-linearity due to com-

paction of irregularities on the sample platen interface that has not been included in the models, and re-



Fig. 8. (a) Plane strain finite element model, (b) schematic of plane strain experiment and (c) triaxial finite element model.
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moved in the comparisons shown in Fig. 10. Considering the rest of the stress–strain response, the triaxial
model shows the pre-failure plastic strain and low residual stress also observed in the experiments. The

plane strain model shows a linear response with post-failure hardening. As shown in Fig. 10, the models are

able to reproduce the correct strength increase with confinement and the strength difference between the

triaxial and the plane strain models. Yumlu and Ozbay [8] observed that the plane strain constraint in-

creases the peak strength and reduces pre-peak-non-linearity, and attribute this to different material re-

sponses for the different stress paths. However, as both models used the same material parameters, the
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modelling indicates that the increased strength and residual hardening are not due to material properties,

but are a response to the stiffer loading system in the plane strain test.

The evolution of the discrete fracture pattern post-localisation of material failure in plane strain is shown

in Fig. 11a. The final pattern compares well with the observed failure shown in Fig. 12b. The constraint of

inter-element fracturing does not permit the resolution of exactly vertical en-echelon fractures. The lo-
calisation occurs within one element width as expected for the crack band model, but would need to be

refined to exactly match the observed fracture zone width. The localisation of failure in the triaxial models

is similar to those of the plane strain example, as also noted for the experiments [8].

3.3. The borehole breakout

The fracture distribution around circular cavities has been widely observed in the literature and well

documented by Hoek and Brown [48], Carter et al. [49,50], Sellers and Klerck [51], Lac du Bonnet granite
Fig. 11. (a) The evolution of discrete fracture in the localised failure zone, obtained using the compressive fracture model in plane

strain and (b) the failure observed in the experiment.
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Fig. 12. (a) Primary, remote and sidewall fracture distribution around a circular cavity in uniaxial compression. (b) The location of

strain gauges to indicate the initiation of different fracture types, after Carter [56].
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tested by Lee and Haimson [52] or Berea sandstone tested by Ewy and Cook [53] and Zheng et al. [54]
amongst many others. Fig. 12(a) shows the location of the so-called primary, remote and sidewall (borehole

breakout) fractures around a circular cavity loaded in uniaxial compression [50]. The primary fractures

initiate first from the tensile stress concentrations at the crown and invert of the circular cavity and

propagate away from the cavity parallel to the direction of applied loading. The remote fractures form next,

as shown in Fig. 12(a), initiating approximately adjacent to the termination of the primary fractures and at

some distance from the circular cavity. These remote fractures are associated with the redistribution of

tensile stress by the primary fractures and propagate away from and towards the cavity sidewalls. The four

possible remote fractures do not generally initiate simultaneously and occasionally not all four fractures
appear [50]. The third type of fracture is the sidewall fracture or borehole breakout that initiates with the

compressive failure of the cavity sidewalls. The global failure mechanism observed in experimental speci-

mens is generally due to the link up of the remote and sidewall fractures.

The mechanisms of borehole breakout in weak sedimentary rock, such as Cardova cream limestone

considered by Haimson and Song [55] as well as the stronger and more brittle Lac du Bonnet granite tested

by Lee and Haimson [51] were successfully modelled by Klerck [24]. The change in the fracture pattern

surrounding borehole breakouts in Elsburg quartzite due to the presence of interfaces was also successfully

simulated [51]. In this paper, the uniaxial compression tests performed by Carter and coworkers [50,56] on
specimens of Tyndall limestone (Tyndallstone) are modelled. The aim of the numerical investigation is to

demonstrate that the proposed compressive fracture model is able to recover the correct evolution of the

primary, remote and sidewall fractures and exhibit the observed size effect. To the authors’ knowledge this

has not yet been achieved in the literature and would constitute a significant contribution to the study.

Circular hole diameters ranging between 3.2 and 62 mm, were used to investigate the effect of hole size on

fracture initiation around circular underground openings. All the blocks were 89 mm thick. Specimens were

cut and polished into prismatic rectangular shapes with central circular holes and loaded via steel platens

with teflon inserts. Strain gauges were positioned, as shown in Fig. 12(b), to indicate the initiation of
primary, remote and sidewall fractures.

Numerical plane strain models of specimens tested by Carter et al. [50], with radii (R) of 6.4, 16.3 and 25

mm are illustrated in Fig. 13. Material properties for the limestone are deduced by matching the results of a

single element triaxial test simulation with the triaxial data presented by Carter [56] and Carter et al. [50],

and the evolution of the cohesion, friction and dilation is given in Table 1. The Young’s modulus is 21 GPa,



Fig. 13. The finite element models of the uniaxial loading of Tyndall limestone rectangular prisms with centrally located circular holes

of radii (a) 25 mm (black dots mark positions of numerical ‘‘strain gauges’’), (b) 6.4 mm and (c) 16.3 mm.
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the Poisson’s ratio is 0.3, the density is 2000 kgm�3, the tensile strength is 1.5 MPa and Gf ¼ 9 Jm�2. The

platen friction coefficient being 0.05 and the material friction coefficient is 0.58. Symmetry of the experi-

mental system is invoked for convenience in the finite element models proposed in Fig. 13. Uniaxial stress
loading is applied via discrete steel platens.

The results obtained using the compressive fracture model are shown in Fig. 14 for the specimen with

radius R ¼ 25 mm. Fig. 14 shows the evolution of the discrete numerical fracture pattern for the distinct

stages of primary, remote and sidewall fracture. Clearly demonstrated is the lengthening of the remote

fractures towards and away from the borehole walls, leading ultimately to the complete failure of the
Fig. 14. Evolution of discrete fractures in borehole breakout model immediately after the stages of (a) primary initiation, (b) remote

initiation and (c) sidewall initiation as indicated in Fig. 15.
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specimen. The correspondence of the numerical response to the physical response observed by Carter and
coworkers [49,50,56] is excellent.

The size effect of the initiation stresses of primary, remote and sidewall fractures around circular cavities

has been widely observed in the literature, including Carter et al. [50], Lee and Haimson [52], Lajtai [57],

Martin et al. [58], Martin [59]. The general trend is a decrease in fracture initiation stress with increasing

cavity size and is of great importance in that physical experimental modelling is usually aimed at appli-

cations of a significantly larger scale. No single theory has yet been able to account for the observed size

effect, although limited success has been achieved by Ewy and Cook [60] using fracture mechanics theory,

Gonano [61] using a critical strain energy model, Lajtai [57] using stress averaging techniques and Santarelli
and Brown [62] using pressure dependence of the elastic modulus. In order to assess whether the com-

pressive fracture model is able to recover the physically observed size effect it is necessary to determine the

stresses at which the different fractures initiate. This is achieved by monitoring the principal stresses in

elements in the region of the primary, remote and sidewall fractures. The relevant element positions are

marked in Fig. 13a. Initiation of the primary and remote fractures is indicated by a change in curvature of

the axial stress versus the most extensional principal strain curve, while sidewall fracture is indicated by a

change in the curvature of the axial stress versus the most compressive principal strain curve, as shown in

Fig. 15. This method of indicating the initiation of fracture approximates the physical strain gauges used by
Carter and coworkers [50,56]. The stresses agree well with the relevant experimental values. The observed

strains are larger than the modelled strains. However, the monitoring of the stress and strain at individual

element Gauss points is a local indicator, whereas the physical strain gauges are effectively non-local

indicators. Also, the Tyndall Limestone is reported to have a significantly lower modulus in tension [56]

which could account for the higher observed strains, as a single modulus is used for compression and

tension in this analysis. In this experiment, the non-uniform stress state results in different parts of the

model experiencing post-peak softening although the overall load–deformation response is hardening. The

softened parts occur when cracks form and cause additional deformation. The good correspondence of
the modelled and observed crack initiation stress levels and the resulting change in shape of the overall

stress–strain curves at three separate points in the model as shown in Fig. 16, indicates that the model is

correctly predicting the post-peak stress redistribution in the sample.

The experimental and numerical initiation stresses for primary, remote and sidewall fractures are plotted

with respect to the hole radii in Fig. 16. Fracture initiation stresses are observed to decrease with increasing
0

4

8

12

16

20

24

-6000 -4000 -2000 2000 4000 6000

Microstrain

A
xi

al
 s

tr
es

s 
(M

Pa
)

primary
remote
sidewall
stress
stress
stress

sidewall

remote

primary

primary initiation

remote
 initiation

sidewall initiation

0

Fig. 15. Experimental (light lines) and numerical (dark lines) stress–strain response indicating initiation of primary (point p in Fig. 13),

remote (point r in Fig. 13) and sidewall (point s in Fig. 13) fractures for R ¼ 25 mm model.



0

10

20

30

40

0 5 10 15 20 25 30 35

Hole radius (mm)

A
xi

al
 s

tre
ss

 (M
Pa

)

experimental
numerical

(c)

0

10

20

30

40

0 5 10 15 20 25 30 35

Hole radius (mm)

Ax
ia

l s
tr

es
s

(M
Pa

)

experimental
numerical

(b)

0

5

10

15

20

0 5 10 15 20 25 30 35

Hole radius (mm)

A
xi

al
 s

tre
ss

(M
Pa

)

experimental
numerical

(a)

Fig. 16. The variation of fracture initiation stress with hole radius. (a) Primary, (b) remote and (c) sidewall for modelled results and

data after Carter [56].

3054 P.A. Klerck et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 3035–3056
hole size and appear to approach different asymptotes for large cavity sizes. The numerical results obtained

using the compressive fracture model appear to closely approximate the observed size effect. This is cer-

tainly understandable with respect to the primary and remote fractures that initiate in purely tensile stress
fields, as the crack band model is effectively invoked with a response normalised by the material fracture

energy. However, the compressive failure model is purely local and yet still appears to recover the physically

observed size effect. This may be due to the fact that failure is not being localised into a single band of

elements, but in finite regions determined by the geometry. Another more likely explanation is that the

correct size effect response of the primary and remote fracture initiation offsets the compressive mode

sidewall fracture initiation.
4. Conclusions

A method for modelling discrete fracture in geomaterials under tensile and compressive stress fields has

been developed. The method is based on modifications to an explicit discrete element/finite element code.

The model considers a failure envelope consisting of the Mohr–Coulomb failure surface in compression and

three independent anisotropic rotating crack models in tension. To model fracture in the extension

mechanism observed in compressive stress fields, the plastic strain induced by compressive failure is coupled

to anisotropic rotating crack models. Once the tensile strength has been depleted, discrete fractures are
inserted into the finite element mesh. An explicit Lagrangian contact algorithm is used to enforce non-

penetration of the newly created fracture surfaces.

The model is applied to triaxial and plane strain tests as well as punch tests and borehole breakouts.

These models exhibit fracturing in a range of stress states, sometimes with different modes in a single

sample. The model is able to quantitatively predict the stresses at the initiation of fracturing, the defor-
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mations associated with fracturing and the appropriate load–displacement response of the structure. The
evolution of discrete fracturing is predicted and the fracture patterns are very similar to those observed in

the experiments. Future work will concentrate on three-dimensional models to supplement the two-

dimensional applications presented here.
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